Production of Biohydrogen from Organ-Containing Waste for Use in Fuel Cells
Abstract
:1. Introduction
- About 800 million tons of woody biomass;
- About 500 million tons (by dry matter) of organic waste from agricultural production;
- Up to 70 million tons of waste from the forestry and woodworking industries;
- 60 million tons of municipal solid waste;
- Up to 10 million tons of sludge from municipal wastewater.
- The creation of highly efficient technologies for energy waste disposal and obtaining alternative fuel products based on biogas and synthesis gas;
- The production of low-carbon hydrogen for fuel cells.
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ozturka, M.; Dincer, I. A comprehensive review on power-to-gas with hydrogen options for cleaner applications. Int. J. Hydrogen Energy 2021, 46, 31511–31522. [Google Scholar] [CrossRef]
- Global Hydrogen Review. IEA: Paris, France, 2021; 224.
- Baeyens, J.; Zhang, H.; Nie, J.; Appels, L.; Dewil, R.; Ansart, R.; Deng, Y. Reviewing the potential of biohydrogen production by fermentation. In Renewable and Sustainable Energy Reviews; Elsevier: Amsterdam, The Netherlands, 2020; Volume 131, p. 10. [Google Scholar]
- Mitrova, T.; Melnikov, Y.; Chugunov, D. Vodorodnaya E’konomika—put’ k Nizkouglerodnomu Razvitiyu [Hydrogen Economy—The Way to Low-Carbon Development]. In Centr E’nergetiki Moskovskoj Shkoly’ Upravleniya SKOLKOVO [Energy Center of the Moscow School of Management SKOLKOVO]; SKOLKOVO: Moscow, Russia, 2019; p. 62. [Google Scholar]
- World_Energy_Outlook_2018. 2018; p. 661. Available online: https://www.iea.org/reports/world-energy-outlook-2018 (accessed on 24 October 2022).
- Osman Ahmed, A.O.; Deka, T.J.; Baruah, D.C.; Rooney, D. Critical challenges in biohydrogen production processes from the organic feedstocks. Biomass Convers. Biorefin. 2020, 2020, 1–9. [Google Scholar] [CrossRef]
- Silveira, S. The role of bioenergy in a circular bio-based economy. In Proceedings of the Applied Energy Symposium: MIT A+B, Boston, MA, USA, 22–24 May 2019. [Google Scholar]
- De Schoenmakere, M.; Hoogeveen, Y.; Gillabel, J.; Manshoven, S. The Circular Economy and the Bioeconomy Partners in Sustainability; European Environment Agency: Copenhagen, Denmark, 2018; p. 60.
- Popp, J.; Lakner, Z.; Harangi-Rákos, M.; Fári, M. The effect of bioenergy expansion: Food, energy, and environment. Renew. Sustain. Energy Rev. 2014, 32, 559–578. [Google Scholar] [CrossRef] [Green Version]
- Bezrukix, P.P. Spravochnik po Resursam Vozobnovlyaemy’x Istochnikov R’nergii Rossii i Mestny’m Vidam Topliva (Pokazateli po Territoriyam) [Directory of renewable energy resources in Russia and local fuels (indicators by territories)]. In IACz E’nergiya [Publishing and Analytical Center “Energia”]; Publishing and Analytical Center “Energy” (IAC “Energy”): Moscow, Russia, 2007; p. 272. [Google Scholar]
- Bioe’Nergetika Rossii v 21veke [Bioenergy of Russia in the 21st Century]; Russian Energy Agency of the Energy Ministry of Russia: Moscow, Russia, 2012; p. 37.
- Bioe’nergetika v Rossijskoj Federacii. Dorozhnaya Karta na 2019–2030 [Bioenergy in the Russian Federation. Roadmap for 2019–2030]; TP Bioenergy: Moscow, Russia, 2019; p. 28.
- An, J.; Mikhaylov, A.; Lopatin, E.; Moiseev, N.; Richter, U.H.; Varyash, I.; Dooyum, U.D.; Oganov, A.; Bertelsen, R.G. Bioenergy potential of Russia: Method of evaluating costs. Int. J. Energy Econ. Policy 2019, 9, 244–251. [Google Scholar] [CrossRef]
- Namsaraev, Z.B.; Gotovtsev, P.M.; Komova, A.V.; Vasilov, R.G. Current status and potential of bioenergy in the Russian Federation. Renew. Sustain. Energy Rev. 2018, 81, 625–634. [Google Scholar] [CrossRef]
- D’Adamo, I.; Falcone, P.M.; Huisingh, D.; Morone, P. A circular economy model based on biomethane: What are the opportunities for the municipality of Rome and beyond? Renew. Energy 2021, 163, 166–167. [Google Scholar] [CrossRef]
- Scarlat, N.; Dallem, J.F.; Fahl, F. Biogas: Developments and perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- Holubar Peter: Steuerung von Biogasanlagen. Protokoll zur Gleichnamigen Open Space Diskussionsrunde bei der 2. österreichischen Biogastagung. 2003. Available online: https://www.nachhaltigwirtschaften.at/resources/pdf/techportraitbiogas.pdf (accessed on 24 October 2022).
- Antonini, C.; Treyer, K.; Streb, A.; van der Spek, M.; Bauer, C.; Mazzotti, M. Hydrogen production from natural gas and biomethane with carbon capture and storage—A techno-environmental analysis. Sustain. Energy Fuels 2020, 4, 2967–2986. [Google Scholar] [CrossRef] [Green Version]
- IEA. Outlook for Biogas and Biomethane. Prospects for Organic Growth; World Energy Outlook Special Report; IEA: Paris, France, 2020; 93p. [Google Scholar]
- Awe, O.W.; Zhao, Y.; Nzihou, A.; Minh, D.P.; Lyczko, N. A Review of Biogas Utilisation, Purification and Upgrading Technologies: Review. Waste and Biomass Valorizatio; Springer: Cham, Switzerland, 2017; Volume 8, pp. 267–283. [Google Scholar]
- Ryckebosch, E.; Drouillon, M.; Vervaeren, H. Techniques for transformation of biogas to biomethane. Biomass Bioenergy 2011, 35, 1633–1645. [Google Scholar] [CrossRef]
- Kadam, R.; Panwar, N.L. Recent advancement in biogas enrichment and its applications. Renew. Sustain. Energy Rev. 2017, 73, 892–903. [Google Scholar] [CrossRef]
- Rosa, L.; Mazzotti, M. Potential for hydrogen production from sustainable biomass with carbon capture and storage. Renew. Sustain. Energy Rev. 2022, 157, 1–10. [Google Scholar] [CrossRef]
- Sgobbi, A.; Nijs, W.; De Migliob, R.; Chiodi, A.; Gargiulo, M.; Thiel, C. How far away is hydrogen? Its role in the medium and long-term decarbonisation of the European energy system. Int. J. Hydrogen Energy 2016, 41, 19–35. [Google Scholar] [CrossRef]
- De Gioannis, G.; Friargiu, M.; Massi, E.; Muntoni, A.; Polettini, A.; Pomi, R.; Spiga, D. Biohydrogen production from dark fermentation of cheese whey: Influence of pH. Int. J. Hydrogen Energy 2014, 39, 20930–20941. [Google Scholar] [CrossRef]
- Usman, T.M.; Banu, J.R.; Gunasekaran, M.; Kumar, G. Biohydrogen production from industrial wastewater: An overview. Bioresour. Technol. Rep. 2019, 7, 100287. [Google Scholar] [CrossRef]
- Zhu, G.; Li, J.; Liu, C.; Huang, X.; Li, L. Simultaneous production of biohydrogen and methane from soybean protein processing wastewater treatment using anaerobic baffled reactor (ABR) Desalin. Water Treat. 2013, 53, 2675–2685. [Google Scholar] [CrossRef]
- Zhu, M.J.; Lin, H.N. Biohydrogen production from waste biomass. Trends Renew. Energy 2016, 2, 54–55. [Google Scholar] [CrossRef] [Green Version]
- Efremenko, E.N.; Nikolskava, A.B.; Lyagin, I.V.; Senko, O.V.; Makhlis, I.A.; Stepanov, N.A.; Maslova, O.V.; Mamedova, F.; Varfolomeev, S.D. Production of biofuels from pretreated microalgae biomass by anaerobic fermentation with immobilized Clostridium acetobutylicum cells. Bioresour. Technol. 2012, 114, 342–348. [Google Scholar] [CrossRef]
- Efremenko, E.; Stepanov, N.; Nikolskava, A.; Senko, O.; Gudkov, D.; Spiricheva, O.; Varfolomeev, S. Immobilized Cells of Various Microorganisms in Production of Liquid Biofuels. In Book 18: European Biomass Conference and Exibition; Spitzer, J., Dallemand, J.F., Baxter, D., Ossenbrink, H., Grassi, A., Helm, P., Eds.; ETA-Florence Renewable Energies: Lyon, France, 2012; pp. 1753–1758. [Google Scholar]
- Bernhard, L.; Lukas, I.; Andreas, L.; Hans, O. Biological hydrogen methanation—A review. Bioresour. Technol. 2017, 245, 1220–1228. [Google Scholar]
- Davis, R.; Richard, O.; David, M.W.; Jerry, D.M. Biological hydrogen methanation systems—An overview of design and efficiency. Bioengineered 2019, 10, 604–634. [Google Scholar]
- Staffell, I.; Scamman, D.; Velazquez Abad, A.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shahd, N.; Warda, K.R. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 2019, 12, 463–491. [Google Scholar] [CrossRef] [Green Version]
- Kaiwena, L.; Bina, Y.; Taoa, Z. Economic analysis of hydrogen production from steam reforming process: A literature review. Energy Sources B Econ. Plan. Policy 2018, 13, 109–115. [Google Scholar] [CrossRef]
- Liguori, S.; Kian, K.; Buggy, N.; Anzelmo, B.H.; Wilcox, J. Opportunities and challenges of low-carbon hydrogen via metallic membranes. Prog. Energy Combust. Sci. 2020, 80, 23. [Google Scholar] [CrossRef]
- Fyodorov, M.P.; Maslikov, V.I.; Chusov, A.N. Model’ Uchebno-E’Ksperimental’Nogo Kompleksa Dlya Preobrazovaniya E’Nergii Biomassy’ [Model of an Educational and Experimental Complex for the Conversion of Biomass Energy]. Fundamental’ny’e Essledovaniya v Texnicheskix Universitetax. Materialy’ XII Vserossijskoj Konferencii po Problemam Nauki i Vy’sshej Shkoly’. Available online: https://www.elibrary.ru/item.asp?id=21393373 (accessed on 24 October 2022).
- Fedorov, M.P.; Cheremisin, A.V.; Maslikov, V.I. Avtomatizirovanny’j Uchebno-Nauchny’j Laboratorny’j Kompleks “Bioreaktor” Dlya Issledovaniya Processov Biorazlozheniya Tverdy’x By’tovy’x Otxodov [Automated Educational and Scientific Laboratory Complex “Bioreactor” for the Study of the Processes of Biodegradation of Solid Household Waste]. Reg. ‘Naya E’Kologiya. Available online: https://www.elibrary.ru/item.asp?id=21442850 (accessed on 24 October 2022).
- Fedorov, M.P.; Maslikov, V.I.; Chusov, A.N.; Molodczov, D.V. E’ksperimental’ny’j Kompleks Dlya Proizvodstva Vodoroda iz Organosoderzhashhix Otxodov Dlya Primeneniya v Toplivny’x E’lementax [Experimental Complex for the Production of Hydrogen from Organo-Containing waste for Use in Fuel Cells]. Nauchno-Texnicheskie Vedom. SPbGPU. Available online: https://cyberleninka.ru/article/n/eksperimentalnyy-kompleks-po-proizvodstvu-vodoroda-iz-organosoderzhaschih-othodov-dlya-primeneniya-v-toplivnyh-elementah (accessed on 24 October 2022).
- Lysikov, A.I.; Trukhan, S.N.; Okunev, A.G. Sorption enhanced hydrocarbons reforming for fuel cell powered generators. Int. J. Hydrogen Energy 2008, 33, 3061–3066. [Google Scholar] [CrossRef]
- Livshicz, A.I. Sverxproniczaemost’ Metallov po Vodorodu i Membrannoe Vy’delenie Vodoroda iz Gazovy’x Smesej [Super-Permeability of Metals by Hydrogen and Membrane Separation of Hydrogen from Gas Mixtures]. Chetvertaya Rossijskaya Konferenciya «Fizicheskie Problemy’ Vodorodnoj E’nergetiki» [The Fourth Russian Conference “Physical Problems of Hydrogen Energy”]—SPb, St. Petersburg, Russia, 2007; pp. 1–3. Available online: https://engtech.spbstu.ru/userfiles/files/articles/2013/4/8_chusov.pdf (accessed on 24 October 2022).
- Fedorov, M.P.; Zubkova, M.Y.; Thomasov, A.A.; Molodtsov, D.V.; Zelenina, N.K. Investigation of Process Direct Feed Converter Biohydrogen with Residual Methane Content In the Fuel Cell. In Proceedings of the Reports. 7th Russian Conference “Physical Problems of Hydrogen Energy”. St. Petersburg, Russia, 2011. FTI. Joffe. Available online: https://www.scientific.net/AMR.941-944.2107 (accessed on 24 October 2022).
- Maslikov, V.I.; Chusov, A.N.; Negulyaeva, E.Y.; Cheremisin, A.V.; Molodczov, D.V. Laboratorny’e Issledovaniya Razlozheniya Otxodov v Bioreaktorax Dlya Ocenki Biogazovogo Potenciala i Vy’bora Meropri-yatij po Rekul’tivacii Poligonov TBO [Laboratory Studies of Waste Decomposition in Bioreactors to Assess the Biogas Potential and Select Measures for the Reclamation of Landfills]. Nauchno-Texnicheskie Vedom. SPbGPU. Available online: https://www.elibrary.ru/item.asp?id=17937554 (accessed on 24 October 2022).
- Zhazhkov, V.V.; Chusov, A.N.; Politaeva, N.A. Research and assessment of biogas composition at the TKO running and recommendations for its use. Ecol. Ind. Russ. 2021, 25, 4–9. [Google Scholar] [CrossRef]
- Politaeva, N.; Smyatskaya, Y.; Al Afif, R.; Pfeifer, C.; Mukhametova, L. Development of Full-Cycle Utilization of Chlorella sorokiniana Microalgae Biomass for Environmental and Food Purposes. Energies 2020, 13, 2648. [Google Scholar] [CrossRef]
- Lysikov, A.I.; Salanov, A.N.; Okunev, A.G. Change of CO2 carrying capacity of CaO in Isothermal Recarbonation-Decomposition Cycles. Ind. Eng. Chem. Res. 2007, 46, 4633–4638. [Google Scholar] [CrossRef]
- Lysikov, A.I.; Okunev, A.G.; Molodtsov, D.V.; Maslikov, V.I. Novel approach for municipal solid waste biogas reforming into hydrogen for fuel cell powered generators. In Proceedings of the XIX International Conference of Chemical Reactors “Chemreactor-19”, Vienna, Austria, 5–9 September 2010; pp. 192–193. [Google Scholar]
- Chusov, A.N.; Zubkova, M.Y.; Korablev, V.V.; Maslikov, V.I.; Molodczov, D.V. Texnologiya Ispol’zovaniya v Toplivny’x e’lementax Vodorodosoderzhashhej Smesi na Osnove Biogazov Dlya E’nergoobespecheniya Avtonomny’x Potrebitelej [Technology of Using Hydrogen-Containing Mixture Based on Biogas in Fuel Cells for Energy Supply of Autonomous Consumers]. Nauchno-Texnicheskie Vedom. SPbGPU. Available online: https://www.elibrary.ru/item.asp?id=21065414 (accessed on 24 October 2022).
- Zubkova, M.Y.; Maslikov, V.I.; Molodtsov, D.V.; Chusov, A.N. Experimental research of hydrogenous fuel production from biogas for usage in fuel cells of autonomous power supply systems. Adv. Mater. Res. 2014, 941–944, 2107–2111. [Google Scholar] [CrossRef]
Component | Agricultural Waste | Sewage Sludge | Municipal Solid Waste | Natural Gas |
---|---|---|---|---|
Methane | 50–70% | 55–65% | 45–55% | 93–98% |
Carbon | 25–40% | 30–40% | 30–40% | 1% |
Nitrogen dioxide | <3% | <4% | 5–15% | 1% |
Hydrogen sulfide | up to 4000 ppm | up to 1000 ppm | 50–300 ppm | – |
Ammonia | 70 ppm | – | – | – |
Siloxanes | Traces | <6 mg/m3 | – | – |
Nominal hydrogen capacity | 43 L/h |
The working pressure of methane | 1.3 atm. (gauge) |
The pressure of the hydrogen-containing gas | 0.6 atm. (gauge) |
Humidity of hydrogen-containing gas (absolute) | <5% |
Volume fraction of hydrogen | >96% |
Cell Name | Platinum Content, mg/cm2 | Open-Circuit Voltage, mV | Rated Power during Cycling, mW | Rated Power Under Stationary Conditions, mW | Ohmic Resistance, Ohm∙cm2 |
---|---|---|---|---|---|
E-Tek_12W_MEA_Pol_1 | 6.25 | 940 | 130 | E-Tek_12W_MEA_Pol_1 | 6.25 |
No. of Mixture | Inlet Gas Supply, L/h | Outlet Gas Flow, L/h | Composition of Produced Hydrogen-Containing gas, Vol%. Uncertainty of Data is 5%. | |||||
---|---|---|---|---|---|---|---|---|
H2 | CH4 | CO | CO2 | H2O | N2 | |||
I | 10.9 | 42.6 | 98.0 | 1.0 | Less than 0.003 | Less than 0.01 | 0.98 | 0 |
I | 6.52 | 25.7 | 97.3 | 1.7 | Less than 0.003 | 0.02 | 0.98 | 0 |
I | 3.74 | 13.2 | 98.0 | 1.0 | Less than 0.003 | Less than 0.01 | 0.95 | 0 |
II * | 10.9 | 16.8 | 94.8 | 0.8 | Less than 0.003 | 0.04 | 1.09 | 3.3 |
II | 10.9 | 16.8 | 95.3 | 0.2 | Less than 0.003 | 0.04 | 1.16 | 3.3 |
III | 10.98 | 20.4 | 93.3 | 0.5 | Less than 0.003 | 0.03 | 1.11 | 5.3 |
III | 6.58 | 12.9 | 93.5 | 0.3 | Less than 0.003 | 0.03 | 1.08 | 5.1 |
III | 3.78 | 6.9 | 93.5 | 0.3 | Less than 0.003 | 0.02 | 1.05 | 5.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedorov, M.; Maslikov, V.; Korablev, V.; Politaeva, N.; Chusov, A.; Molodtsov, D. Production of Biohydrogen from Organ-Containing Waste for Use in Fuel Cells. Energies 2022, 15, 8019. https://doi.org/10.3390/en15218019
Fedorov M, Maslikov V, Korablev V, Politaeva N, Chusov A, Molodtsov D. Production of Biohydrogen from Organ-Containing Waste for Use in Fuel Cells. Energies. 2022; 15(21):8019. https://doi.org/10.3390/en15218019
Chicago/Turabian StyleFedorov, Mikhail, Vladimir Maslikov, Vadim Korablev, Natalia Politaeva, Aleksandr Chusov, and Dmitriy Molodtsov. 2022. "Production of Biohydrogen from Organ-Containing Waste for Use in Fuel Cells" Energies 15, no. 21: 8019. https://doi.org/10.3390/en15218019
APA StyleFedorov, M., Maslikov, V., Korablev, V., Politaeva, N., Chusov, A., & Molodtsov, D. (2022). Production of Biohydrogen from Organ-Containing Waste for Use in Fuel Cells. Energies, 15(21), 8019. https://doi.org/10.3390/en15218019