Kinetic Parameters Estimation of Thermal and Co-Pyrolysis of Groundnut De-oiled Cake and Polyethylene Terephthalate (PET) Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock Collection and Preparation
2.2. Characterization of the Raw Material
2.2.1. Proximate and CHNS Analyses
2.2.2. FTIR Analysis
2.2.3. TGA Analysis
2.3. Kinetic Modelling
3. Results and Discussion
3.1. Physico-Chemical Analysis
3.2. Fourier Transform Infrared Spectroscopy Analysis
3.3. Thermal Decomposition Behavior of the Feedstock
3.4. Estimation of the Activation Energy from the Different Models
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Safarian, S.; Rydén, M.; Janssen, M. Development and Comparison of Thermodynamic Equilibrium and Kinetic Approaches for Biomass Pyrolysis Modeling. Energies 2022, 15, 3999. [Google Scholar] [CrossRef]
- Komandur, J.; Mohanty, K. Chapter 2—Fast pyrolysis of biomass and hydrodeoxygenation of bio-oil for the sustainable production of hydrocarbon biofuels. In Hydrocarbon Biorefinery; Maity, S.K., Gayen, K., Bhowmick, T.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 47–76. [Google Scholar] [CrossRef]
- Glushkov, D.; Nyashina, G.; Shvets, A.; Pereira, A.; Ramanathan, A. Current Status of the Pyrolysis and Gasification Mechanism of Biomass. Energies 2021, 14, 7541. [Google Scholar] [CrossRef]
- Rammohan, D.; Kishore, N.; Uppaluri, R. Reaction kinetics and thermodynamic analysis of non-isothermal co-pyrolysis of Delonix regia and tube waste. Bioresour. Technol. Rep. 2022, 18, 101032. [Google Scholar] [CrossRef]
- Agrawalla, A.; Kumar, S.; Singh, R. Pyrolysis of groundnut de-oiled cake and characterization of the liquid product. Bioresour. Technol. 2011, 102, 10711–10716. [Google Scholar] [CrossRef]
- Chin, B.L.F.; Yusup, S.; Al Shoaibi, A.; Kannan, P.; Srinivasakannan, C.; Sulaiman, S.A. Kinetic studies of co-pyrolysis of rubber seed shell with high density polyethylene. Energy Convers. Manag. 2014, 87, 746–753. [Google Scholar] [CrossRef]
- Reshad, A.S.; Tiwari, P.; Goud, V.V. Thermal and co-pyrolysis of rubber seed cake with waste polystyrene for bio-oil production. J. Anal. Appl. Pyrolysis 2019, 139, 333–343. [Google Scholar] [CrossRef]
- Volli, V.; Singh, R.K. Pyrolysis kinetics of de-oiled cakes by thermogravimetric analysis. J. Renew. Sustain. Energy 2013, 5, 033130. [Google Scholar] [CrossRef]
- Banerjee, T.; Srivastava, R.K.; Hung, Y.-T. Chapter 17: Plastics waste management in India: An integrated solid waste management approach. In Handbook of Environment and Waste Management: Volume 2: Land and Groundwater Pollution Control; World Scientific: Singapore, 2013; pp. 1029–1060. [Google Scholar] [CrossRef]
- Komandur, J.; Vinu, R.; Mohanty, K. Pyrolysis kinetics and pyrolysate composition analysis of Mesua ferrea L: A non-edible oilseed towards the production of sustainable renewable fuel. Bioresour. Technol. 2022, 351, 126987. [Google Scholar] [CrossRef]
- Osman, A.I.; Farrell, C.; Al-Muhtaseb, A.H.; Al-Fatesh, A.S.; Harrison, J.; Rooney, D.W. Pyrolysis kinetic modelling of abundant plastic waste (PET) and in-situ emission monitoring. Environ. Sci. Eur. 2020, 32, 112. [Google Scholar] [CrossRef]
- Burra, K.; Gupta, A. Kinetics of synergistic effects in co-pyrolysis of biomass with plastic wastes. Appl. Energy 2018, 220, 408–418. [Google Scholar] [CrossRef]
- Mishra, R.K. Pyrolysis of low-value waste switchgrass: Physicochemical characterization, kinetic investigation, and online characterization of hot pyrolysis vapours. Bioresour. Technol. 2022, 347, 126720. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.K.; Mohanty, K. Co-pyrolysis of waste biomass and waste plastics (polystyrene and waste nitrile gloves) into renewable fuel and value-added chemicals. Carbon Resour. Convers. 2020, 3, 145–155. [Google Scholar] [CrossRef]
- Razuan, R.; Chen, Q.; Zhang, X.; Sharifi, V.; Swithenbank, J. Pyrolysis and combustion of oil palm stone and palm kernel cake in fixed-bed reactors. Bioresour. Technol. 2010, 101, 4622–4629. [Google Scholar] [CrossRef]
- Muktham, R.; Ball, A.S.; Bhargava, S.K.; Bankupalli, S. Study of thermal behavior of deoiled karanja seed cake biomass: Thermogravimetric analysis and pyrolysis kinetics. Energy Sci. Eng. 2016, 4, 86–95. [Google Scholar] [CrossRef]
- Chutia, R.S.; Kataki, R.; Bhaskar, T. Thermogravimetric and decomposition kinetic studies of Mesua ferrea L. deoiled cake. Bioresour. Technol. 2013, 139, 66–72. [Google Scholar] [CrossRef]
- Saeed, S.; Saleem, M.; Durrani, A.; Haider, J.; Riaz, M.; Saeed, S.; Qyyum, M.; Nizami, A.-S.; Rehan, M.; Lee, M. Determination of Kinetic and Thermodynamic Parameters of Pyrolysis of Coal and Sugarcane Bagasse Blends Pretreated by Ionic Liquid: A Step towards Optimization of Energy Systems. Energies 2021, 14, 2544. [Google Scholar] [CrossRef]
- Gonnella, G.; Ischia, G.; Fambri, L.; Fiori, L. Thermal Analysis and Kinetic Modeling of Pyrolysis and Oxidation of Hydrochars. Energies 2022, 15, 950. [Google Scholar] [CrossRef]
- Sahoo, A.; Kumar, S.; Mohanty, K. Kinetic and thermodynamic analysis of Putranjiva roxburghii (putranjiva) and Cassia fistula (amaltas) non-edible oilseeds using thermogravimetric analyzer. Renew. Energy 2021, 165, 261–277. [Google Scholar] [CrossRef]
- Mishra, R.K.; Sahoo, A.; Mohanty, K. Pyrolysis kinetics and synergistic effect in co-pyrolysis of Samanea saman seeds and polyethylene terephthalate using thermogravimetric analyser. Bioresour. Technol. 2019, 289, 121608. [Google Scholar] [CrossRef] [PubMed]
- Müsellim, E.; Tahir, M.H.; Ahmad, M.S.; Ceylan, S. Thermokinetic and TG/DSC-FTIR study of pea waste biomass pyrolysis. Appl. Therm. Eng. 2018, 137, 54–61. [Google Scholar] [CrossRef]
- Singh, R.K.; Pandey, D.; Patil, T.; Sawarkar, A.N. Pyrolysis of banana leaves biomass: Physico-chemical characterization, thermal decomposition behavior, kinetic and thermodynamic analyses. Bioresour. Technol. 2020, 310, 123464. [Google Scholar] [CrossRef]
- Liu, H.; Wang, C.; Zhang, J.; Zhao, W.; Fan, M. Pyrolysis Kinetics and Thermodynamics of Typical Plastic Waste. Energy Fuels 2020, 34, 2385–2390. [Google Scholar] [CrossRef]
- Fu, Q. The Pyrolysis of Inorganic Fire Retardant Polyolefin Cable Materials. Procedia Eng. 2016, 135, 293–298. [Google Scholar] [CrossRef] [Green Version]
- Guida, M.; Bouaik, H.; El Mouden, L.; Moubarik, A.; Aboulkas, A.; El Harfi, K.; Hannioui, A. Utilization of Starink Approach and Avrami Theory to Evaluate the Kinetic Parameters of the Pyrolysis of Olive Mill Solid Waste and Olive Mill Wastewater. J. Adv. Chem. Eng. 2016, 7, 1–8. [Google Scholar] [CrossRef]
S.No. | Model | Equation | Plot | Determination of the Kinetic Parameter |
---|---|---|---|---|
1. | Differential Friedman Method | vs. | The activation energy is obtained from the slope of the plot. The frequency factor is calculated from the intercept. | |
2. | Kissinger–Akahira–Sunose (KAS) | vs. | The activation energy is obtained from the slope of the plot. The frequency factor is calculated from the intercept. | |
3. | Ozawa–Flynn–Wall (OFW) | vs. | This method uses Doyle’s approximation. E can be calculated from the slope. The frequency factor can be calculated from the intercept. | |
4. | Starink Method (STR) | vs. | A temperature approximation integral is used in this model for the simplification of the kinetic model. Activation energy is determined from the slope of the plot. The frequency factor is calculated from the intercept. | |
5. | Simplified Distributed activation energy model (DAEM) | vs. | The activation energy is determined from the slope of the plot while the intercept provides the information of the pre-exponential factor. |
Properties | Groundnut De-oiled Cake (Present Study) | Palm Kernel Cake [15] | Karanja Seed Cake [16] | Mesua Ferrea L De-oiled Cake [17] | Polyethylene Terephthalate Plastic (PET) (Present Study) | Polyethylene Terephthalate (PET) [12] |
---|---|---|---|---|---|---|
Moisture Content | 5.6 | 7.92 | 7.27 | 4.08 | 0.61 | 0.0 |
Volatile Matter | 83 | 71.84 | 89.23 | 82.63 | 94.3 | 99.99 |
Ash Content | 4.8 | 4.28 | 1.5 | 8.46 | 0.059 | 0.08 |
Fixed Carbon | 6.6 | 16.00 | 2.0 | 4.82 | 5.00 | 0.02 |
C | 44.8 | 52.53 | 53.04 | 48.63 | 62.88 | 85.4 |
H | 11.24 | 5.65 | 7.32 | 8.46 | 4.73 | 13.1 |
N | 7.23 | 2.86 | 3.94 | 48.63 | 0.37 | - |
S | 0.31 | 0.03 | 35.53 | 7.38 | 0.0 | 0.41 |
O | 36.42 | 38.93 | 0.17 | 3.36 | 32.018 | 1.09 |
Extractive Content | 7.136 | - | - | - | - | - |
Gross Value (MJ kg−1) | 15.5 | 18.67 | 37.65 | - | 23.0 | - |
Model Free Iso-Conversional Methods | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Conversion | Differential Friedman | Kissinger–Akahira–Sunose (KAS) | Ozawa–Flynn–Wall (OFW) | Starink Method (STR) | Distributed Activation Energy Model (DAEM) | ||||||||||
α | E (kJ mol−1) | A (min−1) | R2 | E (kJ mol−1) | A (min−1) | R2 | E (kJ mol−1) | A (min−1) | R2 | E (kJ mol−1) | A (min−1) | R2 | E (kJ mol−1) | A (min−1) | R2 |
0.1 | 92.32 | 2.18x107 | 0.995 | 90.89 | 1.68 × 107 | 0.999 | 95.34 | 3.14 × 105 | 0.99 | 91.20 | 1.44 × 107 | 0.99 | 90.89 | 1.59 × 108 | 0.99 |
0.2 | 80.87 | 1.70 × 106 | 0.978 | 91.45 | 1.68 × 107 | 0.997 | 96.22 | 3.33 × 105 | 0.99 | 91.77 | 1.44 × 107 | 0.99 | 91.45 | 7.42 × 107 | 0.99 |
0.3 | 124.52 | 8.56 × 109 | 0.999 | 96.21 | 4.03 × 107 | 0.997 | 101.05 | 7.76 × 105 | 0.99 | 96.53 | 3.46 × 107 | 0.99 | 96.21 | 1.13 × 108 | 0.99 |
0.4 | 112.38 | 6.80 × 108 | 0.999 | 98.52 | 5.58 × 107 | 0.998 | 103.37 | 1.05 × 106 | 0.99 | 98.85 | 4.79 × 107 | 0.99 | 98.52 | 1.08 × 108 | 0.99 |
0.5 | 120.13 | 2.98 × 109 | 0.993 | 104.19 | 1.59 × 108 | 0.997 | 109.06 | 2.85 × 106 | 0.99 | 104.53 | 1.36 × 108 | 0.99 | 104.19 | 2.29 × 108 | 0.99 |
0.6 | 136.48 | 5.63 × 1010 | 0.997 | 108.39 | 3.42 × 108 | 0.995 | 113.11 | 5.74 × 106 | 0.99 | 108.74 | 2.92 × 108 | 0.99 | 108.39 | 3.71 × 108 | 0.99 |
0.7 | 142.53 | 1.01 × 1011 | 0.998 | 124.82 | 7.21 × 109 | 0.994 | 129.02 | 9.75 × 107 | 0.99 | 125.15 | 6.09 × 109 | 0.99 | 124.82 | 5.98 × 109 | 0.99 |
0.8 | 321.96 | 6.83 × 1023 | 0.984 | 305.49 | 4.18 × 1023 | 0.995 | 301.07 | 1.04 × 1021 | 0.99 | 305.69 | 3.29 × 1023 | 0.99 | 305.49 | 2.59 × 1023 | 0.99 |
Average | 141.39 | 8.54 × 1022 | 127.49 | 5.23 × 1022 | 131.03 | 1.30 × 1022 | 127.80 | 4.12 × 1022 | 127.49 | 3.24 × 1022 |
Model Free Iso-Conversional Methods | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Conversion | Differential Friedman | Kissinger–Akahira–Sunose (KAS) | Ozawa–Flynn–Wall (OFW) | Starink Method (STR) | Distributed Activation Energy Model (DAEM) | ||||||||||
α | E kJ mol−1) | A (min−1) | R2 | E (kJ mol−1) | A (min−1) | R2 | E (kJ mol−1) | A (min−1) | R2 | E (kJ mol−1) | A (min−1) | R2 | E (kJ mol−1) | A (min−1) | R2 |
0.1 | 247.58 | 6.01 × 1017 | 0.75 | 190.05 | 1.39 × 1013 | 0.9 | 191.85 | 9.59 × 1010 | 0.9 | 190.36 | 1.1 × 1013 | 0.9 | 190.05 | 1.15 × 1014 | 0.9 |
0.2 | 31.34 | 4.62 × 101 | 0.029 | 192.92 | 2.98 × 1013 | 0.96 | 194.64 | 2.03 × 1011 | 0.96 | 193.24 | 2.45 × 1013 | 0.96 | 192.92 | 1.29 × 1014 | 0.96 |
0.3 | 211.08 | 1.30 × 1015 | 0.96 | 192.17 | 3.13 × 1013 | 0.93 | 194.03 | 2.18 × 1011 | 0.94 | 192.49 | 2.57 × 1013 | 0.93 | 192.17 | 8.39 × 1013 | 0.93 |
0.4 | 213.40 | 2.00 × 1015 | 0.97 | 198.12 | 1.00 × 1014 | 0.91 | 199.76 | 6.69 × 1011 | 0.92 | 198.44 | 8.23 × 1013 | 0.91 | 198.12 | 1.85 × 1014 | 0.91 |
0.5 | 222.46 | 9.13 × 1015 | 0.97 | 205.08 | 3.61 × 1014 | 0.94 | 206.44 | 2.27 × 1012 | 0.95 | 205.40 | 2.95 × 1014 | 0.94 | 205.08 | 4.98 × 1014 | 0.94 |
0.6 | 224.47 | 1.18 × 1016 | 0.93 | 201.54 | 2.06 × 1014 | 0.92 | 203.15 | 1.36 × 1012 | 0.93 | 201.86 | 1.69 × 1014 | 0.92 | 201.54 | 2.18 × 1014 | 0.92 |
0.7 | 271.72 | 2.51 × 1019 | 0.94 | 218.87 | 4.08 × 1015 | 0.96 | 219.70 | 2.32 × 1013 | 0.96 | 219.18 | 3.32 × 1015 | 0.96 | 218.87 | 3.27 × 1015 | 0.96 |
0.8 | 328.17 | 1.48 × 1023 | 0.76 | 231.6 | 3.23 × 1016 | 0.923 | 231.91 | 1.67 × 1014 | 0.93 | 231.91 | 2.62 × 1016 | 0.923 | 231.6 | 3.03 × 1015 | 0.93 |
Average | 240.83 | 1.15 × 1021 | 201.45 | 8.01 × 1014 | 202.95 | 4.66 × 1012 | 201.77 | 6.53 × 1014 | 201.45 | 7.30 × 1014 |
Model Free Iso-Conversional Methods | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Conversion | Differential Friedman | Kissinger–Akahira–Sunose (KAS) | Ozawa–Flynn–Wall (OFW) | Starink Method (STR) | Distributed Activation Energy Model (DAEM) | ||||||||||
α | E (kJ mol−1) | A (min−1) | R2 | E (kJ mol−1) | A (min−1) | R2 | E (kJ mol−1) | A (min−1) | R2 | E (kJ mol−1) | A (min−1) | R2 | E (kJ mol−1) | A (min−1) | R2 |
0.1 | 97.85 | 4.08 × 107 | 0.98 | 100.28 | 9.97 × 107 | 0.91 | 104.11 | 1.50 × 106 | 0.93 | 100.23 | 7.89 × 107 | 0.91 | 100.28 | 9.31 × 108 | 0.91 |
0.2 | 151.13 | 8.51 × 1011 | 1.00 | 112.29 | 6.83 × 108 | 0.97 | 116.41 | 9.88 × 106 | 0.97 | 112.61 | 5.79 × 108 | 0.97 | 112.29 | 2.95 × 109 | 0.97 |
0.3 | 99.96 | 2.01 × 107 | 1.00 | 125.91 | 7.47 × 109 | 0.99 | 129.65 | 9.19 × 107 | 1 | 126.23 | 6.2 × 109 | 0.99 | 125.91 | 2.04 × 1010 | 1 |
0.4 | 174.14 | 6.59 × 1012 | 0.99 | 121.46 | 1.24 × 109 | 0.99 | 125.91 | 1.80 × 107 | 1 | 121.80 | 1.05 × 109 | 0.99 | 121.46 | 2.41 × 109 | 0.99 |
0.5 | 181.00 | 2.17 × 1013 | 0.99 | 165.05 | 2.51 × 1012 | 0.99 | 167.68 | 2.14 × 1010 | 1 | 165.37 | 2.08 × 1012 | 0.99 | 165.05 | 3.59 × 1012 | 0.99 |
0.6 | 226.65 | 5.67 × 1016 | 0.99 | 186.99 | 9.91 × 1012 | 0.99 | 188.74 | 6.85 × 1011 | 0.99 | 187.31 | 8.14 × 1013 | 0.99 | 186.99 | 1.07 × 1014 | 0.99 |
0.7 | 224.19 | 3.33 × 1012 | 0.99 | 203.34 | 1.48 × 1015 | 0.99 | 204.43 | 8.84 × 1012 | 1 | 203.64 | 1.19 × 1015 | 0.99 | 203.34 | 1.21 × 1015 | 0.99 |
0.8 | 259.56 | 9.89 × 1018 | 0.99 | 221.49 | 2.85 × 1016 | 0.99 | 221.85 | 1.499 × 1014 | 1 | 221.79 | 2.31 × 1016 | 0.99 | 221.49 | 1.75 × 1016 | 1 |
0.9 | 560.52 | 9.58 × 1033 | 0.99 | 345.96 | 2.23 × 1023 | 0.99 | 340.48 | 5.12 × 1022 | 1 | 346.16 | 1.75 × 1019 | 0.99 | 345.96 | 9.59 × 1024 | 1 |
Average | 219.45 | 1.06 × 1039 | 175.86 | 2.48 × 1024 | 177.70 | 5.68 × 1021 | 176.13 | 1.94 × 1024 | 175.83 | 1.07 × 1024 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komandur, J.; Kumar, A.; Para, P.; Mohanty, K. Kinetic Parameters Estimation of Thermal and Co-Pyrolysis of Groundnut De-oiled Cake and Polyethylene Terephthalate (PET) Waste. Energies 2022, 15, 7502. https://doi.org/10.3390/en15207502
Komandur J, Kumar A, Para P, Mohanty K. Kinetic Parameters Estimation of Thermal and Co-Pyrolysis of Groundnut De-oiled Cake and Polyethylene Terephthalate (PET) Waste. Energies. 2022; 15(20):7502. https://doi.org/10.3390/en15207502
Chicago/Turabian StyleKomandur, Janaki, Abhishek Kumar, Preethi Para, and Kaustubha Mohanty. 2022. "Kinetic Parameters Estimation of Thermal and Co-Pyrolysis of Groundnut De-oiled Cake and Polyethylene Terephthalate (PET) Waste" Energies 15, no. 20: 7502. https://doi.org/10.3390/en15207502
APA StyleKomandur, J., Kumar, A., Para, P., & Mohanty, K. (2022). Kinetic Parameters Estimation of Thermal and Co-Pyrolysis of Groundnut De-oiled Cake and Polyethylene Terephthalate (PET) Waste. Energies, 15(20), 7502. https://doi.org/10.3390/en15207502