Optimization of Oil Pipeline Operations to Reduce Energy Consumption Using an Improved Squirrel Search Algorithm
Abstract
:1. Introduction
2. Optimization Model
- The conveying medium flows stably in the pipe;
- Single-phase (liquid phase) homogeneous flow of conveying medium in the pipe;
- The temperature of the conveying medium in the pipe is constant along the radial direction, and only the change of the axial temperature is considered.
2.1. Inverter Pump Processing
2.2. Objective Function
2.3. Optimization Variables
2.4. Calculation Process and Constrain
3. Optimization Algorithm
3.1. Squirrel Search Algorithm
- 1.
- Flying squirrels on acorn nut trees () will move toward hickory nut tree. In this case, the new location of squirrels can be obtained as follows:
- 2.
- Some flying squirrels on normal nut trees () may move toward acorn nut tree. In this case, the new location of squirrels can be obtained as follows:
- 3.
- The rest of the flying squirrels on normal nut trees will move toward hickory nut tree. In this case, the new location of squirrels can be obtained as follows:
- 1.
- First calculate the seasonal constant () using Equation (10):
- 2.
- Calculate the minimum value of seasonal constant computed (Smin):
3.2. Multigroup Coevolution-Adaptive Inertia Weight SSA
3.2.1. Strategy 1: Multi-Group Co-Evolution
3.2.2. Strategy 2: Adaptive Inertia Weight
4. Experimental Set Up
4.1. Experimental Scheme Setting
4.2. Experimental Parameters Setting
5. Experimental Results and Analysis
5.1. Experiments on Function Study
5.2. Experiments on Case Study
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Head provided by pump station ith | m | Reynolds number | |||
Acceleration constant of gravity | 9.8 m/s2 | Fluid density | kg/m3 | ||
Outlet temperature of heating station number ith | °C | d | Inside diameter of the pipe | m | |
Inlet temperature of heating station number ith | °C | V | Flow rate of fluid in the pipeline | m/s | |
Low heating value of fuel | KJ/kg | Dynamic viscosity | Pas | ||
Speed of variable frequency pump of the pump unit in the ith pumping station | L/min | Qi | Volume flow of fluid in the pipeline | m3/s | |
Oil temperature L meters from the start of the pipeline | °C | Friction loss along the line | m | ||
The ground temperature of buried pipeline environment | °C | L | Length of pipe | m | |
Oil temperature at the beginning of the pipeline | °C | d | Inside diameter of the pipe | m | |
Thermal load of the ith heating station | KJ/kg | Friction coefficient | |||
Rated heat load of the heating furnace (maximum heat load) | KJ/kg | Friction between pump stations | m | ||
The minimum allowable speed of the pump | L/min | Local friction between pumping stations | m | ||
The maximum speed allowed by the pump | L/min | Friction between heating stations | m | ||
The outbound head of the ith pump station | m | Power of oil pump | kW | ||
Maximum working head of pipeline | m | Inlet head of the ith pumping station | m | ||
Minimum outbound temperature of the ith hot station | °C | Allowable minimum inlet head of the ith pumping station | m | ||
Maximum outbound temperature of the ith hot station | °C | The outbound head of the ith pump station | m | ||
Minimum heat load of the heating furnace | KJ/kg | Maximum working head of pipeline | m |
Appendix A
Pipe Section between Stations | K (w/m2·K) | Ground Temperature (°C) |
---|---|---|
Station 1 to station 2 | 0.869 | 15.9 |
Station 2 to station 3 | 0.970 | 16.5 |
Station 3 to station 4 | 1.770 | 17.1 |
Station 4 to station 5 | 1.815 | 17.1 |
Station 5 to station 6 | 1.655 | 17.1 |
Station 6 to station 7 | 1.552 | 17.1 |
Station 7 to station 8 | 2.079 | 17.5 |
Station 8 to station 9 | 1.738 | 17.7 |
Number | Cp | rs (rpm) | Tin (°C) | Tout (°C) | Pin (MPa) | Pout (MPa) |
---|---|---|---|---|---|---|
1 | 3 | 2890 | 42.12 | 43.31 | 0.44 | 5.61 |
2 | / | / | 37.33 | 39.13 | 3.86 | 3.68 |
3 | 2 | 2523 | 37.60 | 38.35 | 1.02 | 4.35 |
4 | 2 | 2890 | 36.51 | 37.74 | 0.68 | 4.38 |
5 | 2 | 2284 | 36.66 | 38.60 | 0.96 | 4.97 |
6 | 2 | 2323 | 36.15 | 41.84 | 0.75 | 4.02 |
7 | 2 | 2796 | 36.11 | 40.12 | 1.31 | 5.02 |
8 | / | / | 36.34 | 40.62 | 2.64 | 2.52 |
9 | / | / | 36.21 | - | 0.21 | - |
Number | Cp | rs (rpm) | Tin (°C) | Tout (°C) | Pin (MPa) | Pout (MPa) |
---|---|---|---|---|---|---|
1 | 3 | 2890 | 42.12 | 43.18 | 0.44 | 5.61 |
2 | / | / | 37.20 | 38.60 | 3.84 | 3.66 |
3 | 2 | 2697 | 37.26 | 38.22 | 0.98 | 4.17 |
4 | 2 | 2890 | 36.44 | 37.48 | 0.52 | 4.18 |
5 | 2 | 2278 | 36.23 | 38.21 | 0.81 | 4.27 |
6 | 2 | 2409 | 36.00 | 41.00 | 0.53 | 3.94 |
7 | 2 | 2799 | 36.00 | 39.52 | 1.14 | 4.81 |
8 | / | / | 36.13 | 40.00 | 2.41 | 2.30 |
9 | / | / | 36.00 | - | 0.11 | - |
Number | Cp | rs (rpm) | Tin (°C) | Tout (°C) | Pin (MPa) | Pout (MPa) |
---|---|---|---|---|---|---|
1 | 3 | 2890 | 42.12 | 43.58 | 0.44 | 5.61 |
2 | / | / | 38.20 | 40.6 | 3.84 | 3.68 |
3 | 2 | 2497 | 38.82 | 40.22 | 0.99 | 4.58 |
4 | 2 | 2890 | 38.21 | 39.33 | 0.82 | 4.42 |
5 | 2 | 2378 | 36.83 | 39.21 | 1.03 | 4.89 |
6 | 2 | 2389 | 36.70 | 40.72 | 1.03 | 4.11 |
7 | 2 | 2799 | 36.08 | 40.20 | 1.21 | 5.12 |
8 | / | / | 36.25 | 40.10 | 2.81 | 2.62 |
9 | / | / | 36.09 | - | 0.27 | - |
References
- Liu, E.; Kuang, J.; Peng, S.; Liu, Y. Transient Operation Optimization Technology of Gas Transmission Pipeline: A Case Study of West-East Gas Transmission Pipeline. IEEE Access 2019, 7, 112131–112141. [Google Scholar] [CrossRef]
- Peng, S.; Zhang, Z.; Liu, E.; Liu, W.; Qiao, W. A new hybrid algorithm model for prediction of internal corrosion rate of multiphase pipeline. J. Nat. Gas Sci. Eng. 2021, 85, 103716. [Google Scholar] [CrossRef]
- PIPELINE-101. Other Means of Transport [EB/OL]. 2013. Available online: http://www.pipeline101.com/why-do-we-need-pipelines/other-means-of-transport (accessed on 21 July 2022).
- Zeng, C.; Wu, C.; Zuo, L.; Zhang, B.; Hu, X. Predicting energy consumption of multiproduct pipeline using artificial neural networks. Energy 2014, 66, 791–798. [Google Scholar] [CrossRef]
- Jia, C.; Chen, C.; Wang, L. Experimental research of descaling characteristics using circumfluence dilution and uniform-temperature perturbation in a vacuum furnace. Appl. Therm. Eng. 2016, 108, 847–856. [Google Scholar] [CrossRef]
- Zhang, H.; Liang, Y.; Liao, Q.; Wu, M.; Yan, X. A hybrid computational approach for detailed scheduling of products in a pipeline with multiple pump stations. Energy 2017, 119, 612–628. [Google Scholar] [CrossRef]
- He, Y.; Cao, F.; Jin, L.; Yang, D.; Wang, X.; Xing, Z. Development and field test of a high-temperature heat pump used in crude oil heating. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2017, 231, 1989–1996. [Google Scholar] [CrossRef]
- Liu, C.; Jing, P.; Zhang, X.; Luo, Y.; Liu, Y.; Chen, D. Application of Variable Frequency Speed Regulation Technology in Oil Pipeline. Green Pet. Petrochem. 2018, 3, 48–51. (In Chinese) [Google Scholar]
- Cheng, Q.; Zheng, A.; Yang, L.; Pan, C.; Sun, W.; Liu, Y. Studies on energy consumption of crude oil pipeline transportation process based on the unavoidable exergy loss rate. Case Stud. Therm. Eng. 2018, 12, 8–15. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, Q.; Gan, Y.; Wang, Y.; Li, Z.; Zhao, J. Multi-objective optimization of energy consumption in crude oil pipeline transportation system operation based on exergy loss analysis. Neurocomputing 2019, 332, 100–110. [Google Scholar] [CrossRef]
- Liu, E.; Peng, Y.; Yi, Y.; Lv, L.; Qiao, W.; Azimi, M. Research on the steady-state operation optimization technology of oil pipeline. Energy Sci. Eng. 2020, 8, 4064–4081. [Google Scholar] [CrossRef]
- Liu, E.; Lai, P.; Peng, Y.; Chen, Q. Research on optimization operation technology of QT oil pipeline based on the Heuristic algorithm. Energy Rep. 2022, 8, 10134–10143. [Google Scholar] [CrossRef]
- Altan, A. Performance of metaheuristic optimization algorithms based on swarm intelligence in attitude and altitude control of unmanned aerial vehicle for path following. In Proceedings of the 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Istanbul, Turkey, 22–24 October 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Karasu, S.; Altan, A.; Bekiros, S.; Ahmad, W. A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series. Energy 2020, 212, 118750. [Google Scholar] [CrossRef]
- Qiao, W.; Yang, Z. Modified Dolphin Swarm Algorithm Based on Chaotic Maps for Solving High-Dimensional Function Optimization Problems. IEEE Access 2019, 7, 110472–110486. [Google Scholar] [CrossRef]
- Jain, M.; Singh, V.; Rani, A. A novel nature-inspired algorithm for optimization: Squirrel search algorithm. Swarm Evol. Comput. 2019, 44, 148–175. [Google Scholar] [CrossRef]
- Basu, M. Squirrel search algorithm for multi-region combined heat and power economic dispatch incorporating renewable energy sources. Energy 2019, 182, 296–305. [Google Scholar] [CrossRef]
- Ghosh, D.; Singh, J. Spectrum-based multi-fault localization using Chaotic Genetic Algorithm. Inf. Softw. Technol. 2021, 133, 106512. [Google Scholar] [CrossRef]
- Sakthivel, V.P.; Suman, M.; Sathya, P.D. Combined economic and emission power dispatch problems through multi-objective squirrel search algorithm. Appl. Soft Comput. 2021, 100, 106950. [Google Scholar] [CrossRef]
- Sanaj, M.S.; Prathap, P.M.J. Nature inspired chaotic squirrel search algorithm (CSSA) for multi objective task scheduling in an IAAS cloud computing atmosphere. Eng. Sci. Technol. Int. J. 2020, 23, 891–902. [Google Scholar] [CrossRef]
- Wang, Y.; Du, T. A Multi-objective Improved Squirrel Search Algorithm based on Decomposition with External Population and Adaptive Weight Vectors Adjustment. Physica A Stat. Mech. Its Appl. 2020, 542, 123526. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, K.; Wang, L.; Wang, Y.; Niu, Y. An Improved Squirrel Search Algorithm with Reproductive Behavior. IEEE Access 2020, 8, 101118–101132. [Google Scholar] [CrossRef]
- Zheng, T.; Luo, W. An improved squirrel search algorithm for optimization. Complexity 2019, 2019, 6291968. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, L.; Bai, Y.; Wang, P.; Tan, X. A hybrid algorithm based on squirrel search algorithm and invasive weed optimization for optimization. IEEE Access 2019, 7, 105652–105668. [Google Scholar] [CrossRef]
- Cao, H.; Zheng, H.; Hu, G. The optimal multi-degree reduction of Ball Bézier curves using an improved squirrel search algorithm. Eng. Comput. 2021, 1–24. [Google Scholar] [CrossRef]
- Mandloi, A.; Pawar, S. Power and delay efficient fir filter design using ESSA and VL-CSKA based booth multiplier. Microprocess. Microsyst. 2021, 86, 104333. [Google Scholar] [CrossRef]
- Ehrlich, P.R.; Raven, P.H. Butterflies and plants: A study in coevolution. Evolution 1964, 18, 586–608. [Google Scholar] [CrossRef]
- Bozorgvar, M.; Zahrai, S.M. Semi-active seismic control of a 9-story benchmark building using adaptive neural fuzzy inference system and fuzzy cooperative coevolution. Smart Struct. Syst. 2019, 23, 1–14. [Google Scholar] [CrossRef]
- Cheng, M.; Lien, L. Hybrid Artificial Intelligence-Based PBA for Benchmark Functions and Facility Layout Design Optimization. J. Comput. Civ. Eng. 2012, 26, 612–624. [Google Scholar] [CrossRef]
- Kallis, G. When is it coevolution? Ecol. Econ. 2007, 62, 1–6. [Google Scholar] [CrossRef]
- Sun, L.; Lin, L.; Gen, M.; Li, H. A Hybrid Cooperative Coevolution Algorithm for Fuzzy Flexible Job Shop Scheduling. IEEE Trans. Fuzzy Syst. 2019, 27, 1008–1022. [Google Scholar] [CrossRef]
- Sun, Y.; Kirley, M.; Halgamuge, S.K. A Recursive Decomposition Method for Large Scale Continuous Optimization. IEEE Trans. Evol. Comput. 2018, 22, 647–661. [Google Scholar] [CrossRef]
- Fares, D.; Fathi, M.; Shams, I.; Mekhilef, S. A novel global MPPT technique based on squirrel search algorithm for PV module under partial shading conditions. Energy Convers. Manag. 2021, 230, 113773. [Google Scholar] [CrossRef]
- Liang, J.; Qu, B.; Suganthan, P.; Hernández-Díaz, A. Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session on Real-Parameter Optimization; Technical Report 201212; Computational Intelligence Laboratory, Zhengzhou University: Zhengzhou, China, 2013. [Google Scholar]
Algorithm Name | Conclusions |
---|---|
Improved Version SSA | An adaptive strategy of predator presence probability (Pdp) was proposed to balance the exploration and exploitation capabilities of the algorithm [23] |
Improved SSA | Hu et al proposed ISSA by combining SSA with IWO. By comparison, ISSA had the better convergence performance and the better average function values on benchmark functions [24] |
RSSA | This paper proposed a new parameter to adjust the step size of all squirrels [22] |
Dynamic Multi-Objective SSA | Through rearranging the individual, the population diversity of SSA could be maintained and the efficiency and stability of SSA were improved in solving dynamic multi-objective flexible job-shop scheduling problems [21] |
NOSSA | This paper adopted a stochastic optimal neighborhood update strategy to improve convergence speed and accuracy, and the experimental results showed that NOSSA had better performance on search efficiency, convergence rate, and solution accuracy [25] |
ESSA | Improved predator presence probability (Pdp) to ensure the exploration and development capabilities of SSA [26] |
Coefficient | A1 | A2 | A3 | A4 | A5 | A6 | |
---|---|---|---|---|---|---|---|
Station Number | |||||||
1/4/6/7 | −5.96 × 10−5 | 1.57 × 10−3 | −7.93 × 10−6 | 7.12 × 10−4 | −0.189 | 213.9 | |
3/5 | −4.98 × 10−5 | 6.2 × 10−3 | −9.8 × 10−6 | 7.57 × 10−4 | −0.205 | 233.9 | |
Coefficient | a1 | a2 | a3 | a4 | a5 | a6 | |
Station Number | |||||||
1/4/6/7 | −5.68 × 10−4 | −0.264 | 2.78 × 10−4 | 5.76 × 10−4 | −2.32 | 2536 | |
3/5 | −5.446 × 10−4 | −0.295 | 2.92 × 10−4 | 5.95 × 10−4 | −2.4 | 2624 |
Station Number | Number of Pumps | Hin_min/Hout_min (MPa) | Hout_max (MPa) | Qmax (kW) | Qmin (kW) | Tout_min (°C) | Tin/ Tout_max (°C) | rsmin (rpm) | rsmax (rpm) | Pmax (kW) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 3 | - | 6.3 | 5000 | 1500 | 55 | 35 | 2200 | 2890 | 2000 |
2 | 0 | 0.1 | 6.3 | 4650 | 1395 | 55 | 35 | - | - | - |
3 | 3 | 0.1 | 6.3 | 5000 | 1500 | 55 | 35 | 2200 | 2890 | 2300 |
4 | 3 | 0.1 | 6.3 | 4650 | 1395 | 55 | 35 | 2200 | 2890 | 2300 |
5 | 3 | 0.1 | 6.3 | 4650 | 1395 | 55 | 35 | 2200 | 2890 | 2300 |
6 | 3 | 0.1 | 6.3 | 4650 | 1395 | 55 | 35 | 2200 | 2890 | 2300 |
7 | 3 | 0.1 | 6.3 | 4650 | 1395 | 55 | 35 | 2200 | 2890 | 2000 |
8 | 0 | 0.1 | 6.3 | 4650 | 1395 | 55 | 35 | - | - | - |
9 | 0 | 0.1 | - | - | - | 55 | - | - | - | - |
GA | PSO | DE | SSA | MASSA | |
---|---|---|---|---|---|
T | 100 | 100 | 100 | 100 | 100 |
population_size | 100 | 100 | 100 | 100 | 50 |
Crossover fraction | 0.8 | - | - | - | - |
Mutation probability | 0.05 | - | - | - | - |
C1 and C2 | - | 0.9 | - | - | - |
Inertia weight | - | 2 | - | - | - |
F | - | - | 0.5 | - | - |
crossover probability | - | - | 0.55 | - | - |
P1 | - | - | - | 0.3 | 0.3 |
P2 | - | - | - | - | 0.5 |
d | - | - | - | (0.5, 1.11) | (0.85, 2.105) |
Gc | - | - | - | 1.9 | 1 |
n2 | - | - | - | 4 | 4 |
Name | N | Range | DE | PSO | GA | SSA | MASSA | |
---|---|---|---|---|---|---|---|---|
Step | 30 | [−5.12, 5.12] | Mean | 25.19633 | 47.22449 | 126.29440 | 59.42104 | 16.96656 |
SD | 4.11803 | 29.26723 | 17.83599 | 8.14994 | 5.42353 | |||
Sphere | 30 | [−100, 100] | Mean | 4.6 × 10³ | 6.99 × 104 | 1.82 × 104 | 8.10 × 104 | 5.12 × 104 |
SD | 4.17 × 10³ | 3.89 × 10³ | 6.13 × 10³ | 2.19 × 104 | 3.31 × 104 | |||
Sum Squares | 30 | [−10, 10] | Mean | 6.73 × 102 | 1.84 × 10³ | 6.54 × 10³ | 1.61 × 10³ | 6.51 × 102 |
SD | 3.94 × 102 | 3.14 × 102 | 8.01 × 102 | 1.19 × 10³ | 2.47 × 102 | |||
Quartic | 30 | [−1.28, 1.28] | Mean | 101.20177 | 6.26098 | 57.75274 | 10.40186 | 2.20888 |
SD | 18.73032 | 14.01279 | 1.22485 | 1.41747 | 4.66715 | |||
Baele | 2 | [−4.5, 4.5] | Mean | 0.03365 | 0.01748 | 0.03302 | 0.16844 | 0.00149 |
SD | 0.04906 | 735.51142 | 0.04438 | 0.27797 | 0.00172 | |||
Easom | 2 | [−5, 5] | Mean | −0.52029 | −0.87905 | −0.90937 | −0.74988 | −0.91517 |
SD | 0.38590 | 0.15239 | 0.11754 | 0.23281 | 0.07070 | |||
Matyas | 2 | [−10, 10] | Mean | 1.10 × 10−6 | 5.72 × 10−4 | 1.56 × 10−2 | 9.67 × 10−3 | 2.00 × 10−3 |
SD | 1.98 × 10−6 | 6.17 × 10−4 | 2.76 × 10−2 | 9.08 × 10−3 | 3.88 × 10−3 | |||
Colville | 4 | [−10, 10] | Mean | 0.03095 | 41.03055 | 66.79753 | 33.01663 | 8.27359 |
SD | 3.38214 | 63.03155 | 67.86479 | 37.40216 | 3.38214 | |||
Zakharov | 30 | [−5, 10] | Mean | 37.05373 | 45.67494 | 9.08 × 106 | 67.60656 | 36.81284 |
SD | 19.20372 | 20.70679 | 3.73 × 106 | 35.28784 | 23.26380 | |||
Schwefel | 30 | [−10, 10] | Mean | 14.41094 | 54.75384 | 59.12458 | 39.95646 | 22.33684 |
SD | 8.67471 | 4.11356 | 28.22222 | 13.04973 | 24.57589 | |||
Dixon-Price | 30 | [−10, 10] | Mean | 0.15631 | 0.25628 | 0.30837 | 0.22887 | 0.13179 |
SD | 0.23955 | 0.25697 | 0.31878 | 0.19922 | 0.22959 | |||
Rotated High | 10 | [−5, 5] | Mean | 7.61 × 10³ | 1.28 × 10³ | 6.36 × 10³ | 1.64 × 104 | 2.54 × 10³ |
SD | 6.63 × 10³ | 2.56 × 101 | 2.16 × 10³ | 9.50 × 10³ | 2.07 × 10³ |
Name | N | Range | DE | PSO | GA | SSA | MASSA | |
---|---|---|---|---|---|---|---|---|
Six Hump | 30 | [−5.12, 5.12] | Mean | −0.97204 | −0.98046 | −1.00646 | −1.00324 | −1.00868 |
SD | 0.08730 | 0.06174 | 0.02570 | 0.02508 | 0.02497 | |||
Michalewicz | 5 | [−10, 10] | Mean | −2.09993 | −1.36430 | −1.93450 | −1.19520 | −1.83780 |
SD | 0.82358 | 1.36946 | 1.93546 | 1.20013 | 1.86038 | |||
Boachevsky2 | 30 | [−10, 10] | Mean | 0.18193 | 0.67869 | 0.22887 | 0.88206 | 0.33729 |
SD | 0.29141 | 0.89906 | 0.25733 | 1.18787 | 0.42509 | |||
Ackley | 30 | [−1.28, 1.28] | Mean | 0.22977 | 0.88316 | 1.42081 | 0.67569 | 0.17780 |
SD | 0.09339 | 0.89906 | 0.25733 | 1.18787 | 1.84082 | |||
Griewank | 2 | [−4.5, 4.5] | Mean | 0.10422 | 0.00765 | 0.38072 | 0.01282 | 0.00976 |
SD | 0.11009 | 0.01160 | 0.66425 | 0.01714 | 0.01451 | |||
Booth | 2 | [−5, 5] | Mean | 0.18147 | 0.24719 | 0.24192 | 0.36677 | 0.19540 |
SD | 0.18275 | 0.15665 | 0.35977 | 0.35442 | 0.46017 | |||
Rastrigin | 2 | [−10, 10] | Mean | 0.94141 | 1.14109 | 0.96069 | 0.88421 | 0.84104 |
SD | 0.56151 | 1.08145 | 0.46643 | 0.37933 | 0.27827 | |||
Rosenbrock | 4 | [−10, 10] | Mean | 2.03 × 104 | 2.18 × 104 | 1.29 × 105 | 2.20 × 104 | 2.13 × 104 |
SD | 2.42 × 104 | 5.84 × 10³ | 2.62 × 104 | 9.74 × 10³ | 2.61 × 104 |
Number | Cp | rs (rpm) | Tin (°C) | Tout (°C) | Pin (MPa) | Pout (Mpa) | G(kg/s) |
---|---|---|---|---|---|---|---|
1 | 3 | 2890 | 42.12 | 44.66 | 0.44 | 5.63 | 459.32 |
2 | / | / | 40.19 | 41.43 | 3.96 | 3.73 | 581.43 |
3 | 2 | 2982 | 38.30 | 39.71 | 0.98 | 4.75 | 497.25 |
4 | 2 | 2890 | 37.30 | 39.20 | 0.98 | 4.85 | 667.72 |
5 | 2 | 2443 | 37.25 | 38.70 | 1.15 | 5.31 | 497.84 |
6 | 2 | 2723 | 36.27 | 43.44 | 0.89 | 4.44 | 499.51 |
7 | 2 | 2525 | 37.30 | 41.67 | 1.69 | 5.29 | 509.60 |
8 | / | / | 36.74 | 41.00 | 2.73 | 2.72 | 482.93 |
9 | / | / | 36.41 | - | 0.32 | - | - |
Number | Cp | rs (rpm) | Tin (°C) | Tout (°C) | Pin (MPa) | Pout (MPa) |
---|---|---|---|---|---|---|
1 | 3 | 2890 | 42.12 | 43.16 | 0.42 | 4.77 |
2 | / | / | 38.25 | 40.23 | 3.83 | 3.49 |
3 | 2 | 2265 | 38.97 | 41.67 | 1.18 | 4.00 |
4 | 2 | 2890 | 40.14 | 41.97 | 1.36 | 5.04 |
5 | 2 | 2213 | 40.59 | 42.50 | 2.40 | 5.17 |
6 | 2 | 2269 | 36.79 | 39.86 | 3.06 | 5.04 |
7 | 2 | 2316 | 36.69 | 40.52 | 3.20 | 5.92 |
8 | / | / | 36.68 | 40.13 | 3.69 | 3.36 |
9 | / | / | 36.48 | - | 1.14 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, S.; Zhang, Z.; Ji, Y.; Shi, L. Optimization of Oil Pipeline Operations to Reduce Energy Consumption Using an Improved Squirrel Search Algorithm. Energies 2022, 15, 7453. https://doi.org/10.3390/en15207453
Peng S, Zhang Z, Ji Y, Shi L. Optimization of Oil Pipeline Operations to Reduce Energy Consumption Using an Improved Squirrel Search Algorithm. Energies. 2022; 15(20):7453. https://doi.org/10.3390/en15207453
Chicago/Turabian StylePeng, Shanbi, Zhe Zhang, Yongqiang Ji, and Laimin Shi. 2022. "Optimization of Oil Pipeline Operations to Reduce Energy Consumption Using an Improved Squirrel Search Algorithm" Energies 15, no. 20: 7453. https://doi.org/10.3390/en15207453
APA StylePeng, S., Zhang, Z., Ji, Y., & Shi, L. (2022). Optimization of Oil Pipeline Operations to Reduce Energy Consumption Using an Improved Squirrel Search Algorithm. Energies, 15(20), 7453. https://doi.org/10.3390/en15207453