The Effect of Carbon Price Volatility on Firm Green Transitions: Evidence from Chinese Manufacturing Listed Firms
Abstract
:1. Introduction
2. Literature and Hypothesis Development
2.1. Firms’ Homogeneous Responses to Carbon Price Volatility
2.2. Firms’ Heterogeneous Responses to Carbon Price Volatility
3. Samples and Methods
3.1. Samples and Data Collection
3.2. Variables
3.3. Estimated Model
4. Results
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Newell, R.G.; Pizer, W.A.; Raimi, D. Carbon Market Lessons and Global Policy Outlook. Science 2014, 343, 1316–1317. [Google Scholar] [CrossRef]
- Aldy, J.E.; Kotchen, M.J.; Stavins, R.N.; Stock, J.H. Keep climate policy focused on the social cost of carbon. Science 2021, 373, 850–852. [Google Scholar] [CrossRef]
- Porter, M.E.; Van der Linde, C. Green competitiveness. Sci. Am. 1991, 264, 168. [Google Scholar] [CrossRef]
- Porter, M.E.; Van der Linde, C. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.; York, J.G.; Vedula, S.; Conger, M. The collective construction of green building: Industry transition toward environmentally beneficial practices. Acad. Manag. Perspect. 2019, 33, 425–449. [Google Scholar] [CrossRef]
- Kannan, D.; Shankar, K.M.; Gholipour, P. Paving the way for a green transition through mitigation of green manufacturing challenges: A systematic literature review. J. Clean. Prod. 2022, 368, 132578. [Google Scholar] [CrossRef]
- Day, K. China’s Environment and the Challenge of Sustainable Development; Routledge: New York, NY, USA, 2016. [Google Scholar]
- Wang, W.; Zhang, Y.J. Does China’s carbon emissions trading scheme affect the market power of high-carbon enterprises? Energy Econ. 2022, 108, 105906. [Google Scholar] [CrossRef]
- Smale, R.; Hartley, M.; Hepburn, C.; Ward, J.; Grubb, M. The impact of CO2 emissions trading on firm profits and market prices. Clim. Policy 2006, 6, 31–48. [Google Scholar] [CrossRef]
- Sankaran, K. Carbon emission and plastic pollution: How circular economy, blockchain, and artificial intelligence support energy transition? J. Innov. Manag. 2019, 7, 7–13. [Google Scholar] [CrossRef]
- Scoones, I.; Leach, M.; Newell, P. The Politics of Green Transformations; Routledge: London, UK, 2015. [Google Scholar]
- Xie, L.; Han, H. Capacity sharing and capacity investment of environment-friendly manufacturing: Strategy selection and performance analysis. Int. J. Environ. Res. Public Health 2020, 17, 5790. [Google Scholar] [CrossRef]
- Leitao, J.; Ferreira, J.; Santibanez-Gonzalez, E. Green bonds, sustainable development and environmental policy in the European Union carbon market. Bus. Strategy Environ. 2021, 30, 2077–2090. [Google Scholar] [CrossRef]
- Yan, L.; Mirza, N.; Umar, M. The cryptocurrency uncertainties and investment transitions: Evidence from high and low carbon energy funds in China. Technol. Forecast. Soc. Chang. 2022, 175, 121326. [Google Scholar] [CrossRef]
- Huppes, G.; Ishikawa, M. Eco-efficiency guiding micro-level actions towards sustainability: Ten basic steps for analysis. Ecol. Econ. 2009, 68, 1687–1700. [Google Scholar] [CrossRef] [Green Version]
- Holtsmark, B.; Mæstad, O. Emission trading under the Kyoto Protocol—Effects on fossil fuel markets under alternative regimes. Energy Policy 2002, 30, 207–218. [Google Scholar] [CrossRef]
- Daskalakis, G.; Psychoyios, D.; Markellos, R.N. Modeling CO2 emission allowance prices and derivatives: Evidence from the European trading scheme. J. Bank. Financ. 2009, 33, 1230–1241. [Google Scholar] [CrossRef]
- Calel, R.; Dechezleprêtre, A. Environmental policy and directed technological change: Evidence from the European carbon market. Rev. Econ. Stat. 2016, 98, 173–191. [Google Scholar] [CrossRef] [Green Version]
- Cleff, T.; Rennings, K. Determinants of environmental product and process innovation. Eur. Environ. 1999, 9, 191–201. [Google Scholar] [CrossRef]
- Rennings, K. Redefining innovation: Eco-innovation research and the contribution from ecological economics. Ecol. Econ. 2000, 32, 319–332. [Google Scholar] [CrossRef]
- Kluczek, A.; Żegleń, P.; Matušíková, D. The use of Prospect theory for energy sustainable industry 4.0. Energies 2021, 14, 7694. [Google Scholar] [CrossRef]
- He, F.; Liu, Z.; Chen, S. Industries return and volatility spillover in Chinese stock market: An early warning signal of systemic risk. IEEE Access 2018, 7, 9046–9056. [Google Scholar] [CrossRef]
- Zhu, Q.; Sarkis, J. The moderating effects of institutional pressures on emergent green supply chain practices and performance. Int. J. Prod. Res. 2007, 45, 4333–4355. [Google Scholar] [CrossRef]
- López-Gracia, J.; Sogorb-Mira, F. Testing trade-off and pecking order theories financing SMEs. Small Bus. Econ. 2008, 31, 117–136. [Google Scholar] [CrossRef]
- Frank, M.Z.; Goyal, V.K. Testing the pecking order theory of capital structure. J. Financ. Econ. 2003, 67, 217–248. [Google Scholar] [CrossRef] [Green Version]
- Bigelli, M.; Martín-Ugedo, J.F.; Sánchez-Vidal, F.J. Financial conservatism of private firms. J. Bus. Res. 2014, 67, 2419–2427. [Google Scholar] [CrossRef]
- De Monthoux, P.G. Technical manufacturing standards and the industrial marketer. Ind. Mark. Manag. 1977, 6, 379–386. [Google Scholar] [CrossRef]
- Zhang, X.; Peek, W.A.; Pikas, B.; Lee, T. The transformation and upgrading of the Chinese manufacturing industry: Based on “German Industry 4.0”. J. Appl. Bus. Econ. 2016, 18, 97–105. [Google Scholar]
- Niu, Z.; Xiong, J.; Ding, X.; Wu, Y. Analysis of China’s Carbon Peak Achievement in 2025. Energies 2022, 15, 5041. [Google Scholar] [CrossRef]
- Feng, Z.H.; Zou, L.L.; Wei, Y.M. Carbon price volatility: Evidence from EU ETS. Appl. Energy 2011, 88, 590–598. [Google Scholar] [CrossRef]
- Xie, X.; Huo, J.; Zou, H. Green process innovation, green product innovation, and corporate financial performance: A content analysis method. J. Bus. Res. 2019, 101, 697–706. [Google Scholar] [CrossRef]
- Eriotis, N.; Vasiliou, D.; Ventoura-Neokosmidi, Z. How firm characteristics affect capital structure: An empirical study. Manag. Financ. 2007, 33, 321–331. [Google Scholar]
- Arimura, T.H.; Darnall, N.; Katayama, H. Is ISO 14001 a gateway to more advanced voluntary action? The case of green supply chain management. J. Environ. Econ. Manag. 2011, 61, 170–182. [Google Scholar] [CrossRef]
- Younis, H.; Sundarakani, B. The impact of firm size, firm age and environmental management certification on the relationship between green supply chain practices and corporate performance. Benchmarking Int. J. 2019, 27, 319–346. [Google Scholar] [CrossRef]
- Miller, N.; Pogue, D.; Gough, Q.; Davis, S. Green buildings and productivity. J. Sustain. Real Estate 2009, 1, 65–89. [Google Scholar] [CrossRef]
- Pan, X.; Chen, X.; Sinha, P.; Dong, N. Are firms with state ownership greener? An institutional complexity view. Bus. Strategy Environ. 2020, 29, 197–211. [Google Scholar] [CrossRef]
- Fabrizi, A.; Guarini, G.; Meliciani, V. Green patents, regulatory policies and research network policies. Res. Policy 2018, 47, 1018–1031. [Google Scholar] [CrossRef]
- Li, B.; Xu, L.; McIver, R.; Wu, Q.; Pan, A. Green M&A, legitimacy and risk-taking: Evidence from China’s heavy polluters. Account. Financ. 2020, 60, 97–127. [Google Scholar]
- Aiken, L.S.; West, S.G.; Reno, R.R. Multiple Regression: Testing and Interpreting Interactions; Sage Publication, Inc.: Thousand Oaks, CA, USA, 1991. [Google Scholar]
- McDonald, J.F.; Moffitt, R.A. The Uses of Tobit analysis. Rev. Econ. Stat. 1980, 62, 318–321. [Google Scholar] [CrossRef]
- Honoré, B.E. Orthogonality conditions for Tobit models with fixed effects and lagged dependent variables. J. Econom. 1993, 59, 35–61. [Google Scholar] [CrossRef]
Variable | Mean | S.D. | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(1) Green transition | 16.107 | 1.97 | 1.000 | |||||||||
(2) Carbon price volatility | 0.568 | 0.694 | −0.069 | 1.000 | ||||||||
(3) Resource slack | 2.007 | 2.589 | −0.002 | −0.045 | 1.000 | |||||||
(4) Technical standards | 0.997 | 0.057 | 0.038 | −0.012 | 0.021 | 1.000 | ||||||
(5) Age | 2.974 | 0.282 | 0.021 | 0.108 | −0.087 | −0.005 | 1.000 | |||||
(6) ROA | 0.022 | 0.06 | 0.030 | −0.024 | 0.147 | 0.010 | −0.029 | 1.000 | ||||
(7) Operating expenses | 0.135 | 0.259 | 0.005 | −0.026 | 0.588 | 0.034 | −0.120 | 0.371 | 1.000 | |||
(8) Green innovation stock | 0.812 | 1.155 | −0.023 | 0.042 | −0.109 | −0.015 | −0.013 | 0.004 | −0.107 | 1.000 | ||
(9) ISO14001 | 0.309 | 0.462 | 0.036 | 0.008 | 0.007 | −0.011 | 0.002 | 0.037 | −0.001 | 0.105 | 1.000 | |
(10) Heavy polluters | 0.406 | 0.491 | 0.040 | 0.028 | −0.079 | −0.022 | 0.112 | 0.024 | −0.129 | 0.110 | 0.040 | 1.000 |
Model No. | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 |
---|---|---|---|---|---|
Controls | |||||
Age | −0.037 | 0.008 * | 0.010 * | 0.136 * | 0.136 * |
(0.209) | (0.210) | (0.210) | (0.150) | (0.150) | |
ROA | 0.619 | 0.564 | 0.569 | 0.330 | 0.331 |
(0.602) | (0.597) | (0.596) | (0.490) | (0.490) | |
Operating expenses | −0.144 * | −0.115 * | −0.221 * | −0.093 * | −0.110 * |
(0.185) | (0.210) | (0.213) | (0.165) | (0.168) | |
Green innovation stock | −0.043 | −0.032 | −0.031 | −0.026 | −0.026 |
(0.040) | (0.040) | (0.040) | (0.030) | (0.030) | |
ISO14001 | 0.018 * | 0.017 * | 0.014 * | 0.079 * | 0.079 ** |
(0.082) | (0.081) | (0.081) | (0.065) | (0.065) | |
Heavy polluters | 0.062 ** | 0.046 ** | 0.046 ** | 0.058 ** | 0.058 ** |
(0.078) | (0.077) | (0.077) | (0.063) | (0.063) | |
Resource slack | −0.013 | 0.014 | −0.018 | −0.013 | |
(0.017) | (0.019) | (0.014) | (0.016) | ||
Technical standards | 0.929 * | 0.909 * | 0.778 * | 0.775 * | |
(0.523) | (0.522) | (0.441) | (0.441) | ||
Independent variables | |||||
Carbon price volatility | −0.421 *** | −0.392 *** | −0.264 *** | −0.259 *** | |
(0.051) | (0.052) | (0.042) | (0.043) | ||
Moderating variables | |||||
Carbon price volatility * Resource slack | 0.086 *** | 0.015 | |||
(0.032) | (0.027) | ||||
Carbon price volatility * Technical standards | 0.498 *** | 0.498 *** | |||
(0.013) | (0.013) | ||||
cons | 16.519 *** | 15.797 *** | 15.761 *** | 11.172 *** | 11.170 *** |
(0.595) | (0.796) | (0.796) | (0.630) | (0.631) | |
Year | Included | Included | Included | Included | Included |
Obs. | 3084 | 3084 | 3084 | 3084 | 3084 |
Wald chi2 | 131.61 | 207.29 | 215.18 | 1711.29 | 1711.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Li, Z.; Tang, F. The Effect of Carbon Price Volatility on Firm Green Transitions: Evidence from Chinese Manufacturing Listed Firms. Energies 2022, 15, 7456. https://doi.org/10.3390/en15207456
Wu X, Li Z, Tang F. The Effect of Carbon Price Volatility on Firm Green Transitions: Evidence from Chinese Manufacturing Listed Firms. Energies. 2022; 15(20):7456. https://doi.org/10.3390/en15207456
Chicago/Turabian StyleWu, Xintong, Zhendong Li, and Fangcheng Tang. 2022. "The Effect of Carbon Price Volatility on Firm Green Transitions: Evidence from Chinese Manufacturing Listed Firms" Energies 15, no. 20: 7456. https://doi.org/10.3390/en15207456
APA StyleWu, X., Li, Z., & Tang, F. (2022). The Effect of Carbon Price Volatility on Firm Green Transitions: Evidence from Chinese Manufacturing Listed Firms. Energies, 15(20), 7456. https://doi.org/10.3390/en15207456