A Review of Applications of Artificial Intelligence in Heavy Duty Trucks
Abstract
:1. Introduction
2. Artificial Intelligence
2.1. Machine Learning
- Supervised learning maps an input to a corresponding labeled output to generate a model. The model predicts the responses to new data samples. The algorithm learns by finding the patterns from observations, making predictions, and adjusting the error until high accuracy is obtained. Supervised learning methods are used for classification, which is determining the category of new data points based on the observed previous data, and regression, which is predicting or forecasting by understanding the relationship between variables.
- Unsupervised learning learns from input data but without any output information. The algorithm learns patterns in input data, leading to features that represent the class for each sample. The data are grouped into clusters. Unsupervised learning is used for clustering—combining data of similar patterns into a group making the interclass group as different as possible, and dimensionality reduction—reducing the input variable to find the required information.
- Semi-supervised learning contains a small amount of labeled data with a large amount of unlabeled data during training. This technique can be used to label unlabeled data. This type of learning can be used for classification and clustering tasks.
- Reinforcement learning learns from the environment and acts as a teacher providing feedback. The algorithm is provided with a set of actions, parameters, and outputs. The system is rewarded for correct output and penalized for incorrect output by defined rules.
2.2. Deep Learning
3. Datasets
4. Applications
4.1. Fuel Consumption/Economy
4.2. Emission Estimation
4.3. Self-Driving and Truck Platooning
4.4. Predictive Maintenance and Onboard Diagnostics
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rosenblatt, F. The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychol. Rev. 1958, 65, 386–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samuel, A.L. Some Studies in Machine Learning Using the Game of Checkers. IBM J. Res. Dev. 1959, 3, 210–229. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- US EPA. Clean Trucks Plan. Available online: https://www.epa.gov/regulations-emissions-vehicles-and-engines/clean-trucks-plan (accessed on 29 September 2022).
- Davis, S.C.; Diegel, S.W.; Boundy, R.G. Transportation Energy Data Book: Edition 30; Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 2011. [Google Scholar]
- Sullivan, G.; Pugh, R.; Melendez, A.P.; Hunt, W.D. Operations & Maintenance Best Practices—A Guide to Achieving Operational Efficiency (Release 3); Pacific Northwest National Lab. (PNNL): Richland, WA, USA, 2010. [Google Scholar]
- Ali, A.; Si, Q.; Wang, B.; Yuan, J.; Wang, P.; Rasool, G.; Shokrian, A.; Ali, A.; Zaman, M.A. Comparison of Empirical Models Using Experimental Results of Electrical Submersible Pump under Two-Phase Flow: Numerical and Empirical Model Validation. Phys. Scr. 2022, 97, 065209. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, T.M. McGraw-Hill Series in Computer Science: Machine Learning; McGraw-Hill: New York, NY, USA, 1997; ISBN 978-0-07-042807-2. [Google Scholar]
- Oladipupo, T. Types of Machine Learning Algorithms. In New Advances in Machine Learning; Zhang, Y., Ed.; InTech: London, UK, 2010. [Google Scholar] [CrossRef] [Green Version]
- Nassif, A.B.; Shahin, I.; Attili, I.; Azzeh, M.; Shaalan, K. Speech Recognition Using Deep Neural Networks: A Systematic Review. IEEE Access 2019, 7, 19143–19165. [Google Scholar] [CrossRef]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Shetty, D.; Varma, J.; Navi, S.; Ahmed, M.R. Diving Deep into Deep Learning: History, Evolution, Types and Applications. Int. J. Media Manag. 2020, 9, 2278–3075. [Google Scholar] [CrossRef]
- Emmert-Streib, F.; Yang, Z.; Feng, H.; Tripathi, S.; Dehmer, M. An Introductory Review of Deep Learning for Prediction Models With Big Data. Front. Artif. Intell. 2020, 3, 4. [Google Scholar] [CrossRef]
- LeCun, Y.; Boser, B.; Denker, J.; Henderson, D.; Howard, R.; Hubbard, W.; Jackel, L. Handwritten Digit Recognition with a Back-Propagation Network. In Advances in Neural Information Processing Systems; Morgan-Kaufmann: Burlington, MA, USA, 1989; Volume 2. [Google Scholar]
- LeCun, Y.; Kavukcuoglu, K.; Farabet, C. Convolutional Networks and Applications in Vision. In Proceedings of the 2010 IEEE International Symposium on Circuits and Systems, Paris, France, 30 May–2 June 2010; pp. 253–256. [Google Scholar] [CrossRef] [Green Version]
- Gholamalinezhad, H.; Khosravi, H. Pooling Methods in Deep Neural Networks, a Review. arXiv 2020, arXiv:2009.07485. [Google Scholar]
- Bengio, Y.; Simard, P.; Frasconi, P. Learning Long-Term Dependencies with Gradient Descent Is Difficult. IEEE Trans. Neural Netw. 1994, 5, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.; Merrienboer, B.; Bahdanau, D.; Bengio, Y. On the Properties of Neural Machine Translation: Encoder-Decoder Approaches. In Proceedings of the SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, Doha, Qatar, 25 October 2014; Association for Computational Linguistics: Stroudsburg, PA, USA, 2014. [Google Scholar] [CrossRef]
- Bank, D.; Koenigstein, N.; Giryes, R. Autoencoders. arXiv 2020, arXiv:abs/2003.05991. [Google Scholar] [CrossRef]
- Albelwi, S.; Mahmood, A. A Framework for Designing the Architectures of Deep Convolutional Neural Networks. Entropy 2017, 19, 242. [Google Scholar] [CrossRef] [Green Version]
- Fang, W.; Jiang, J.; Lu, S.; Gong, Y.; Tao, Y.; Tang, Y.; Yan, P.; Luo, H.; Liu, J. A LSTM Algorithm Estimating Pseudo Measurements for Aiding INS during GNSS Signal Outages. Remote Sens. 2020, 12, 256. [Google Scholar] [CrossRef] [Green Version]
- Widiputra, H.; Mailangkay, A.; Gautama, E. Multivariate CNN-LSTM Model for Multiple Parallel Financial Time-Series Prediction. Complexity 2021, 2021, 9903518. [Google Scholar] [CrossRef]
- Jabreel, M.; Moreno, A. A Deep Learning-Based Approach for Multi-Label Emotion Classification in Tweets. Appl. Sci. 2019, 9, 1123. [Google Scholar] [CrossRef] [Green Version]
- Elbattah, M.; Loughnane, C.; Guérin, J.-L.; Carette, R.; Cilia, F.; Dequen, G. Variational Autoencoder for Image-Based Augmentation of Eye-Tracking Data. J. Imaging 2021, 7, 83. [Google Scholar] [CrossRef]
- Vong, C.-M.; Wong, P.-K.; Li, Y.-P. Prediction of Automotive Engine Power and Torque Using Least Squares Support Vector Machines and Bayesian Inference. Eng. Appl. Artif. Intell. 2006, 19, 277–287. [Google Scholar] [CrossRef]
- Baraldi, P.; Cannarile, F.; Di Maio, F.; Zio, E. Hierarchical K-Nearest Neighbours Classification and Binary Differential Evolution for Fault Diagnostics of Automotive Bearings Operating under Variable Conditions. Eng. Appl. Artif. Intell. 2016, 56, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Baraldi, P.; Di Maio, F.; Rigamonti, M.; Zio, E.; Seraoui, R. Clustering for Unsupervised Fault Diagnosis in Nuclear Turbine Shut-down Transients. Mech. Syst. Signal Process. 2015, 58–59, 160–178. [Google Scholar] [CrossRef]
- Zhai, Y.-J.; Yu, D.-L. Neural Network Model-Based Automotive Engine Air/Fuel Ratio Control and Robustness Evaluation. Eng. Appl. Artif. Intell. 2009, 22, 171–180. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, H.; Lu, J. A Semi-Supervised 3D Object Detection Method for Autonomous Driving. Displays 2022, 71, 102117. [Google Scholar] [CrossRef]
- Hoang, T.-N.; Kim, D. Detecting In-Vehicle Intrusion via Semi-Supervised Learning-Based Convolutional Adversarial Autoencoders. Veh. Commun. 2022, 38, 100520. [Google Scholar] [CrossRef]
- Kiran, B.R.; Sobh, I.; Talpaert, V.; Mannion, P.; Sallab, A.A.A.; Yogamani, S.; Pérez, P. Deep Reinforcement Learning for Autonomous Driving: A Survey. IEEE Trans. Intell. Transp. Syst. 2022, 23, 4909–4926. [Google Scholar] [CrossRef]
- Naveed, K.B.; Qiao, Z.; Dolan, J.M. Trajectory Planning for Autonomous Vehicles Using Hierarchical Reinforcement Learning. In Proceedings of the IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, 19–22 September 2021; pp. 601–606. [Google Scholar]
- Aradi, S. Survey of Deep Reinforcement Learning for Motion Planning of Autonomous Vehicles. IEEE Trans. Intell. Transp. Syst. 2022, 23, 740–759. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Everingham, M.; Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J. Comput. Vis. 2009, 88, 303–338. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.-Y.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C.L.; Dollár, P. Microsoft COCO: Common Objects in Context. arXiv 2014, arXiv:1405.0312. [Google Scholar]
- Geiger, A.; Lenz, P.; Urtasun, R. Are We Ready for Autonomous Driving? The KITTI Vision Benchmark Suite. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3354–3361. [Google Scholar]
- Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes Dataset for Semantic Urban Scene Understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Vegas, NV, USA, 27–30 June 2016; pp. 3213–3223. [Google Scholar] [CrossRef]
- Kondermann, D.; Nair, R.; Honauer, K.; Krispin, K.; Andrulis, J.; Brock, A.; Gussefeld, B.; Rahimimoghaddam, M.; Hofmann, S.; Brenner, C.; et al. The HCI Benchmark Suite: Stereo and Flow Ground Truth With Uncertainties for Urban Autonomous Driving. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Vegas, NV, USA, 26 June–1 July 2016; pp. 19–28. [Google Scholar] [CrossRef]
- Neuhold, G.; Ollmann, T.; Bulo, S.R.; Kontschieder, P. The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 5000–5009. [Google Scholar] [CrossRef]
- Caltech Lanes Dataset. Vision Dataset. Available online: https://mldta.com/dataset/caltech-lanes-dataset/ (accessed on 22 June 2022).
- Lee, S.; Kim, J.; Yoon, J.S.; Shin, S.; Bailo, O.; Kim, N.; Lee, T.-H.; Hong, H.S.; Han, S.-H.; Kweon, I.S. VPGNet: Vanishing Point Guided Network for Lane and Road Marking Detection and Recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Venice, Italy, 22–29 October 2017; pp. 1965–1973. [Google Scholar] [CrossRef] [Green Version]
- Chang, M.-F.; Lambert, J.; Sangkloy, P.; Singh, J.; Bak, S.; Hartnett, A.; Wang, D.; Carr, P.; Lucey, S.; Ramanan, D.; et al. Argoverse: 3D Tracking and Forecasting With Rich Maps. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Beach, CA, USA, 5–20 June 2019; pp. 8740–8749. [Google Scholar] [CrossRef] [Green Version]
- Sun, P.; Kretzschmar, H.; Dotiwalla, X.; Chouard, A.; Patnaik, V.; Tsui, P.; Guo, J.; Zhou, Y.; Chai, Y.; Caine, B.; et al. Scalability in Perception for Autonomous Driving: Waymo Open Dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Gaidon, A.; Wang, Q.; Cabon, Y.; Vig, E. Virtual Worlds as Proxy for Multi-Object Tracking Analysis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Vegas, NV, USA, 27–30 June 2016; pp. 4340–4349. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Cheng, X.; Geng, Q.; Cao, B.; Zhou, D.; Wang, P.; Lin, Y.; Yang, R. The ApolloScape Dataset for Autonomous Driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 954–960. [Google Scholar]
- Braun, M.; Krebs, S.; Flohr, F.; Gavrila, D.M. The EuroCity Persons Dataset: A Novel Benchmark for Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 1844–1861. [Google Scholar] [CrossRef] [Green Version]
- Caesar, H.; Bankiti, V.; Lang, A.H.; Vora, S.; Liong, V.E.; Xu, Q.; Krishnan, A.; Pan, Y.; Baldan, G.; Beijbom, O. NuScenes: A Multimodal Dataset for Autonomous Driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 11621–11631. [Google Scholar]
- Yu, F.; Chen, H.; Wang, X.; Xian, W.; Chen, Y.; Liu, F.; Madhavan, V.; Darrell, T. BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 2636–2645. [Google Scholar]
- Stallkamp, J.; Schlipsing, M.; Salmen, J.; Igel, C. The German Traffic Sign Recognition Benchmark: A Multi-Class Classification Competition. In Proceedings of the 2011 International Joint Conference on Neural Networks, Jose, CA, USA, 31 July–5 August 2011; pp. 1453–1460. [Google Scholar] [CrossRef]
- Houben, S.; Stallkamp, J.; Salmen, J.; Schlipsing, M.; Igel, C. Detection of Traffic Signs in Real-World Images: The German Traffic Sign Detection Benchmark. In Proceedings of the 2013 International Joint Conference on Neural Networks (IJCNN), Dallas, TX, USA, 4–9 August 2013; pp. 1–8. [Google Scholar] [CrossRef]
- Zhu, Z.; Liang, D.; Zhang, S.; Huang, X.; Li, B.; Hu, S. Traffic-Sign Detection and Classification in the Wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Vegas, NV, USA, 27–30 June 2016; pp. 2110–2118. [Google Scholar] [CrossRef]
- Ziółkowski, J.; Oszczypała, M.; Szkutnik-Rogoż, J.; Malachowski, J. Use of Artificial Neural Networks to Predict Fuel Consumption on the Basis of Technical Parameters of Vehicles. Energies 2021, 14, 2639. [Google Scholar] [CrossRef]
- Heni, H.; Arona Diop, S.; Renaud, J.; Coelho, L.C. Measuring Fuel Consumption in Vehicle Routing: New Estimation Models Using Supervised Learning. Int. J. Prod. Res. 2021, 1–17. [Google Scholar] [CrossRef]
- Zargarnezhad, S.; Dashti, R.; Ahmadi, R. Predicting Vehicle Fuel Consumption in Energy Distribution Companies Using ANNs. Transp. Res. Part D Transp. Environ. 2019, 74, 174–188. [Google Scholar] [CrossRef]
- Moradi, E.; Miranda-Moreno, L. Vehicular Fuel Consumption Estimation Using Real-World Measures through Cascaded Machine Learning Modeling. Transp. Res. Part D Transp. Environ. 2020, 88, 102576. [Google Scholar] [CrossRef]
- Du, Y.; Wu, J.; Yang, S.; Zhou, L. Predicting Vehicle Fuel Consumption Patterns Using Floating Vehicle Data. J. Environ. Sci. 2017, 59, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Parlak, A.; Islamoglu, Y.; Yasar, H.; Egrisogut, A. Application of Artificial Neural Network to Predict Specific Fuel Consumption and Exhaust Temperature for a Diesel Engine. Appl. Therm. Eng. 2006, 26, 824–828. [Google Scholar] [CrossRef]
- Yao, Y.; Zhao, X.; Liu, C.; Rong, J.; Zhang, Y.; Dong, Z.; Su, Y. Vehicle Fuel Consumption Prediction Method Based on Driving Behavior Data Collected from Smartphones. J. Adv. Transp. 2020, 2020, e9263605. [Google Scholar] [CrossRef]
- Perrotta, F.; Parry, T.; Neves, L. Application of Machine Learning for Fuel Consumption Modelling of Trucks. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar] [CrossRef]
- Katreddi, S.; Thiruvengadam, A. Trip Based Modeling of Fuel Consumption in Modern Heavy-Duty Vehicles Using Artificial Intelligence. Energies 2021, 14, 8592. [Google Scholar] [CrossRef]
- Siami-Irdemoosa, E.; Dindarloo, S.R. Prediction of Fuel Consumption of Mining Dump Trucks: A Neural Networks Approach. Appl. Energy 2015, 151, 77–84. [Google Scholar] [CrossRef]
- Soofastaei, A.; Aminossadati, S.; Kizil, M.; Knights, P. Reducing Fuel Consumption of Haul Trucks in Surface Mines Using Artificial Intelligence Models. In Proceedings of the 16th Coal Operators’ Conference, Wollongong, Australia, 10–12 February 2016; pp. 477–489. [Google Scholar]
- Bodell, V.; Ekstrom, L.; Aghanavesi, S. Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles. Int. J. Transp. Veh. Eng. 2021, 15, 97–101. [Google Scholar]
- Wysocki, O.; Deka, L.; Elizondo, D.; Kropiwnicki, J.; Czyzewicz, J. Heavy Duty Vehicle Fuel Consumption Modelling Based on Exploitation Data by Using Artificial Neural Networks. In Proceedings of the IWANN, Gran Canaria, Spain, 12–14 June 2019. [Google Scholar]
- Schoen, A.; Byerly, A.; Hendrix, B.; Bagwe, R.M.; dos Santos, E.C.; Miled, Z.B. A Machine Learning Model for Average Fuel Consumption in Heavy Vehicles. IEEE Trans. Veh. Technol. 2019, 68, 6343–6351. [Google Scholar] [CrossRef]
- Barbado, A.; Corcho, Ó. Vehicle Fuel Optimization Under Real-World Driving Conditions: An Explainable Artificial Intelligence Approach. arXiv 2021, arXiv:2107.06031. [Google Scholar]
- Zhang, R.; Wang, Y.; Pang, Y.; Zhang, B.; Wei, Y.; Wang, M.; Zhu, R. A Deep Learning Micro-Scale Model to Estimate the CO2 Emissions from Light-Duty Diesel Trucks Based on Real-World Driving. Atmosphere 2022, 13, 1466. [Google Scholar] [CrossRef]
- Le Cornec, C.; Molden, N.; Van Reeuwijk, M.; Stettler, M. Modelling of Instantaneous Emissions from Diesel Vehicles with a Special Focus on NOx: Insights from Machine Learning Techniques. Sci. Total Environ. 2020, 737, 139625. [Google Scholar] [CrossRef]
- Danesh Yazdi, M.; Kuang, Z.; Dimakopoulou, K.; Barratt, B.; Suel, E.; Amini, H.; Lyapustin, A.; Katsouyanni, K.; Schwartz, J. Predicting Fine Particulate Matter (PM2.5) in the Greater London Area: An Ensemble Approach Using Machine Learning Methods. Remote Sens. 2020, 12, 914. [Google Scholar] [CrossRef] [Green Version]
- Palanichamy, N.; Haw, S.-C.; Subramanian, S.; Murugan, R.; Govindasamy, K. Machine learning methods to predict particulate matter PM2.5 [version 1; peer review: 1 approved]. F1000Research 2022, 11, 406. [Google Scholar] [CrossRef]
- Wen, H.-T.; Lu, J.-H.; Jhang, D.-S. Features Importance Analysis of Diesel Vehicles’ NOx and CO2 Emission Predictions in Real Road Driving Based on Gradient Boosting Regression Model. Int. J. Environ. Res. Public Health 2021, 18, 13044. [Google Scholar] [CrossRef]
- Bhowmik, S.; Paul, A.; Panua, R.; Ghosh, S.K.; Debroy, D. Performance-Exhaust Emission Prediction of Diesosenol Fueled Diesel Engine: An ANN Coupled MORSM Based Optimization. Energy 2018, 153, 212–222. [Google Scholar] [CrossRef]
- Roy, S.; Banerjee, R.; Bose, P.K. Performance and Exhaust Emissions Prediction of a CRDI Assisted Single Cylinder Diesel Engine Coupled with EGR Using Artificial Neural Network. Appl. Energy 2014, 119, 330–340. [Google Scholar] [CrossRef]
- Hosamani, B.R.; Abbas Ali, S.; Katti, V. Assessment of Performance and Exhaust Emission Quality of Different Compression Ratio Engine Using Two Biodiesel Mixture: Artificial Neural Network Approach. Alex. Eng. J. 2021, 60, 837–844. [Google Scholar] [CrossRef]
- Maino, C.; Misul, D.; Di Mauro, A.; Spessa, E. A Deep Neural Network Based Model for the Prediction of Hybrid Electric Vehicles Carbon Dioxide Emissions. Energy AI 2021, 5, 100073. [Google Scholar] [CrossRef]
- Seo, J.; Yun, B.; Park, J.; Park, J.; Shin, M.; Park, S. Prediction of Instantaneous Real-World Emissions from Diesel Light-Duty Vehicles Based on an Integrated Artificial Neural Network and Vehicle Dynamics Model. Sci. Total Environ. 2021, 786, 147359. [Google Scholar] [CrossRef] [PubMed]
- Tóth-Nagy, C.; Conley, J.J.; Jarrett, R.P.; Clark, N.N. Further Validation of Artificial Neural Network-Based Emissions Simulation Models for Conventional and Hybrid Electric Vehicles. J. Air Waste Manag. Assoc. 2006, 56, 898–910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azeez, O.; Pradhan, B.; Shafri, H.; Shukla, N.; Rizeei, H. Modeling of CO Emissions from Traffic Vehicles Using Artificial Neural Networks. Appl. Sci. 2019, 9, 313. [Google Scholar] [CrossRef] [Green Version]
- Khurana, S.; Saxena, S.; Jain, S.; Dixit, A. Predictive Modeling of Engine Emissions Using Machine Learning: A Review. Mater. Today Proc. 2021, 38, 280–284. [Google Scholar] [CrossRef]
- Pillai, R.; Triantopoulos, V.; Berahas, A.S.; Brusstar, M.; Sun, R.; Nevius, T.; Boehman, A.L. Modeling and Predicting Heavy-Duty Vehicle Engine-Out and Tailpipe Nitrogen Oxide (NOx) Emissions Using Deep Learning. Front. Mech. Eng. 2022, 8, 840310. [Google Scholar] [CrossRef] [PubMed]
- Mohammadhassani, J.; Khalilarya, S.; Solimanpur, M.; Dadvand, A. Prediction of NOx Emissions from a Direct Injection Diesel Engine Using Artificial Neural Network. Model. Simul. Eng. 2012, 2012, e830365. [Google Scholar] [CrossRef] [Green Version]
- van der Laan, M.J.; Polley, E.C.; Hubbard, A.E. Super Learner. Stat. Appl. Genet. Mol. Biol. 2007, 6, 25. [Google Scholar] [CrossRef] [PubMed]
- Wei, N.; Zhang, Q.; Zhang, Y.; Jin, J.; Chang, J.; Yang, Z.; Ma, C.; Jia, Z.; Ren, C.; Wu, L.; et al. Super-Learner Model Realizes the Transient Prediction of CO2 and NOx of Diesel Trucks: Model Development, Evaluation and Interpretation. Environ. Int. 2022, 158, 106977. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, Y.; Li, J.; Fu, M.; Shah, A.N.; He, C. A Novel Deep Learning Approach to Predict the Instantaneous NOx Emissions From Diesel Engine. IEEE Access 2021, 9, 11002–11013. [Google Scholar] [CrossRef]
- Wang, Q.; Zhuang, W.; Wang, L.; Ju, F. Lane Keeping Assist for an Autonomous Vehicle Based on Deep Reinforcement Learning; SAE International: Warrendale, PA, USA, 2020. [Google Scholar]
- Wei, Z.; Wang, C.; Hao, P.; Barth, M.J. Vision-Based Lane-Changing Behavior Detection Using Deep Residual Neural Network. In Proceedings of the IEEE Intelligent Transportation Systems Conference (ITSC) 2019, Auckland, New Zealand, 27–30 October 2019; pp. 3108–3113. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, V.; Katrakazas, C.; Antoniou, C. Prediction of Lane-Changing Maneuvers with Automatic Labeling and Deep Learning. Transp. Res. Rec. 2020, 2674, 336–347. [Google Scholar] [CrossRef]
- Karthikeyan, M.; Sathiamoorthy, S.; Vasudevan, M. Lane Keep Assist System for an Autonomous Vehicle Using Support Vector Machine Learning Algorithm. In Innovative Data Communication Technologies and Application; Raj, J.S., Bashar, A., Ramson, S.R.J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 101–108. [Google Scholar]
- Gao, J.; Yi, J.; Zhu, H.; Murphey, Y.L. A Personalized Lane-Changing Model for Advanced Driver Assistance System Based on Deep Learning and Spatial-Temporal Modeling. SAE Int. J. Transp. Saf. 2019, 7, 163–174. [Google Scholar]
- Navarro, P.J.; Fernández, C.; Borraz, R.; Alonso, D. A Machine Learning Approach to Pedestrian Detection for Autonomous Vehicles Using High-Definition 3D Range Data. Sensors 2016, 17, 18. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.M.; Newaz, A.A.R.; Karimoddini, A. A Pedestrian Detection and Tracking Framework for Autonomous Cars: Efficient Fusion of Camera and LiDAR Data. In Proceedings of the 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Melbourne, Australia, 17–20 October 2021; pp. 1287–1292. [Google Scholar] [CrossRef]
- Cao, J.; Song, C.; Peng, S.; Song, S.; Zhang, X.; Shao, Y.; Xiao, F. Pedestrian Detection Algorithm for Intelligent Vehicles in Complex Scenarios. Sensors 2020, 20, 3646. [Google Scholar] [CrossRef]
- Angelova, A.; Krizhevsky, A.; Vanhoucke, V. Pedestrian Detection with a Large-Field-Of-View Deep Network. In Proceedings of the IEEE International Conference on Robotics and Automation, Seattle, WA, USA, 26–30 May 2015; pp. 704–711. [Google Scholar]
- Ortiz Castelló, V.; del Tejo Catalá, O.; Salvador Igual, I.; Perez-Cortes, J.-C. Real-Time on-Board Pedestrian Detection Using Generic Single-Stage Algorithm Algorithms and Algorithm on-Road Databases. Int. J. Adv. Robot. Syst. 2020, 17, 1729881420929175. [Google Scholar] [CrossRef]
- Zhao, L. Stereo- and Neural Network-Based Pedestrian Detection. J. Trans. Intell. Transport. Syst. 2000, 1, 148–154. [Google Scholar] [CrossRef] [Green Version]
- Herunde, H.; Singh, A.; Deshpande, H.; Shetty, P. Detection of Pedestrian and Different Types of Vehicles Using Image Processing. Int. J. Res. Ind. Eng. 2020, 9, 99–113. [Google Scholar] [CrossRef]
- Galvao, L.G.; Abbod, M.; Kalganova, T.; Palade, V.; Huda, M.N. Pedestrian and Vehicle Detection in Autonomous Vehicle Perception Systems—A Review. Sensors 2021, 21, 7267. [Google Scholar] [CrossRef]
- Song, H.; Liang, H.; Li, H.; Dai, Z.; Yun, X. Vision-Based Vehicle Detection and Counting System Using Deep Learning in Highway Scenes. Eur. Transp. Res. Rev. 2019, 11, 51. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Anpalagan, A.; Guan, L.; Khwaja, A.S. Deep Learning for Object Detection and Scene Perception in Self-Driving Cars: Survey, Challenges, and Open Issues. Array 2021, 10, 100057. [Google Scholar] [CrossRef]
- Mu, G.; Xinyu, Z.; Deyi, L.; Tianlei, Z.; Lifeng, A. Traffic Light Detection and Recognition for Autonomous Vehicles. J. China Univ. Posts Telecommun. 2015, 22, 50–56. [Google Scholar] [CrossRef]
- Swetha, S.; Sivakumar, P. SSLA Based Traffic Sign and Lane Detection for Autonomous Cars. In Proceedings of the 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), Coimbatore, India, 25–27 March 2021; pp. 766–771. [Google Scholar] [CrossRef]
- Li, Z.; Zeng, Q.; Liu, Y.; Liu, J.; Li, L. An Improved Traffic Lights Recognition Algorithm for Autonomous Driving in Complex Scenarios. Int. J. Distrib. Sens. Netw. 2021, 17, 15501477211018374. [Google Scholar] [CrossRef]
- Atakishiyev, S.; Salameh, M.; Yao, H.; Goebel, R. Explainable Artificial Intelligence for Autonomous Driving: An Overview and Guide for Future Research Directions. arXiv 2022, arXiv:2112.1156. [Google Scholar]
- Lugano, G. Virtual Assistants and Self-Driving Cars. In Proceedings of the 15th International Conference on ITS Telecommunications (ITST), Warsaw, Poland, 29–31 May 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Cunneen, M.; Mullins, M.; Murphy, F. Autonomous Vehicles and Embedded Artificial Intelligence: The Challenges of Framing Machine Driving Decisions. Appl. Artif. Intell. 2019, 33, 706–731. [Google Scholar] [CrossRef] [Green Version]
- Jagelčák, J.; Gnap, J.; Kuba, O.; Frnda, J.; Kostrzewski, M. Determination of Turning Radius and Lateral Acceleration of Vehicle by GNSS/INS Sensor. Sensors 2022, 22, 2298. [Google Scholar] [CrossRef]
- Zhou, Z.; Akhtar, Z.; Man, K.L.; Siddique, K. A Deep Learning Platooning-Based Video Information-Sharing Internet of Things Framework for Autonomous Driving Systems. Int. J. Distrib. Sens. Netw. 2019, 15, 1550147719883133. [Google Scholar] [CrossRef]
- This Year, Autonomous Trucks Will Take to the Road with No One on Board. Available online: https://spectrum.ieee.org/this-year-autonomous-trucks-will-take-to-the-road-with-no-one-on-board (accessed on 30 May 2022).
- Tsugawa, S.; Jeschke, S.; Shladover, S.E. A Review of Truck Platooning Projects for Energy Savings. IEEE Trans. Intell. Veh. 2016, 1, 68–77. [Google Scholar] [CrossRef]
- Song, M.; Chen, F.; Ma, X. Organization of Autonomous Truck Platoon Considering Energy Saving and Pavement Fatigue. Transp. Res. Part D Transp. Environ. 2021, 90, 102667. [Google Scholar] [CrossRef]
- Tsugawa, S.; Kato, S.; Aoki, K. An Automated Truck Platoon for Energy Saving. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 4019–4114. [Google Scholar] [CrossRef]
- Jaffar, F.; Farid, T.; Sajid, M.; Ayaz, Y.; Khan, M.J. Prediction of Drag Force on Vehicles in a Platoon Configuration Using Machine Learning. IEEE Access 2020, 8, 201823–201834. [Google Scholar] [CrossRef]
- Yang, J.; Peng, W.; Sun, C. A Learning Control Method of Automated Vehicle Platoon at Straight Path with DDPG-Based PID. Electronics 2021, 10, 2580. [Google Scholar] [CrossRef]
- Zhang, C.; Ouyang, Z.; Ren, L.; Liu, Y. Low-Cost LiDAR-Based Vehicle Detection for Self-Driving Container Trucks at Seaport. In Collaborative Computing: Networking, Applications and Worksharing; Gao, H., Wang, X., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 451–466. [Google Scholar]
- Wang, D.; Gao, L.; Lan, Z.; Li, W.; Ren, J.; Zhang, J.; Zhang, P.; Zhou, P.; Wang, S.; Pan, J.; et al. An Intelligent Self-Driving Truck System for Highway Transportation. Front. Neurorobot. 2022, 16, 843026. [Google Scholar] [CrossRef]
- Ran, Y.; Zhou, X.; Lin, P.; Wen, Y.; Deng, R. A Survey of Predictive Maintenance: Systems, Purposes and Approaches. arXiv 2019, arXiv:1912.07383. [Google Scholar]
- Carvalho, T.P.; Soares, F.A.A.M.N.; Vita, R.; da Francisco, R.P.; Basto, J.P.; Alcalá, S.G.S. A Systematic Literature Review of Machine Learning Methods Applied to Predictive Maintenance. Comput. Ind. Eng. 2019, 137, 106024. [Google Scholar] [CrossRef]
- Theissler, A.; Pérez-Velázquez, J.; Kettelgerdes, M.; Elger, G. Predictive Maintenance Enabled by Machine Learning: Use Cases and Challenges in the Automotive Industry. Reliab. Eng. Syst. Saf. 2021, 215, 107864. [Google Scholar] [CrossRef]
- Chaudhuri, A. Predictive Maintenance for Industrial IoT of Vehicle Fleets Using Hierarchical Modified Fuzzy Support Vector Machine. arXiv 2018, arXiv:1806.09612. [Google Scholar]
- Arena, F.; Collotta, M.; Luca, L.; Ruggieri, M.; Termine, F. Predictive Maintenance in the Automotive Sector: A Literature Review. Math. Comput. Appl. 2021, 27, 2. [Google Scholar] [CrossRef]
- Prytz, R.; Nowaczyk, S.; Rögnvaldsson, T.; Byttner, S. Predicting the Need for Vehicle Compressor Repairs Using Maintenance Records and Logged Vehicle Data. Eng. Appl. Artif. Intell. 2015, 41, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Revanur, V.; Ayibiowu, A.; Rahat, M.; Khoshkangini, R. Embeddings Based Parallel Stacked Autoencoder Approach for Dimensionality Reduction and Predictive Maintenance of Vehicles. In IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning; Gama, J., Pashami, S., Bifet, A., Sayed-Mouchawe, M., Fröning, H., Pernkopf, F., Schiele, G., Blott, M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 127–141. [Google Scholar]
- Chen, C.; Liu, Y.; Sun, X.; Cairano-Gilfedder, C.D.; Titmus, S. Automobile Maintenance Prediction Using Deep Learning with GIS Data. Procedia CIRP 2019, 81, 447–452. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, Z.; Zhang, T. On-Board Predictive Maintenance with Machine Learning. SAE Tech. Pap. 2019, 1, 1048. [Google Scholar] [CrossRef]
- Rengasamy, D.; Jafari, M.; Rothwell, B.; Chen, X.; Figueredo, G.P. Deep Learning with Dynamically Weighted Loss Function for Sensor-Based Prognostics and Health Management. Sensors 2020, 20, 723. [Google Scholar] [CrossRef]
Dataset | Scenario | URL |
---|---|---|
ImageNet [36] | Object Detection Semantic Segmentation | https://www.image-net.org (accessed on 10 August 2022) |
Pascal VOC [37] | Object Detection Semantic Segmentation | http://host.robots.ox.ac.uk/pascal/VOC/databases.html (accessed on 10 August 2022) |
Microsoft COCO [38] | Object Detection Semantic Segmentation | https://cocodataset.org (accessed on 10 August 2022) |
Cityscapes [40] | Autonomous Driving Object Detection Semantic Segmentation | https://www.cityscapes-dataset.com/ (accessed on 14 August 2022) |
Waymo Open Dataset [46] | Autonomous Driving Object Detection Semantic Segmentation Tracking | https://waymo.com/open/ (accessed on 10 August 2022) |
KITTI [39] | Autonomous Driving Stereo Reconstruction Optical Flow Object Detection Semantic Segmentation Road Detection Lane Detection Tracking | http://www.cvlibs.net/datasets/kitti/ (accessed on 14 August 2022) |
Virtual KITTI [47] | Autonomous Driving Stereo Reconstruction Optical Flow Object Detection Semantic Segmentation Tracking | https://europe.naverlabs.com/research/computer-vision/proxy-virtual-worlds-vkitti-2/ (accessed on 10 August 2022) |
ApolloScape [48] | Autonomous Driving Object Detection Semantic Segmentation Lane Detection Tracking | http://apolloscape.auto/ (accessed on 10 August 2022) |
HCI Benchmark [41] | Autonomous Driving Optical Flow | |
EuroCity Persons Dataset [49] | Autonomous Driving Object Detection | https://eurocity-dataset.tudelft.nl/ (accessed on 14 August 2022) |
Mapillary [42] | Autonomous Driving Semantic Segmentation | https://www.mapillary.com/datasets (accessed on 14 August 2022) |
NuScenes [50] | Autonomous Driving Object Detection Semantic Segmentation | https://www.nuscenes.org/ (accessed on 14 August 2022) |
Berkeley DeepDrive [51] | Autonomous Driving Object Detection Semantic Segmentation Road Detection Lane Detection | https://bdd-data.berkeley.edu/ (accessed on 14 August 2022) |
German Traffic Sign Recognition [52]/Detection Benchmark [53] | Autonomous Driving Object Detection Traffic Sign Detection Semantic Segmentation Road Detection Lane Detection | |
Tsinghua-Tencent 100K [54] | Autonomous Driving Object Detection Traffic Sign Detection Semantic Segmentation Road Detection Lane Detection | https://cg.cs.tsinghua.edu.cn/traffic-sign/ (accessed on 20 August 2022) |
Caltech Lanes Dataset [43] | Autonomous Driving Lane Detection | https://mldta.com/dataset/caltech-lanes-dataset/ (accessed on 20 August 2022) |
VPGNET Dataset [44] | Autonomous Driving Lane Detection | |
Argoverse [45] | Autonomous Driving, Tracking | https://www.argoverse.org/ (accessed on 20 August 2022) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katreddi, S.; Kasani, S.; Thiruvengadam, A. A Review of Applications of Artificial Intelligence in Heavy Duty Trucks. Energies 2022, 15, 7457. https://doi.org/10.3390/en15207457
Katreddi S, Kasani S, Thiruvengadam A. A Review of Applications of Artificial Intelligence in Heavy Duty Trucks. Energies. 2022; 15(20):7457. https://doi.org/10.3390/en15207457
Chicago/Turabian StyleKatreddi, Sasanka, Sujan Kasani, and Arvind Thiruvengadam. 2022. "A Review of Applications of Artificial Intelligence in Heavy Duty Trucks" Energies 15, no. 20: 7457. https://doi.org/10.3390/en15207457
APA StyleKatreddi, S., Kasani, S., & Thiruvengadam, A. (2022). A Review of Applications of Artificial Intelligence in Heavy Duty Trucks. Energies, 15(20), 7457. https://doi.org/10.3390/en15207457