Biochar as Cement Replacement to Enhance Concrete Composite Properties: A Review
Abstract
:1. Introduction
2. Biochar Production
3. Applications of Biochar in Building Materials
3.1. Biochar as Cementitious Material
3.2. Water Absorption
3.3. Static Modulus of Elasticity
3.4. Compressive Strength
3.5. Flexural Strength
3.6. Tensile Strength
4. Carbon-Sequestering Potential of Biochar
5. Engineering Biochar as Cement Replacement
6. Environmental and Economic Impact
7. Conclusions
- The influence of different lignocellulosic biomasses on cement hydration during curing of biochar concrete composites;
- The resistance of biochar concrete composites to impact loads and harsh chemical environments;
- Mechanical properties of biochar concrete composites made from various types of food waste;
- Carbon sequestration capabilities of biochar concrete composites made with pretreated biochar;
- Evaluation of the potential to adapt biochar concrete composites as carbon-sequestering materials in industrial applications through LCA and LCC studies;
- Optimization of the production of a near-ideal biochar that has the chemical composition of a proven supplementary cementitious material to improve the mechanical properties of concrete composites; and
- Testing of biochar concrete composites for the ability to absorb pollutants, such as CO, NO CO2, NO2 and SO2, without affecting mechanical properties, considering time as a dependent variable.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mohamad, N.; Muthusamy, K.; Embong, R.; Kusbiantoro, A.; Hashim, M.H. Environmental Impact of Cement Production and Solutions: A Review. Mater. Today Proc. 2021, 48, 741–746. [Google Scholar] [CrossRef]
- Mah, C.M.; Fujiwara, T.; Ho, C.S. Life Cycle Assessment and Life Cycle Costing toward Eco-Efficiency Concrete Waste Management in Malaysia. J. Clean. Prod. 2018, 172, 3415–3427. [Google Scholar] [CrossRef]
- Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-Efficient Cements: Potential Economically Viable Solutions for a Low-CO2 Cement-Based Materials Industry. Cem. Concr. Res. 2018, 114, 2–26. [Google Scholar] [CrossRef]
- Syahida Adnan, Z.; Ariffin, N.F.; Syed Mohsin, S.M.; Abdul Shukor Lim, N.H. Review Paper: Performance of Rice Husk Ash as a Material for Partial Cement Replacement in Concrete. Mater. Today Proc. 2022, 48, 842–848. [Google Scholar] [CrossRef]
- Ahmed, M.; Bashar, I.; Alam, S.T.; Wasi, A.I.; Jerin, I.; Khatun, S.; Rahman, M. An Overview of Asian Cement Industry: Environmental Impacts, Research Methodologies and Mitigation Measures. Sustain. Prod. Consum. 2021, 28, 1018–1039. [Google Scholar] [CrossRef]
- Suarez-Riera, D.; Restuccia, L.; Ferro, G.A. The Use of Biochar to Reduce the Carbon Footprint of Cement-Based Materials. Procedia Struct. Integr. 2020, 26, 199–210. [Google Scholar] [CrossRef]
- Kant Bhatia, S.; Palai, A.K.; Kumar, A.; Kant Bhatia, R.; Kumar Patel, A.; Kumar Thakur, V.; Yang, Y.-H. Trends in Renewable Energy Production Employing Biomass-Based Biochar. Bioresour. Technol. 2021, 340, 125644. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Kumar, P.S.; Varjani, S.; Saravanan, A. A Critical Review on the Biochar Production Techniques, Characterization, Stability and Applications for Circular Bioeconomy. Biotechnol. Rep. 2020, 28, e00570. [Google Scholar] [CrossRef]
- Fang, Z.; Gao, Y.; Bolan, N.; Shaheen, S.M.; Xu, S.; Wu, X.; Xu, X.; Hu, H.; Lin, J.; Zhang, F.; et al. Conversion of Biological Solid Waste to Graphene-Containing Biochar for Water Remediation: A Critical Review. Chem. Eng. J. 2020, 390, 124611. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, S.; Sun, Y.; Tsang, D.C.W.; Cheng, K.; Ok, Y.S. Assembling Biochar with Various Layered Double Hydroxides for Enhancement of Phosphorus Recovery. J. Hazard. Mater. 2019, 365, 665–673. [Google Scholar] [CrossRef]
- Sahoo, S.S.; Vijay, V.K.; Chandra, R.; Kumar, H. Production and Characterization of Biochar Produced from Slow Pyrolysis of Pigeon Pea Stalk and Bamboo. Clean. Eng. Technol. 2021, 3, 100101. [Google Scholar] [CrossRef]
- Dissanayake, P.D.; You, S.; Igalavithana, A.D.; Xia, Y.; Bhatnagar, A.; Gupta, S.; Kua, H.W.; Kim, S.; Kwon, J.H.; Tsang, D.C.W.; et al. Biochar-Based Adsorbents for Carbon Dioxide Capture: A Critical Review. Renew. Sustain. Energy Rev. 2020, 119, 109582. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, H.; He, S.; Zhao, Q.; Wei, L. A Review of Biochar in Anaerobic Digestion to Improve Biogas Production: Performances, Mechanisms and Economic Assessments. Bioresour. Technol. 2021, 341, 125797. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Tsang, D.C.W.; Guo, B.; Yang, J.; Shen, Z.; Hou, D.; Ok, Y.S.; Poon, C.S. Biochar as Green Additives in Cement-Based Composites with Carbon Dioxide Curing. J. Clean. Prod. 2020, 258, 120678. [Google Scholar] [CrossRef]
- Gupta, S.; Kua, H.W. Effect of Water Entrainment by Pre-Soaked Biochar Particles on Strength and Permeability of Cement Mortar. Constr. Build. Mater. 2018, 159, 107–125. [Google Scholar] [CrossRef]
- Asadi Zeidabadi, Z.; Bakhtiari, S.; Abbaslou, H.; Ghanizadeh, A.R. Synthesis, Characterization and Evaluation of Biochar from Agricultural Waste Biomass for Use in Building Materials. Constr. Build. Mater. 2018, 181, 301–308. [Google Scholar] [CrossRef]
- Danish, A.; Ali Mosaberpanah, M.; Usama Salim, M.; Ahmad, N.; Ahmad, F.; Ahmad, A. Reusinsg Biochar as a Filler or Cement Replacement Material in Cementitious Composites: A Review. Constr. Build. Mater. 2021, 300, 124295. [Google Scholar] [CrossRef]
- Mensah, R.A.; Shanmugam, V.; Narayanan, S.; Razavi, S.M.J.; Ulfberg, A.; Blanksvärd, T.; Sayahi, F.; Simonsson, P.; Reinke, B.; Försth, M.; et al. Biochar-Added Cementitious Materials—A Review on Mechanical, Thermal, and Environmental Properties. Sustain 2021, 13, 9336. [Google Scholar] [CrossRef]
- Maljaee, H.; Madadi, R.; Paiva, H.; Tarelho, L.; Ferreira, V.M. Incorporation of Biochar in Cementitious Materials: A Roadmap of Biochar Selection. Constr. Build. Mater. 2021, 283, 122757. [Google Scholar] [CrossRef]
- Tan, K.-H.; Wang, T.-Y.; Zhou, Z.-H.; Qin, Y.-H. Biochar as a Partial Cement Replacement Material for Developing Sustainable Concrete: An Overview. J. Mater. Civ. Eng. 2021, 33, 03121001. [Google Scholar] [CrossRef]
- Akinyemi, B.A.; Adesina, A. Recent Advancements in the Use of Biochar for Cementitious Applications: A Review. J. Build. Eng. 2020, 32, 101705. [Google Scholar] [CrossRef]
- Al Arni, S. Comparison of Slow and Fast Pyrolysis for Converting Biomass into Fuel. Renew. Energy 2018, 124, 197–201. [Google Scholar] [CrossRef]
- Selvarajoo, A. Slow Pyrolysis of Durio Zibethinus Rind and the Influence of Carbonization Temperature on Biochar Properties. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1092, 012042. [Google Scholar] [CrossRef]
- Selvarajoo, A.; Oochit, D. Effect of Pyrolysis Temperature on Product Yields of Palm Fibre and Its Biochar Characteristics. Mater. Sci. Energy Technol. 2020, 3, 575–583. [Google Scholar] [CrossRef]
- Bong, H.K.; Selvarajoo, A.; Arumugasamy, S.K. Stability of Biochar Derived from Banana Peel through Pyrolysis as Alternative Source of Nutrient in Soil: Feedforward Neural Network Modelling Study. Environ. Monit. Assess. 2022, 194, 1–29. [Google Scholar] [CrossRef]
- Khushnood, R.A.; Ahmad, S.; Restuccia, L.; Spoto, C.; Jagdale, P.; Tulliani, J.M.; Ferro, G.A. Carbonized Nano/Microparticles for Enhanced Mechanical Properties and Electromagnetic Interference Shielding of Cementitious Materials. Front. Struct. Civ. Eng. 2016, 10, 209–213. [Google Scholar] [CrossRef]
- Akhtar, A.; Sarmah, A.K. Novel Biochar-Concrete Composites: Manufacturing, Characterization and Evaluation of the Mechanical Properties. Sci. Total Environ. 2018, 616, 408–416. [Google Scholar] [CrossRef]
- Ding, Y.; Guo, C.; Qin, S.; Wang, B.; Zhao, P.; Cui, X. Effects of Process Water Recirculation on Yields and Quality of Hydrochar from Hydrothermal Carbonization Process of Rice Husk. J. Anal. Appl. Pyrolysis 2022, 166, 105618. [Google Scholar] [CrossRef]
- Klinghoffer, N.B.; Castaldi, M.J.; Nzihou, A. Influence of Char Composition and Inorganics on Catalytic Activity of Char from Biomass Gasification. Fuel 2015, 157, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Ismail, H.Y.; Fayyad, S.; Ahmad, M.N.; Leahy, J.J.; Naushad, M.; Walker, G.M.; Albadarin, A.B.; Kwapinski, W. Modelling of Yields in Torrefaction of Olive Stones Using Artificial Intelligence Coupled with Kriging Interpolation. J. Clean. Prod. 2021, 326, 129020. [Google Scholar] [CrossRef]
- Gupta, S.; Kua, H.W.; Koh, H.J. Application of Biochar from Food and Wood Waste as Green Admixture for Cement Mortar. Sci. Total Environ. 2018, 619–620, 419–435. [Google Scholar] [CrossRef]
- Maljaee, H.; Paiva, H.; Madadi, R.; Tarelho, L.A.C.; Morais, M.; Ferreira, V.M. Effect of Cement Partial Substitution by Waste-Based Biochar in Mortars Properties. Constr. Build. Mater. 2021, 301, 124074. [Google Scholar] [CrossRef]
- Qin, Y.; Pang, X.; Tan, K.; Bao, T. Evaluation of Pervious Concrete Performance with Pulverized Biochar as Cement Replacement. Cem. Concr. Compos. 2021, 119, 104022. [Google Scholar] [CrossRef]
- Praneeth, S.; Guo, R.; Wang, T.; Dubey, B.K.; Sarmah, A.K. Accelerated Carbonation of Biochar Reinforced Cement-Fly Ash Composites: Enhancing and Sequestering CO2 in Building Materials. Constr. Build. Mater. 2020, 244, 118363. [Google Scholar] [CrossRef]
- Yang, X.; Wang, X.Y. Hydration-Strength-Durabilitys-Workability of Biochar-Cement Binary Blends. J. Build. Eng. 2021, 42, 103064. [Google Scholar] [CrossRef]
- Sirico, A.; Bernardi, P.; Belletti, B.; Malcevschi, A.; Dalcanale, E.; Domenichelli, I.; Fornoni, P.; Moretti, E. Mechanical Characterization of Cement-Based Materials Containing Biochar from Gasification. Constr. Build. Mater. 2020, 246, 118490. [Google Scholar] [CrossRef]
- Restuccia, L.; Ferro, G.A. Promising Low Cost Carbon-Based Materials to Improve Strength and Toughness in Cement Composites. Constr. Build. Mater. 2016, 126, 1034–1043. [Google Scholar] [CrossRef]
- Nisticò, R.; Lavagna, L.; Versaci, D.; Ivanchenko, P.; Benzi, P. Chitosan and Its Char as Fillers in Cement-Base Composites: A Case Study. Boletín Soc. Española Cerámica y Vidr. 2020, 59, 186–192. [Google Scholar] [CrossRef]
- Rodier, L.; Bilba, K.; Onésippe, C.; Arsène, M.A. Utilization of Bio-Chars from Sugarcane Bagasse Pyrolysis in Cement-Based Composites. Ind. Crops Prod. 2019, 141, 111731. [Google Scholar] [CrossRef]
- Gupta, S.; Muthukrishnan, S.; Kua, H.W. Comparing Influence of Inert Biochar and Silica Rich Biochar on Cement Mortar—Hydration Kinetics and Durability under Chloride and Sulfate Environment. Constr. Build. Mater. 2021, 268, 121142. [Google Scholar] [CrossRef]
- Chen, L.; Wang, L.; Zhang, Y.; Ruan, S.; Mechtcherine, V.; Tsang, D.C.W. Roles of Biochar in Cement-Based Stabilization/Solidification of Municipal Solid Waste Incineration Fly Ash. Chem. Eng. J. 2022, 430, 132972. [Google Scholar] [CrossRef]
- Ofori-Boadu, A.N.; Kelley, R.; Aryeetey, F.; Fini, E.; Akangah, P. The Influence of Swine-Waste Biochar on the Early-Age Characteristics of Cement Paste. Int. J. Eng. Res. Appl. 2017, 7, 1–7. [Google Scholar] [CrossRef]
- Choi, W.C.; Yun, H.D.; Lee, J.Y. Mechanical Properties of Mortar Containing Bio-Char From Pyrolysis. J. Korea Inst. Struct. Maint. Insp. 2012, 16, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Kua, H.W. Combination of Biochar and Silica Fume as Partial Cement Replacement in Mortar: Performance Evaluation Under Normal and Elevated Temperature. Waste Biomass Valorizations 2020, 11, 2807–2824. [Google Scholar] [CrossRef]
- Liu, W.; Li, K.; Xu, S. Utilizing Bamboo Biochar in Cement Mortar as a Bio-sModifier to Improve the Compressive Strength and Crack-Resistance Fracture Ability. Constr. Build. Mater. 2022, 327, 126917. [Google Scholar] [CrossRef]
- Gupta, S.; Kashani, A. Utilization of Biochar from Unwashed Peanut Shell in Cementitious Building Materials—Effect on Early Age Properties and Environmental Benefits. Fuel Process. Technol. 2021, 218, 106841. [Google Scholar] [CrossRef]
- Praneeth, S.; Saavedra, L.; Zeng, M.; Dubey, B.K.; Sarmah, A.K. Biochar Admixtured Lightweight, Porous and Tougher Cement Mortars: Mechanical, Durability and Micro Computed Tomography Analysis. Sci. Total Environ. 2021, 750, 142327. [Google Scholar] [CrossRef]
- Xuan, D.; Zhan, B.; Poon, C.S. Development of a New Generation of Eco-Friendly Concrete Blocks by Accelerated Mineral Carbonation. J. Clean. Prod. 2016, 133, 1235–1241. [Google Scholar] [CrossRef]
- Gupta, S.; Kashani, A.; Mahmood, A.H. Carbon Sequestration in Engineered Lightweight Foamed Mortar—Effect on Rheology, Mechanical and Durability Properties. Constr. Build. Mater. 2022, 322, 126383. [Google Scholar] [CrossRef]
- Gupta, S. Carbon Sequestration in Cementitious Matrix Containing Pyrogenic Carbon from Waste Biomass: A Comparison of External and Internal Carbonation Approach. J. Build. Eng. 2021, 43, 102910. [Google Scholar] [CrossRef]
- Gupta, S.; Kashani, A.; Mahmood, A.H.; Han, T. Carbon Sequestration in Cementitious Composites Using Biochar and Fly Ash—Effect on Mechanical and Durability Properties. Constr. Build. Mater. 2021, 291, 123363. [Google Scholar] [CrossRef]
- Gupta, S.; Kua, W.; Low, C.Y. Use of Biochar as Carbon Sequestering Additive in Cement Mortar. Cem. Concr. Compos. 2018, 87, 110–129. [Google Scholar] [CrossRef]
- Fawzy, S.; Osman, A.I.; Yang, H.; Doran, J.; Rooney, D.W. Industrial Biochar Systems for Atmospheric Carbon Removal: A Review. Environ. Chem. Lett. 2021, 19, 3023–3055. [Google Scholar] [CrossRef]
- You, S.; Ok, Y.S.; Tsang, D.C.W.; Kwon, E.E.; Wang, C.-H. Towards Practical Application of Gasification: A Critical Review from Syngas and Biochar Perspectives. Crit. Rev. Environ. Sci. Technol. 2018, 48, 1165–1213. [Google Scholar] [CrossRef] [Green Version]
- Ding, T.; Xiao, J.; Tam, V.W.Y. A Closed-Loop Life Cycle Assessment of Recycled Aggregate Concrete Utilization in China. Waste Manag. 2016, 56, 367–375. [Google Scholar] [CrossRef]
- Jiang, Z.; Zheng, H.; Xing, B. Environmental Life Cycle Assessment of Wheat Production Using Chemical Fertilizer, Manure Compost, and Biochar-Amended Manure Compost Strategies. Sci. Total Environ. 2021, 760, 143342. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Kua, H.W.; Dai Pang, S. Biochar-Mortar Composite: Manufacturing, Evaluation of Physical Properties and Economic Viability. Constr. Build. Mater. 2018, 167, 874–889. [Google Scholar] [CrossRef]
- Campos, J.; Fajilan, S.; Lualhati, J.; Mandap, N.; Clemente, S.; Campos, J.; Fajilan, S.; Lualhati, J.; Mandap, N.; Clemente, S. Life Cycle Assessment of Biochar as a Partial Replacement to Portland Cement. E&ES 2020, 479, 012025. [Google Scholar] [CrossRef]
- Sahoo, K.; Upadhyay, A.; Runge, T.; Bergman, R.; Puettmann, M.; Bilek, E. Life-Cycle Assessment and Techno-Economic Analysis of Biochar Produced from Forest Residues Using Portable Systems. Int. J. Life Cycle Assess. 2021, 26, 189–213. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Y.; Wang, L.; Ruan, S.; Chen, J.; Li, H.; Yang, J.; Mechtcherine, V.; Tsang, D.C.W. Biochar-Augmented Carbon-Negative Concrete. Chem. Eng. J. 2022, 431, 133946. [Google Scholar] [CrossRef]
- Krou, N.J.; Batonneau-Gener, I.; Belin, T.; Mignard, S.; Horgnies, M.; Dubois-Brugger, I. Mechanisms of NOx Entrapment into Hydrated Cement Paste Containing Activated Carbon—Influences of the Temperature and Carbonation. Cem. Concr. Res. 2013, 53, 51–58. [Google Scholar] [CrossRef]
- Horgnies, M.; Dubois-Brugger, I.; Gartner, E.M. NOx De-Pollution by Hardened Concrete and the Influence of Activated Charcoal Additions. Cem. Concr. Res. 2012, 42, 1348–1355. [Google Scholar] [CrossRef]
Technique | Temperature (°C) | Biomass | Residence Time | Yield of Biochar (%) | Yield of Bio-Oil (%) | Syngas Production (%) | Ref |
---|---|---|---|---|---|---|---|
Pyrolysis | 390–980 (slow) | Sugarcane | 60 min | 30–33 | 19–27 | 26–37 | [22] |
380–780 (fast) | Sugarcane | 20 min | 27–28 | 38–47 | 11–21 | [22] | |
Hydrothermal carbonization | 220 | Rice husk | 60 min | 68–76 | N/A | N/A | [28] |
Gasification | 550–920 | Wood | 30 min | 11–16 | N/A | ≈80 | [29] |
Torrefaction | 200–300 | Olive stone | 30–120 min | 40–90 | 8–49 | 0.3–10 | [30] |
Analysis Method | Purpose |
---|---|
Proximate | Determination of moisture content, volatile matter and ash content. |
Ultimate | Determination of of C, H, N, O, H/C and O/C contents. |
SEM (scanning electron microscopy) | Biochar and biomass morphology (pore size) characterization. |
BET (Brunauer–Emmett–Teller) | Determination of surface area, pore volume and mean pore diameter. |
FTIR (Fourier transform infrared spectrometery) | Determination of functional groups. |
XRD (X-ray diffraction) | Assessment of the presence of various crystalline materials. |
TGA (thermogravimetric analysis) | Determination of thermal stability. |
NMR (nuclear magnetic resonance) | Determination of structural composition. |
EDX (energy-dispersive X-ray spectroscopy) | Determination of elemental composition. |
PIDS (polarized-intensity differential scattering) | Determination of particle size distribution (PSD). |
ICP-MS (mass spectrometry with inductively coupled plasma) | Elemental and isotopic inorganic analysis. |
EDS (electron-dispersive spectroscopy) | Determination of elemental composition. |
PDS (particle size distribution) | Determination of the size of the majority of particles. |
Biomass | BC a Characterization | Temp (°C) | Sample | BC | Optimum BC | Ratio | Tested Properties | Limitations of Research | Ref | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S:C b | A:C c | W/C d | ||||||||||
Wood waste (sawdust) |
| 300 | Dry BC300_M | 2 | 2% with curing in fog room at 26 ± 2 °C (Pre-soak BC500) | 2.75:1 | N/A | 0.4 |
|
| [15] | |
Presoak BC300_M | 0.25 | |||||||||||
| 500 | Dry BC500_M | 0.4 | |||||||||
Presoak BC500_M | 0.22 | |||||||||||
Waste wood sawdust (Mason pine wood) |
|
| 500 | 500-1 | 1 | 1% CO2 curing | 1:1 | N/A | 0.3 |
|
| [14] |
500-2 | 2 | |||||||||||
500-5 | 5 | |||||||||||
| 700 | 700-1 | 1 | |||||||||
700-2 | 2 | |||||||||||
700-5 | 5 | |||||||||||
Rice husk |
|
| 500 | RH0.1 | 0.1 | RH0.1 | N/A | 6:1 | 0.32 |
|
| [27] |
RH0.75 | 0.75 | |||||||||||
RH1 | 1 | |||||||||||
Pulp and paper mill sludge |
| PP0.1 | 0.1 | |||||||||
PP1 | 1 | |||||||||||
Poultry litter |
| 450 | PL0.1 | 0.1 | ||||||||
PL0.75 | 0.75 | |||||||||||
Eucalyptus plywood |
| 500 | G3 | 3.2 | 6.5% | N/A | 5:1 | 0.35 |
|
| [33] | |
G4 | 6.5 | |||||||||||
G5 | 9.5 | |||||||||||
G6 | 13.5 | |||||||||||
Waste wood chips |
| 700 | M BC 2%_Sost | 2 | 2% Curing with humid environment 24 ± 1 °C | 3:1 | N/A | 0.5 |
|
| [6] | |
M BC2%_s_Sost | ||||||||||||
Mixed sawdust |
|
| 500 | MWBC | 1 | 1–2 wt% FWBC and MWBC | 2.75:1 | N/A | 0.4 |
|
| [31] |
2 | ||||||||||||
5 | ||||||||||||
Food waste | FWBC | 1 | ||||||||||
| 2 | |||||||||||
5 | ||||||||||||
Rice waste |
| RWBC | 2 | |||||||||
5 | ||||||||||||
Rice husk |
|
| 700 | RHB | 5 | 5% Treated RHB & BB | N/A | N/A | 0.5 |
|
| [16] |
10 | ||||||||||||
Treated RHB | 5 | |||||||||||
10 | ||||||||||||
Treated RHB Ash | 5 | |||||||||||
| 10 | |||||||||||
Bagasse | Treated BB | 5 | ||||||||||
10 | ||||||||||||
BB | 5 | |||||||||||
10 | ||||||||||||
Olive stone |
|
| 500 | OSB_0.5 | 0.5 | Up to 4% of and Rice Husk | 3:1 | N/A | 0.5 |
|
| [32] |
OSB_1 | 1 | |||||||||||
OSB_2 | 2 | |||||||||||
OSB_4 | 4 | |||||||||||
Rice husk |
| RHB_0.5 | 0.5 | |||||||||
RHB_1 | 1 | |||||||||||
RHB_2 | 2 | |||||||||||
RHB_4 | 4 | |||||||||||
Wood chips |
| FWB_0.5 | 0.5 | |||||||||
FWB_1 | 1 | |||||||||||
FWB_2 | 2 | |||||||||||
FWB_4 | 4 | |||||||||||
Corn stover (cement and fly ash) |
| 550 | M20 | 2 | 4% | N/A | N/A | N/A |
|
| [34] | |
4 | ||||||||||||
6 | ||||||||||||
8 | ||||||||||||
M40 | 2 | |||||||||||
4 | ||||||||||||
6 | ||||||||||||
8 | ||||||||||||
M50 | 2 | |||||||||||
4 | ||||||||||||
6 | ||||||||||||
8 | ||||||||||||
Rice husk |
| 550 | B2-M | 2 | 2% | 2.5:1 | N/A | 0.5 |
|
| [35] | |
B5-M | 5 | |||||||||||
Wood waste (wood chips) |
| 500 | A1 | 1.0 | 1% | 3:1 | N/A | 0.42 |
|
| [36] | |
A2.5 | 2.5 | |||||||||||
B1 | 1 | N/A | 3.4:1 | 0.55 | ||||||||
B2.5 | 2.5 | |||||||||||
C1 | 1 | N/A | 2.9:1 | 0.4 | ||||||||
C2.5 | 2.5 | |||||||||||
Coffee powder |
|
| 800 | PY-HS0.5% | 0.5 | PY-CP0.5% | N/A | N/A | 0.35 |
|
| [37] |
PY-HS0.8% | 0.8 | |||||||||||
PY-HS1.0% | 1 | |||||||||||
Hazelnut shells |
| PY-CP0.5% | 0.5 | |||||||||
PY-CP0.8% | 0.8 | |||||||||||
PY-CP1.0% | 1 | |||||||||||
Chitosan (shellfish) |
| 800 | C800 | 0.1 | 0.1% | N/A | N/A | 0.45 |
|
| [38] | |
Peanut shells |
|
| 850 | 0.025 wt%HS | 0.025 | 0.08% Peanut shells | N/A | N/A | 0.35 |
|
| [26] |
0.05 wt%HS | 0.05 | |||||||||||
0.2 wt% HS | 0.2 | |||||||||||
0.5 wt% HS | 0.5 | |||||||||||
1 wt% HS | 1 | |||||||||||
Hazelnut shells |
| 0.025 wt% PS | 0.025 | |||||||||
0.05 wt% PS | 0.05 | |||||||||||
0.2 wt% PS | 0.2 | |||||||||||
0.5 wt% PS | 0.5 | |||||||||||
1 wt% PS | 1 | |||||||||||
Sugarcane bagasse |
| 200 | CLA 2B | 2 | 2% | N/A | N/A | 0.8 |
|
| [39] | |
CLA 4B | 4 | |||||||||||
CLA 6B | 6 | |||||||||||
Rice husk |
|
| 500 | MWBC 2% | 2 | 1% of MWBC and RHB | 2.5:1 | N/A | 0.4 |
|
| [40] |
MWBC 1% | 1 | |||||||||||
Wood waste |
| RHB 2% | 2 | |||||||||
RHB 1% | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aman, A.M.N.; Selvarajoo, A.; Lau, T.L.; Chen, W.-H. Biochar as Cement Replacement to Enhance Concrete Composite Properties: A Review. Energies 2022, 15, 7662. https://doi.org/10.3390/en15207662
Aman AMN, Selvarajoo A, Lau TL, Chen W-H. Biochar as Cement Replacement to Enhance Concrete Composite Properties: A Review. Energies. 2022; 15(20):7662. https://doi.org/10.3390/en15207662
Chicago/Turabian StyleAman, Aan Mohammad Nusrat, Anurita Selvarajoo, Teck Leong Lau, and Wei-Hsin Chen. 2022. "Biochar as Cement Replacement to Enhance Concrete Composite Properties: A Review" Energies 15, no. 20: 7662. https://doi.org/10.3390/en15207662
APA StyleAman, A. M. N., Selvarajoo, A., Lau, T. L., & Chen, W. -H. (2022). Biochar as Cement Replacement to Enhance Concrete Composite Properties: A Review. Energies, 15(20), 7662. https://doi.org/10.3390/en15207662