1. Introduction
With the introduction of low-carbon and green lighting concepts in modern society, the lighting mode of deep interior spaces such as basement through solar lighting has attracted extensive attention [
1]. At present, there are two main transmission modes on the market to guide sunlight indoors, namely the light tube scheme and the optical fiber light guide scheme. Since the first set of light tube system products was put into application, light tube technology has been relatively mature after decades of development. Recently, researchers have explored more detailed research on the application of light tubes [
2,
3,
4,
5]. Another scheme, the optical fiber light guide [
6], has advantages such as high illumination intensity, flexible light transmission, small space occupancy and so on. As far as this scheme is concerned, there are multiple alternatives; for example, Takashi Nakamura designed an optical waveguide system for solar power applications in space [
7,
8]. However, there are still no technologically mature products on the market, and the relevant technology is still evolving [
9].
At present, the solar concentrators in optical fiber daylighting system are mainly divided into reflective, transmissive and hybrid concentrators. The lighting system using a butterfly solar concentrator [
10,
11] or trough concentrator [
12,
13,
14] as its reflective concentrator is a research hotspot. A transmission concentrator mainly includes ordinary convergent lenses and Fresnel lenses. Recently, Lei Li et al. proposed a large Fresnel lens optical fiber daylighting system, and its optical efficiency can reach 11–13% [
15]. Vu, N.H. et al proposed an optimized Fresnel lens fiber daylighting system (m-ofds). The system simulation results show that its maximum optical efficiency is 71%. The simulation results also show that the distance that sunlight can be transmitted to the lighting destination is 30 m [
16]. For a system with hybrid concentrators, Obianuju et al. used a new two-stage reflective non imaging dish concentrator for collection [
17]. Dawei et al. reported on a flexible light guide, which consists of 19 optical fibers and compound parabolic concentrators, and its efficiency can be over 60% [
18,
19]. In addition, many hybrid optical fiber daylighting and photovoltaic solar lighting systems were also proposed recently [
20,
21,
22]. However, all these light guiding systems mentioned above require tracking systems with mechanical moving parts and an external power supply. That is a big problem for all traditional optical fiber light guiding systems. The inclusion of tracking devices inevitably results in a complex structure, high construction and maintenance costs, a short life span and low reliability, which is not conducive to market promotion. Efficiency and cost are two important issues in energy application technologies. In general, in solar energy applications, systems with tracking devices are more efficient, while systems without tracking devices are less efficient; the same is true terms of cost. From the history of technology development, the application of tracking devices in large and medium-sized solar systems is commercially reasonable and successful, but the application of tracking devices in small systems, especially small civilian systems, is commercially unsuccessful. Given the endless supply of solar energy, home users are more concerned about maintenance and operating costs, operating reliability and service life. It is easy to understand this issue when you consider the most successful solar product, the solar water heater. Solar water heaters for home use have no tracking device, low cost, long life and are almost maintenance-free. Based on this consideration, in the field of solar light guiding, we also hope to develop a solar light guiding system without a tracking device.
In 2007, a specially designed composite parabolic concentrator was introduced [
23]. Subsequently, more in-depth studies were carried out [
24,
25]. In 2019, based on this concentrator, a fixed optical fiber daylighting system was proposed [
26]. For a traditional optical fiber guide system, its shortcomings of high cost, complex structure, low reliability and short life are largely due to the tracking device. However, this fixed system described above completely abandons the tracking device, which would greatly improve the shortcomings of the traditional optical fiber guide system. In this paper, a new structure will be designed to make the fixed fiber light guide system simpler, more reliable and more efficient in higher light energy coupling.
2. The Structure and Working Principle
In the literature published in 2019 [
26], a non-tracking light guide system based on the principle of total internal reflection was proposed. The receiving unit of that system that undertakes the solar receiving task is shown in
Figure 1a. One of the very important components in this figure is a concentrator with a convex outlet. After further research and analysis on this structure, it was found that this structure still has room for change. Therefore, we propose a new type of receiving unit, as shown in
Figure 1b. It can be seen that at least two different designs have been done. Firstly, the optical coupler has been omitted. The benefits are reducing specular reflection and becoming a simpler structure. Secondly, under the same conditions as other geometric parameters of the concentrator, smaller optical fibers can be used to reduce the cost.
The concave outlet concentrator is made of solid block transparent material, as shown in the physical photo in
Figure 2a. It realizes light propagation based on the principle of total internal reflection rather than specular reflection. The concave design of the outlet of the concentrator is based on the following reasons. Taking a look at the ray tracing simulation when the bottom end of the outlet is simply made into a plane, as shown in
Figure 3a, it can be seen that after the converged exit beam is emitted from the solid concentrator into the air, its convergence angle is large, which is obviously not conducive to the coupling with the optical fiber.
Therefore, we changed the flat bottom into a concave spherical structure, which is an arc seen from the outer contour of the shaft section. The outlet end of the concentrator is actually a concave lens. Ray tracing simulation on it is shown in
Figure 3b. This shows that the convergence angle of exit beam is smaller than that in
Figure 3a, which is good for light transmitting to fiber.
The preliminary design of the concentrator is discussed below. According to the discussion in the literature [
24], the geometric structure of the full-size concentrator can be determined as long as the outlet width
and the characteristic parameter
k are given (
k is defined in the
Appendix A). Let
(AB in the
Figure 4) according to the available experimental conditions. In order to obtain the optimal
k value, we do the following processing: According to the reasonable range of
k value discussed in the literature [
24], 11 different values of
k are determined, and 11 corresponding computer models of the concentrator with slightly different sizes are established. Then, 11 models with the same
value and the same inlet width are respectively imported into the optical software (LightTools) for ray tracing simulation, and their light transmission efficiency was measured. The wavelength of incident light is set to
, the number of rays to 15,000, and the transmittance of the material to 100%. The results are shown in
Figure 4.
The results correspond to the condition of normal incidence of light and connect with the optical fiber. The light transmission efficiency here is defined according to the following formula [
26].
The effective emergent rays refer to the light rays emitted from the fiber terminal, which is measured by a detection board (a round red board) very close to the end of the optical fiber, as shown in
Figure 5. Effective incident rays refer to the light rays entering into the inlet end (receiving surface, or DC in the
Figure 6) of the concentrator. It is measured with the help of a detector board at the entrance (a square red board at the entrance of the concentrator in
Figure 5). The length and width of this board are larger than the entrance of the concentrator and larger than the cross section of the incident beam. A hole in the middle of the square board has the same area as the entryway of the concentrator. Under the isoplanar condition, the board just covers the entryway of the concentrator. A square column is selected for the incident beam. As long as the light rays do not overflow the square detector board, the effective incident ray number is equal to the ray number of the incident beam minus the ray number on the detection board.
Figure 4 shows that there is a maximum value when the k value is between 0.65–0.68. After comprehensive consideration of various factors, the value of k is finally determined to be 0.667. Thus, the values of the two parameters, k and
, that determine the concentrator shape are 0.667 and 0.014 m, respectively, which are the geometric parameters of the concentrators used in the experiment.
The detailed axial section geometry of the concentrator is shown in
Figure 6. The parabolic CB equation is:
where
is the length of the line AB. It is the outlet width of the concentrator. The lengths of the lines DC, AB and dM are 66.34 mm, 14 mm and 2 mm, respectively (the experimental model is not a full-scale model. Its height has been truncated by 20%). The segment ef is a quarter arc with a radius of 5 mm. When the curve composed of the six segments EC, CB, BM, Md, df and fe rotates the Y axis, the concentrator would be obtained, as shown in
Figure 2b. The Y axis is its symmetry axis. The calculations of geometric parameters of the front part that is above the focal point of the concentrator are in
Appendix A.
3. Results and Discussion
This section is divided by subheadings. It will provide a concise and precise description of the experimental results, their interpretation, as well as the experimental conclusions that can be drawn. It will briefly and accurately describe the experimental process, methods and results, and analyze the results.
3.1. Research on the Transmission Efficiency of the Receiving Unit
To better explore the receiving performance of the concentrator, it was necessary to measure the change of its transmission efficiency under the irradiation of sunlight with different incident deflection angles. The measurement includes computer ray simulation and experiments under actual sunlight conditions. One point to make here is that the concave outlet concentrator is coupled with the transmission optical fiber to form a so-called receiving unit, as shown in
Figure 5. The measurement results are shown in
Figure 7. Here, we focused on the attenuation characteristic, that is, the shape of the curve, not the specific value of the transmission efficiency. Therefore, the experimental curve was normalized. The transmission efficiency was set to 1 when the incident angle was 0 degrees. The red line in the figure is the results from the computer ray tracing simulation, which uses ray number as an energy unit. The conditions of the simulation are as follows: The transmittance of the concentrator is 100% without considering the absorption loss of the material, and the incident light is monochromatic light with a wavelength of 550 nm. The black line is the result from the actual solar experiment, which uses solar irradiance as the energy unit. In the figure, the angle Φ is the deviation angle from normal incidence.
It can be seen from
Figure 7 that the shape of the two curves is similar, and that with the increase in the incidence angle the transmission efficiency gradually decreases. When the incident parallel light rays gradually deviate from the normal, making the propagation process of the light more complex, more light rays cannot be fully reflected into effective output light rays; they go out of the side, as shown in
Figure 8. Therefore, the output will decay gradually as the declivity angle of the incident light rays increases. Of course, loss also includes material absorption, which has to do with the wavelength of light, but this loss is hardly reflected in the attenuation curve, because it hardly has much to do with the deflection angle. In other words, different wavelengths will get different efficiencies, but do not affect the shape of the efficiency curve in
Figure 7.
Another point that needs to be noted is that when the deflection angle become large (more than 8° in figure), the simulation curve still attenuates relatively rapidly, but the experimental curve attenuates relatively slowly. The reason is that sunlight contains both direct light and scattered light. As the deviation angle increases, the loss of direct light gradually increases, and it counts for less and less proportion. However, the scattered light almost stays the same, just taking up more and more proportion. Therefore, the field experimental curve decays slowly at a large angle deflection. However, the incident light corresponding to the computer simulation curve includes only direct light, no scattered light. Therefore, it is still decaying at a relatively fast rate.
However, we should note that the decay is not sudden, but gradual. It can be seen from
Figure 7 that when the deflection angle is 4°, the transmission efficiency of the receiving unit is still close to 0.5. That is half of the max transmission efficiency. The value of 4° here is called the full width at half maximum (short for FWHM) of this receiving unit.
Theoretically, if the defects of the device manufacturing and system assembly are not considered, the influence of the deviation of sunlight on the transmission efficiency is axisymmetric in spatial orientation. Therefore, for a fixed receiving unit, the complete light transmission efficiency curve should be as shown in
Figure 9. For any receiving unit, the corresponding light transmission efficiency curve has a full width at half maximum, that is, Φ
m in the figure. Specifically, for the model we have established, the FWHM is Φ
m = 4°. This transfer efficiency curve is a very important curve that we rely on to build a fixed optical fiber guide system.
3.2. Fixed Fiber Light Guide System
As we can see from the discussion in the previous section, only when the sun moves to the normal incidence position of the receiving unit can the maximum receiving effect be obtained by simply relying on a fixed receiving unit to receive sunlight. Once it deviates from the normal incidence position, receiving efficiency will decrease. The greater the deviation angle, the less the efficiency. However, the feature of the transmission efficiency curve of the receiving unit gives us an inspiration. If we stagger multiple receiving units at certain angles intervals (for example, 2Φ
m) on an arc corresponding to the motion of the sun, a fixed light guide system will be gained, as shown in
Figure 10.
By this arrangement, the resulting fixed light guide system will have a light transmission efficiency curve, which is the staggering superposition of the transmission efficiency curves of nine receiving units, as the red line shows in
Figure 11. Within a certain receiving angle range (determined by the number of receiving units), the efficiency curve will be an approximate horizontal line, which is not different from the light guide system with a solar tracking device. It can be seen from
Figure 11 that the shape of the curve in
Figure 9 is very important. The curve with a large Φ
m is what we want to get. With a larger Φ
m, the design goal can be achieved with fewer receiving units at the same receiving angle. According to the available experimental conditions, we can get a system including nine receiving units, as seen in
Figure 12. The angular interval between two receiving units is equal to 2Φ
m = 8°. Of the range between −32° to 32°, the light transmission efficiency decreases rapidly. Based on the same idea, similar problems coming from the seasonal change can be solved by a multi-row arrangement in the direction of the sun’s altitude angle, as shown in
Figure 10 and
Figure 12.
3.3. Test on the Fixed Fiber Light Guide System
The test device is shown in
Figure 12. The fiber is a plastic optical fiber with a length of 3 m and a diameter of 0.005 m. The ends of nine optical fibers are bundled into a square column shape, as shown in
Figure 13, and then are inserted into a small darkroom (1.2 × 1.2 × 1.8 m
3), that is located inside a room (not in the field of view in
Figure 12). The measurement point of illuminance is located 0.4 m in front of the end of the fiber bundle.
The latitude of the experimental site is 23°. When testing, the center line of the light guide system directs to the solar noon position of the sun. Because the sun moves 1° every 4 min, the range of effective output illuminance received by the fixed light guide system is 64°, which is more than 4 h of sunshine, that is, 2 h before noon and 2 h after noon. The measured data are shown in
Figure 14 and
Figure 15. The red curve is the irradiance of incident sunlight and the purple curve is the output illuminance.
We can clearly see that the whole output illuminance is almost consistent with the change trend of sunlight irradiance. Without regard to receiving efficiency, the receiving characteristics of this system in receiving sunlight for illumination are the same as the optical guide system with a tracking device. It should be noted that because solar irradiance and illuminance at the end of optical fibers are measured using different instruments that do not have a common time scale system (that is, the two data records are not strictly the same point on the time axis), the change trend of the two curves could not be absolute consistent. The entrance area (solar receiving area) of the nine receiving units is . In the figure, we can also see that when the average intensity of sunlight is about 600 W/m2, the output illuminance of the whole system can reach about 200 lux, and when the average intensity of sunlight is about 800 W/m2, the output illuminance of the whole system can reach about 300 lux. This illuminance intensity can meet the lighting needs of daily rooms.
From a system architecture perspective, we can improve efficiency and output in the following ways. One way is to shorten the angular interval between the two receiving units. Thus, from
Figure 11, we can see that the efficiency curve (red line) will rise. However, it should be noted that if the interval between receiving units remains unchanged, simply increasing the number of receiving units in the same line will not make the efficiency curve rise, but only increase the lighting time. The second way is to increase the number of rows of the receiving unit. The third way is to increase the width
of the concentrator outlet (AB in
Figure 6), which also increases the width of its entrance (CD in
Figure 6). Therefore, more receiving area will be obtained at the entryway of the concentrator. This method can increase the output. Of course, further optimization of the structure and selection of materials with low absorption loss are also good ways to improve the output.