Recent Progress in Metal-Organic Framework-Derived Chalcogenides (MX; X = S, Se) as Electrode Materials for Supercapacitors and Catalysts in Fuel Cells
Abstract
:1. Introduction
1.1. Characterization of the Electrodes and Supercapacitors’ Performances
1.2. Characterization of the Catalysts and Fuel Cells’ Performances
2. Metal Sulfides in Supercapacitors
Elemental Map
No. | Electrode | Sulfurization Method | Electrolyte | Capacitance/Capacity | Scan Rate/Current Density | Potential Window | Cyclic Stability | Specific Surface Area | Ref |
---|---|---|---|---|---|---|---|---|---|
1 | NiCoS/CC | Ion exchange process | 2 M KOH | 1653 F g−1 | 1 A g−1 | 0–0.6 V | 84% (3000 cycles) | - | [41] |
2 | NiCo2S4 | Ion exchange process (TAA as sulfurizing agent) | 6 M KOH | 939 C g−1 | 1 A g−1 | From −0.1 to 0.6 V | 92.8% (5000 cycles) | 79.3 m2 g−1 | [49] |
3 | CoS2 (Anode) | Ion exchange process (TAA as sulfurizing agent) followed by annealing in N2 at 350 °C | 6 M KOH | 343.5 C g−1 | 1 A g−1 | From −1 to 0 V | - | - | [49] |
4 | Ni(OH)2@ZnCoS-NSs | Hydrothermal anion-exchange reaction | 2 M KOH | 2730 F g−1 (8.1 F cm−2) | 3 mA cm−2 | From 0 to 0.45 V | 87% (10,000 cycles) | - | [42] |
5 | VN@ZnCoS-NS (Anode) | Hydrothermal anion-exchange reaction | 2 M KOH | 1.35 F cm−2 | 3 mA cm−2 | From −1.2 to −0.2 V | 80% (10,000 cycles) | - | [42] |
6 | CC/CNWAs@Ni@Co-Ni2S4 | Electrochemical co-deposition | 1 M KOH | 3163 F g−1 | 1 A g−1 | From −0.2 to 0.6 V | 93.0% (10,000 cycles) | - | [44] |
7 | CC@CoO@S-Co3O4 | Hydrothermal reaction with thioacetamide | 2 M KOH | 1013 mF cm−2 | 1 mA cm−2 | From 0 to 0.5 V | ∼67.7% (5000 cycles) | 24.7 m2 g−1 | [53] |
8 | CuCo2S4 NS | Ion-exchange process. | 2 M KOH | ~409.2 mA h g−1 | 3 mA cm−2 | From −0.2 to 0.7 V | ~94.2% (10,000 cycles) | ~132.92 m2 g−1 | [45] |
9 | CoSx/C-2 | Solvothermal method | 1 M KOH | 618.4 F g−1 | 2 A g−1 | From 0 to 0.5 V | ca. 100% (10,000 cycles) | - | [46] |
10 | Cu7S4/C | Calcining-hydrothermal process | 1 M H2SO4 | 229.6 F g−1 (57.4 mAh g−1) | 1 A g−1 | From −0.2 to 0.7 V | 78.1% (3000 cycles) | - | [54] |
11 | NiCo2S4@C | Simultaneous carbonization and sulfurization of the MOF in the presence of sulfur source under inert atmosphere at relatively high temperatures | 1 M KOH | 948.9 C g−1 | 1 A g−1 | From 0 to 0.6 V | 71.4% (3000 cycles) | - | [47] |
12 | PPy/Cu9S8@C-CC | Calcination–vulcanization method | 1M KCL | 270.72 F g−1 | 10 mV/s | From −0.4 to 0.5 V | 80.36% (3000 cycles) | - | [43] |
13 | rGO/Co9S8 | Hydrothermal method | 1 M KOH | 575.9 F g−1 | 2 A g−1 | From 0 to 0.45 V | 92.0% (9000 cycles) | - | [48] |
14 | NixSy@CoS | Obtained by adding TAA at mild room temperature without further thermal-treatment | 6 M KOH | 2291 F g−1 | 1 A g−1 | From −0.1 to 0.25 V | 85.2% (2000 cycles) | 180.7 m2 g−1 | [55] |
15 | Co9S8@N−C@MoS2 | Hydrothermal method | 3 M KOH | 410.0 F g−1 | 10 A g−1 | From 0 to 0.6 V | 101.7% (20,000 cycles) | - | [50] |
16 | NiCoMn-S | Hydrothermal method | 1 M KOH | 2098.2 F g−1 | 1 A g−1 | From 0 to 0.7 V | 71.6% (4000 cycles) | 94.9 m2 g−1 | [52] |
No. | Positive Electrode Material | Negative Electrode Material | Electrolyte | Capacitance/Capacity | Scan Rate/Current Density | Potential Window | Energy Density | Power Density | Cyclic Stability | Ref |
---|---|---|---|---|---|---|---|---|---|---|
1 | NiCoS/CC | Activated carbon | 2 M KOH | 128 F g−1 | 0.5 A g−1 | From 0 to 1.5 V | 40 Wh kg−1 | 379 W kg−1 | 84% (7000 cycles) | [41] |
2 | NiCo2S4 | CoS2 | 2 M KOH | 287 C g−1 | 1 A g−1 | From 0 to 1.4 V | 55.8 Wh kg−1 | 695.2 W kg−1 | 91.9% (5000 cycles) | [49] |
3 | Ni(OH)2@ZnCoS-NSs | VN@ZnCoS-NS | PVA/KOH | 210.7 F g−1 | 0.5 A g−1 | From 0 to 1.6 V | 75 W h kg−1 | 0.4 kW kg−1 | 82% (10,000 cycles) | [42] |
4 | CC/CNWAs@Ni@Co-Ni2S4 | Activated carbon | 1 M KOH | 151.3 F g−1 | 1 A g−1 | From 0 to 1.6 V | 53.8 Wh kg−1 | 801 W kg−1 | 90.1% (10,000 cycles) | [44] |
5 | CC@CoO@S-Co3O4 | MOF-derived carbon | PVA/KOH | 1.99 F cm−3 | 2 mA cm−2 | From 0 to 1.5 V | 0.71 mW h cm−3 | 21.3 mW cm−3 | 87.9% (5000 cycles) | [53] |
6 | CuCo2S4 NS | Fe2O3/NG | PVA/KOH | ~2.1 mA h cm−3 | 3 mA cm−2 | From 0 to 1.6 V | ~89.6 Wh kg−1 | ~663 W kg−1 | ~91.5% (10,000 cycles) | [45] |
7 | NiCo2S4@C | Activated carbon | 1 M KOH | 123.3 F g−1 | 1 A g−1 | From 0 to 1.6 V | 43.8 Wh kg−1 | 799.1 W kg−1 | 81.9% (5000 cycles) | [47] |
8 | NiCoMn-S | Activated carbon | 1 M KOH | 124.5 F g−1 | 1 A g−11 | From 0 to 1.7 V | 50.0 Wh kg−1 | 850.0 W kg−1 | 73.6% (6000 cycles) | [52] |
3. Metal Selenides in Supercapacitors
No. | Electrode | Selenization Method | Electrolyte | Capacitance/Capacity | Scan Rate/Current Density | Potential Window | Cyclic Stability | Specific Surface Area | Ref |
---|---|---|---|---|---|---|---|---|---|
1 | CoSe2/NC-400 | Annealing at high temperature in the presence of Se powder | 6 M KOH | 120.2 mA h g−1 | 1 A g−1 | From 0 to 0.4 V | 92% (10,000 cycles) | 74.6 m2 g−1 | [79] |
2 | CoSe2/CNT | Hydrothermal method | 3 M KOH | - | - | From −0.2 to 0.3 V | - | 58.3 m2 g−1 | [58] |
3 | (CuCo)Se/NC-0.5 | Direct selenization in the presence of Se powder under inert atmosphere at high temperature | 2 M KOH | 121.4 C g−1 | 1 A g−1 | From −0.1 to 0.6 V | 130% (1200 cycles) | - | [67] |
4 | Co–Mo–Se | Hydrothermal process | 6 M KOH | 221.7 mAh g−1 | 1 A g−1 | From 0 to 0.6 V | 95% (8000 cycles) | 64.5 m2 g−1 | [69] |
5 | MNSe@NF | Hydrothermal method | 6 M KOH | 325.6 mA h g−1 (1172.16 C g−1) | 2 A g−1 | From 0 to 0.7 V | 96.8% (15,000 cycles) | ∼101.8 m2 g−1 | [72] |
6 | (Ni0.33Co0.67)Se2 | Hydrothermal selenization method | 3 M KOH | 827.9 F g−1 | 1 A g−1 | From 0 to 0.6 V | Calculated 113.6% (2000 cycles) | 23.82 m2 g−1 | [68] |
7 | H-Ni-Co-Se | Hydrothermal selenization | - | 175 F g−1 | 1 A g−1 | From −0.2 to 0.6 V | 89.3% (2000 cycles) | 20.77 m2 g−1 | [57] |
8 | Zn–Ni–Se/Ni(OH)2 | Hydrothermal selenization | 6 M KOH | 1632.8 F g−1 | 2 A g−1 | From 0 to 0.6 V | 85.4% (2000 cycles) | - | [73] |
9 | Mo-doped LDHs@MOF-Se | Selenization treatment of the MOF arrays in a Se atmosphere | KOH | 5.16 C cm−2 | 2 mA cm−2 | From 0 to 0.6 V | 81.4% (3000 cycles) | - | [74] |
10 | Se0.6@CPNA-ACFT | Selenium infiltration (at high temperature in the presence of Se powder. | 3 M KOH | 302 mAh g−1 (∼0.602 mAh cm−2) | 1 mA cm−2 | From −0.1 to 0.6 V | ∼93.8% (10,000 cycles) | 51.7 m2 g−1 | [78] |
No. | Positive Electrode Material | Negative Electrode Material | Electrolyte | Capacitance/Capacity | Scan Rate/Current Density | Potential Window | Energy Density | Power Density | Cyclic Stability | Ref |
---|---|---|---|---|---|---|---|---|---|---|
1 | CoSe2/NC-400 | Activated carbon | 6 M KOH | 58.4 mA h g−1 | 1 A g−1 | From 0 to 1.4 V | 40.9 Wh kg−1 | 980 W kg | 90.2% (10,000 cycles) | [79] |
2 | CoSe2/CNT | FeSe2/CNT | - | - | - | From 0 to 1.8 V | 0.25 mWh cm−2 | 53.06 mW cm−2 | ~85.29% (4000 cycles) | [58] |
3 | (CuCo)Se/NC-0.5 | Activated carbon | - | - | - | From 0 to 1.6 V | ~16.3 Wh kg−1 | 155.3 W kg−1 | 96% (5000 cycles) | [67] |
4 | Co–Mo–Se | Activated carbon | KOH/PVP | 57.7 mAh g−1 | - | From 0 to 1.6 V | 44.7 Wh kg−1 | 1094 W kg−1 | 90.7% (8000 cycles) | [69] |
5 | MNSe@NF | Activated carbon | cellulose paper/6 M KOH | 62.4 mA h g−1 224.65 C g−1 | 1 A g−1 | From 0 to 1.7 V | 66.1 Wh kg−1 | 858.45 W kg−1 | 94.1% (15,000 cycles) | [72] |
6 | (Ni0.33Co0.67)Se2 | Active carbon | - | 81.9 F g−1 | 1 A g−1 | From 0 to 1.6 V | 29.1 Wh kg−1 | 800 W kg−1 | - | [68] |
7 | Mo-doped LDHs@MOF-Se | Activated carbon | KOH | 132.0 F g−1 | 1 A g−1 | From 0 to 1.5 V | 41.3 Wh kg−1 | 750.0 W kg−1 | 94% (10,000 cycles) | [74] |
8 | Se0.6@CPNA-ACFT | FeS2@rGO-ECFT | PVA/KOH | ∼88 mAh g−1 ∼1.81 mAh cm−3 | 2 mA cm−2 | From 0 to 1.6 V | ∼70.6 Wh kg−1 | 335 W kg−1 | 92.4% (10,000 cycles) | [78] |
4. Sulfur-Doped MOF-Derived Catalysts for Fuel Cells Application
5. Future Perspective
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, A.; Chabot, V.; Zhang, J. Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications; Taylor & Francis: Abingdon, UK, 2013. [Google Scholar]
- Olabi, A.G.; Wilberforce, T.; Sayed, E.T.; Abo-Khalil, A.G.; Maghrabie, H.M.; Elsaid, K.; Abdelkareem, M.A. Battery energy storage systems and SWOT (strengths, weakness, opportunities, and threats) analysis of batteries in power transmission. Energy 2022, 254, 123987. [Google Scholar] [CrossRef]
- Shao, Y.; El-Kady, M.F.; Sun, J.; Li, Y.; Zhang, Q.; Zhu, M.; Wang, H.; Dunn, B.; Kaner, R.B. Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 2018, 118, 9233–9280. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.L.; Zhao, X. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531. [Google Scholar] [CrossRef]
- Zhai, Y.; Dou, Y.; Zhao, D.; Fulvio, P.F.; Mayes, R.T.; Dai, S. Carbon materials for chemical capacitive energy storage. Adv. Mater. 2011, 23, 4828–4850. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Sánchez, B.M.; Dobson, P.J.; Grant, P.S. The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 2011, 3, 839–855. [Google Scholar] [CrossRef] [PubMed]
- Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597–1614. [Google Scholar] [CrossRef] [Green Version]
- Bahaa, A.; Abdelkareem, M.A.; Al Naqbi, H.; Mohamed, A.Y.; Yousef, B.A.A.; Sayed, E.T.; Chae, K.-J.; Al-Asheh, S.; Olabi, A.G. Structural engineering and surface modification of nickel double hydroxide nanosheets for all-solid-state asymmetric supercapacitors. J. Energy Storage 2022, 45, 103720. [Google Scholar] [CrossRef]
- Bahaa, A.; Abdelkareem, M.A.; Al Naqbi, H.; Yousef Mohamed, A.; Shinde, P.A.; Yousef, B.A.A.; Sayed, E.T.; Alawadhi, H.; Chae, K.-J.; Al-Asheh, S.; et al. High energy storage quasi-solid-state supercapacitor enabled by metal chalcogenide nanowires and iron-based nitrogen-doped graphene nanostructures. J. Colloid Interface Sci. 2022, 608, 711–719. [Google Scholar] [CrossRef]
- Choi, K.M.; Jeong, H.M.; Park, J.H.; Zhang, Y.-B.; Kang, J.K.; Yaghi, O.M. Supercapacitors of nanocrystalline metal–organic frameworks. ACS Nano 2014, 8, 7451–7457. [Google Scholar] [CrossRef]
- Sun, L.; Campbell, M.G.; Dincă, M. Electrically conductive porous metal–organic frameworks. Angew. Chem. Int. Ed. 2016, 55, 3566–3579. [Google Scholar] [CrossRef]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Liu, J.; Horn, M.; Motta, N.; Hu, M.; Li, Y. Recent advancements in metal organic framework based electrodes for supercapacitors. Sci. China Mater. 2018, 61, 159–184. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Li, G.; Zhao, L. Ni-Co-S/Co(OH)2 nanocomposite for high energy density all-solid-state asymmetric supercapacitors. Chem. Eng. J. 2018, 336, 602–611. [Google Scholar] [CrossRef]
- Shinde, P.A.; Abdelkareem, M.A.; Sayed, E.T.; Elsaid, K.; Olabi, A.-G. Metal Organic Frameworks (MOFs) in Supercapacitors. In Encyclopedia of Smart Materials; Olabi, A.-G., Ed.; Elsevier: Oxford, UK, 2022; pp. 414–423. [Google Scholar]
- Abdelkareem, M.A.; Abbas, Q.; Mouselly, M.; Alawadhi, H.; Olabi, A.G. High-performance effective metal–organic frameworks for electrochemical applications. J. Sci. Adv. Mater. Devices 2022, 7, 100465. [Google Scholar] [CrossRef]
- Wang, D.-G.; Liang, Z.; Gao, S.; Qu, C.; Zou, R. Metal-organic framework-based materials for hybrid supercapacitor application. Coord. Chem. Rev. 2020, 404, 213093. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, H.; Mei, H.; Sun, D. Recent progress in metal-organic framework-based supercapacitor electrode materials. Coord. Chem. Rev. 2020, 420, 213438. [Google Scholar] [CrossRef]
- Zhao, R.; Liang, Z.; Zou, R.; Xu, Q. Metal-organic frameworks for batteries. Joule 2018, 2, 2235–2259. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Kong, L.; Li, T.; Zhang, Q. A review of transition metal chalcogenide/graphene nanocomposites for energy storage and conversion. Chin. Chem. Lett. 2017, 28, 2180–2194. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Karuppasamy, K.; Durai, G.; Rana, A.U.H.S.; Arunachalam, P.; Sangeetha, K.; Kuppusami, P.; Kim, H.-S. Recent advances in metal chalcogenides (MX; X = S, Se) nanostructures for electrochemical supercapacitor applications: A brief review. Nanomaterials 2018, 8, 256. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.; Zhu, C.; Luo, J.; Zeng, Z.; Guan, C.; Ng, C.F.; Zhang, H.; Fan, H.J. Synthesis of free-standing metal sulfide nanoarrays via anion exchange reaction and their electrochemical energy storage application. Small 2014, 10, 766–773. [Google Scholar] [CrossRef]
- Huang, Y.; Quan, L.; Liu, T.; Chen, Q.; Cai, D.; Zhan, H. Construction of MOF-derived hollow Ni–Zn–Co–S nanosword arrays as binder-free electrodes for asymmetric supercapacitors with high energy density. Nanoscale 2018, 10, 14171–14181. [Google Scholar] [CrossRef]
- Tao, K.; Han, X.; Cheng, Q.; Yang, Y.; Yang, Z.; Ma, Q.; Han, L. A zinc cobalt sulfide nanosheet array derived from a 2D bimetallic metal–organic frameworks for high-performance supercapacitors. Chem.–A Eur. J. 2018, 24, 12584–12591. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Zhu, C.; Song, J.; Du, D.; Lin, Y. Metal-organic framework-derived non-precious metal nanocatalysts for oxygen reduction reaction. Adv. Energy Mater. 2017, 7, 1700363. [Google Scholar] [CrossRef]
- Alnaqbi, H.; Sayed, E.T.; Al-Asheh, S.; Bahaa, A.; Alawadhi, H.; Abdelkareem, M.A. Current progression in graphene-based membranes for low temperature fuel cells. Int. J. Hydrogen Energy 2022, in press. [CrossRef]
- Abdelkareem, M.A.; Sayed, E.T.; Nakagawa, N. Significance of diffusion layers on the performance of liquid and vapor feed passive direct methanol fuel cells. Energy 2020, 209, 118492. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; Allagui, A.; Sayed, E.T.; El Haj Assad, M.; Said, Z.; Elsaid, K. Comparative analysis of liquid versus vapor-feed passive direct methanol fuel cells. Renew. Energy 2019, 131, 563–584. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; Sayed, E.T.; Alawadhi, H.; Alami, A.H. Synthesis and testing of cobalt leaf-like nanomaterials as an active catalyst for ethanol oxidation. Int. J. Hydrogen Energy 2020, 45, 17311–17319. [Google Scholar] [CrossRef]
- Sayed, E.T.; Abdelkareem, M.A.; Bahaa, A.; Eisa, T.; Alawadhi, H.; Al-Asheh, S.; Chae, K.-J.; Olabi, A.G. Synthesis and performance evaluation of various metal chalcogenides as active anodes for direct urea fuel cells. Renew. Sustain. Energy Rev. 2021, 150, 111470. [Google Scholar] [CrossRef]
- Sayed, E.T.; Alawadhi, H.; Elsaid, K.; Olabi, A.G.; Adel Almakrani, M.; Bin Tamim, S.T.; Alafranji, G.H.M.; Abdelkareem, M.A. A Carbon-Cloth Anode Electroplated with Iron Nanostructure for Microbial Fuel Cell Operated with Real Wastewater. Sustainability 2020, 12, 6538. [Google Scholar] [CrossRef]
- Wilberforce, T.; Abdelkareem, M.A.; Elsaid, K.; Olabi, A.G.; Sayed, E.T. Role of carbon-based nanomaterials in improving the performance of microbial fuel cells. Energy 2022, 240, 122478. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; Wilberforce, T.; Elsaid, K.; Sayed, E.T.; Abdelghani, E.A.; Olabi, A. Transition metal carbides and nitrides as oxygen reduction reaction catalyst or catalyst support in proton exchange membrane fuel cells (PEMFCs). Int. J. Hydrogen Energy 2021, 46, 23529–23547. [Google Scholar] [CrossRef]
- Al-Dhaifallah, M.; Abdelkareem, M.A.; Rezk, H.; Alhumade, H.; Nassef, A.M.; Olabi, A.G. Co-decorated reduced graphene/titanium nitride composite as an active oxygen reduction reaction catalyst with superior stability. Int. J. Energy Res. 2021, 45, 1587–1598. [Google Scholar] [CrossRef]
- Liew, K.B.; Daud, W.R.W.; Ghasemi, M.; Leong, J.X.; Lim, S.S.; Ismail, M. Non-Pt catalyst as oxygen reduction reaction in microbial fuel cells: A review. Int. J. Hydrog. Energy 2014, 39, 4870–4883. [Google Scholar] [CrossRef]
- Karim, N.; Kamarudin, S. An overview on non-platinum cathode catalysts for direct methanol fuel cell. Appl. Energy 2013, 103, 212–220. [Google Scholar] [CrossRef]
- Mohamed, A.M.; Ramadan, M.; Allam, N.K. Recent advances on zeolitic imidazolate-67 metal-organic framework-derived electrode materials for electrochemical supercapacitors. J. Energy Storage 2021, 34, 102195. [Google Scholar] [CrossRef]
- Ratha, S.; Samantara, A.K. Supercapacitor: Instrumentation, Measurement and Performance Evaluation Techniques; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Li, W.; Zhang, B.; Lin, R.; Ho-Kimura, S.; He, G.; Zhou, X.; Hu, J.; Parkin, I.P. A dendritic nickel cobalt sulfide nanostructure for alkaline battery electrodes. Adv. Funct. Mater. 2018, 28, 1705937. [Google Scholar] [CrossRef] [Green Version]
- Xin, L.; Li, R.; Lu, Z.; Liu, Q.; Chen, R.; Li, J.; Liu, J.; Wang, J. Hierarchical metal-organic framework derived nitrogen-doped porous carbon by controllable synthesis for high performance supercapacitors. J. Electroanal. Chem. 2018, 813, 200–207. [Google Scholar] [CrossRef]
- Liu, T.; Liu, J.; Zhang, L.; Cheng, B.; Yu, J. Construction of nickel cobalt sulfide nanosheet arrays on carbon cloth for performance-enhanced supercapacitor. J. Mater. Sci. Technol. 2020, 47, 113–121. [Google Scholar] [CrossRef]
- Sun, W.; Du, Y.; Wu, G.; Gao, G.; Zhu, H.; Shen, J.; Zhang, K.; Cao, G. Constructing metallic zinc–cobalt sulfide hierarchical core–shell nanosheet arrays derived from 2D metal–organic-frameworks for flexible asymmetric supercapacitors with ultrahigh specific capacitance and performance. J. Mater. Chem. A 2019, 7, 7138–7150. [Google Scholar] [CrossRef]
- Liu, Y.-P.; Qi, X.-H.; Li, L.; Zhang, S.-H.; Bi, T. MOF-derived PPy/carbon-coated copper sulfide ceramic nanocomposite as high-performance electrode for supercapacitor. Ceram. Int. 2019, 45, 17216–17223. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, J.; Xiao, Y.; Peng, Z.; Yuan, K.; Tan, L.; Chen, Y. Hierarchical nickel cobalt sulfide nanosheet on MOF-derived carbon nanowall arrays with remarkable supercapacitive performance. Carbon 2019, 147, 146–153. [Google Scholar] [CrossRef]
- Bahaa, A.; Balamurugan, J.; Kim, N.H.; Lee, J.H. Metal–organic framework derived hierarchical copper cobalt sulfide nanosheet arrays for high-performance solid-state asymmetric supercapacitors. J. Mater. Chem. A 2019, 7, 8620–8632. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, P.; Li, C.; Huang, Q.; Wang, J.; Zhu, Y.; Fu, L.; Chen, Y.; Wu, Y. CoS x/C hierarchical hollow nanocages from a metal–organic framework as a positive electrode with enhancing performance for aqueous supercapacitors. RSC Adv. 2019, 9, 11253–11262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, W.; Liu, Y.; Xu, F.; Xia, Q.; Du, G.; Fan, Z.; Chen, N. Metal-organic framework derived carbon-coated spherical bimetallic nickel-cobalt sulfide nanoparticles for hybrid supercapacitors. Electrochim. Acta 2021, 385, 138433. [Google Scholar] [CrossRef]
- Wang, P.; Li, C.; Wang, W.; Wang, J.; Zhu, Y.; Wu, Y. Hollow Co9S8 from metal organic framework supported on rGO as electrode material for highly stable supercapacitors. Chin. Chem. Lett. 2018, 29, 612–615. [Google Scholar] [CrossRef]
- Guo, D.; Song, X.; Tan, L.; Ma, H.; Pang, H.; Wang, X.; Zhang, L. Metal–organic framework template-directed fabrication of well-aligned pentagon-like hollow transition-metal sulfides as the anode and cathode for high-performance asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 42621–42629. [Google Scholar] [CrossRef]
- Hou, X.; Zhang, Y.; Dong, Q.; Hong, Y.; Liu, Y.; Wang, W.; Shao, J.; Si, W.; Dong, X. Metal organic framework derived core–shell structured Co9S8@ N–C@ MoS2 nanocubes for supercapacitor. ACS Appl. Energy Mater. 2018, 1, 3513–3520. [Google Scholar] [CrossRef]
- Bissett, M.A.; Kinloch, I.A.; Dryfe, R.A. Characterization of MoS2–graphene composites for high-performance coin cell supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 17388–17398. [Google Scholar] [CrossRef]
- Kang, C.; Ma, L.; Chen, Y.; Fu, L.; Hu, Q.; Zhou, C.; Liu, Q. Metal-organic framework derived hollow rod-like NiCoMn ternary metal sulfide for high-performance asymmetric supercapacitors. Chem. Eng. J. 2022, 427, 131003. [Google Scholar] [CrossRef]
- Dai, S.; Yuan, Y.; Yu, J.; Tang, J.; Zhou, J.; Tang, W. Metal–organic framework-templated synthesis of sulfur-doped core–sheath nanoarrays and nanoporous carbon for flexible all-solid-state asymmetric supercapacitors. Nanoscale 2018, 10, 15454–15461. [Google Scholar] [CrossRef]
- Li, L.; Liu, Y.; Han, Y.; Qi, X.; Li, X.; Fan, H.; Meng, L. Metal-organic framework-derived carbon coated copper sulfide nanocomposites as a battery-type electrode for electrochemical capacitors. Mater. Lett. 2019, 236, 131–134. [Google Scholar] [CrossRef]
- Gao, R.; Zhang, Q.; Soyekwo, F.; Lin, C.; Lv, R.; Qu, Y.; Chen, M.; Zhu, A.; Liu, Q. Novel amorphous nickel sulfide@ CoS double-shelled polyhedral nanocages for supercapacitor electrode materials with superior electrochemical properties. Electrochim. Acta 2017, 237, 94–101. [Google Scholar] [CrossRef]
- Li, L.; Zhao, J.; Zhu, Y.; Pan, X.; Wang, H.; Xu, J. Bimetallic Ni/Co-ZIF-67 derived NiCo2Se4/N-doped porous carbon nanocubes with excellent sodium storage performance. Electrochim. Acta 2020, 353, 136532. [Google Scholar] [CrossRef]
- Tan, L.; Guo, D.; Chu, D.; Yu, J.; Zhang, L.; Yu, J.; Wang, J. Metal organic frameworks template-directed fabrication of hollow nickel cobalt selenides with pentagonal structure for high-performance supercapacitors. J. Electroanal. Chem. 2019, 851, 113469. [Google Scholar] [CrossRef]
- Wang, Q.; Ran, X.; Shao, W.; Miao, M.; Zhang, D. High performance flexible supercapacitor based on metal-organic-framework derived CoSe2 nanosheets on carbon nanotube film. J. Power Sources 2021, 490, 229517. [Google Scholar] [CrossRef]
- Banerjee, A.; Bhatnagar, S.; Upadhyay, K.K.; Yadav, P.; Ogale, S. Hollow Co0. 85Se nanowire array on carbon fiber paper for high rate pseudocapacitor. ACS Appl. Mater. Interfaces 2014, 6, 18844–18852. [Google Scholar] [CrossRef]
- Li, J.; Yan, D.; Lu, T.; Yao, Y.; Pan, L. An advanced CoSe embedded within porous carbon polyhedra hybrid for high performance lithium-ion and sodium-ion batteries. Chem. Eng. J. 2017, 325, 14–24. [Google Scholar] [CrossRef]
- Kirubasankar, B.; Murugadoss, V.; Angaiah, S. Hydrothermal assisted in situ growth of CoSe onto graphene nanosheets as a nanohybrid positive electrode for asymmetric supercapacitors. RSC Adv. 2017, 7, 5853–5862. [Google Scholar] [CrossRef] [Green Version]
- Kong, D.; Wang, H.; Lu, Z.; Cui, Y. CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2014, 136, 4897–4900. [Google Scholar] [CrossRef]
- Chen, T.; Li, S.; Wen, J.; Gui, P.; Fang, G. Metal–organic framework template derived porous CoSe2 nanosheet arrays for energy conversion and storage. ACS Appl. Mater. Interfaces 2017, 9, 35927–35935. [Google Scholar] [CrossRef]
- Hong, W.; Zhang, J. Enhanced electrochemical performance of hollow Cu-Co selenide for hybrid supercapacitor applications. Ionics 2020, 26, 2011–2020. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, R.; Sun, S.; Wu, X. Facile synthesis of nickel-cobalt selenide nanoparticles as battery-type electrode for all-solid-state asymmetric supercapacitors. J. Colloid Interface Sci. 2019, 549, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Kirubasankar, B.; Murugadoss, V.; Lin, J.; Ding, T.; Dong, M.; Liu, H.; Zhang, J.; Li, T.; Wang, N.; Guo, Z. In situ grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors. Nanoscale 2018, 10, 20414–20425. [Google Scholar] [CrossRef]
- Sun, P.; Zhang, J.; Huang, J.; Wang, L.; Wang, P.; Cai, C.; Lu, M.; Yao, Z.; Yang, Y. Bimetallic MOF-derived (CuCo) Se nanoparticles embedded in nitrogen-doped carbon framework with boosted electrochemical performance for hybrid supercapacitor. Mater. Res. Bull. 2021, 137, 111196. [Google Scholar] [CrossRef]
- Quan, L.; Liu, T.; Yi, M.; Chen, Q.; Cai, D.; Zhan, H. Construction of hierarchical nickel cobalt selenide complex hollow spheres for pseudocapacitors with enhanced performance. Electrochim. Acta 2018, 281, 109–116. [Google Scholar] [CrossRef]
- Miao, C.; Zhou, C.; Wang, H.-E.; Zhu, K.; Ye, K.; Wang, Q.; Yan, J.; Cao, D.; Li, N.; Wang, G. Hollow Co–Mo–Se nanosheet arrays derived from metal-organic framework for high-performance supercapacitors. J. Power Sources 2021, 490, 229532. [Google Scholar] [CrossRef]
- Shi, X.; Wang, H.; Ji, S.; Linkov, V.; Liu, F.; Wang, R. CoNiSe2 nanorods directly grown on Ni foam as advanced cathodes for asymmetric supercapacitors. Chem. Eng. J. 2019, 364, 320–327. [Google Scholar] [CrossRef]
- Zong, Q.; Zhu, Y.; Wang, Q.; Yang, H.; Zhang, Q.; Zhan, J.; Du, W. Prussian blue analogues anchored P-(Ni, Co)Se2 nanoarrays for high performance all-solid-state supercapacitor. Chem. Eng. J. 2020, 392, 123664. [Google Scholar] [CrossRef]
- Ameri, B.; Zardkhoshoui, A.M.; Davarani, S.S.H. Metal–organic-framework derived hollow manganese nickel selenide spheres confined with nanosheets on nickel foam for hybrid supercapacitors. Dalton Trans. 2021, 50, 8372–8384. [Google Scholar] [CrossRef]
- He, Q.; Yang, T.; Wang, X.; Zhou, P.; Chen, S.; Xiao, F.; He, P.; Jia, L.; Zhang, T.; Yang, D. Metal–organic framework derived hierarchical zinc nickel selenide/nickel hydroxide microflower supported on nickel foam with enhanced electrochemical properties for supercapacitor. J. Mater. Sci. Mater. Electron. 2021, 32, 3649–3660. [Google Scholar] [CrossRef]
- Zhu, Y.; Du, W.; Zhang, Q.; Yang, H.; Zong, Q.; Wang, Q.; Zhou, Z.; Zhan, J. A metal–organic framework template derived hierarchical Mo-doped LDHs@ MOF-Se core–shell array electrode for supercapacitors. Chem. Commun. 2020, 56, 13848–13851. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhong, Q.; Xiong, Y.; Cheng, D.; Zeng, Y.; Bu, Y. Fabrication of 3D Co-doped Ni-based MOF hierarchical micro-flowers as a high-performance electrode material for supercapacitors. Appl. Surf. Sci. 2019, 483, 1158–1165. [Google Scholar] [CrossRef]
- Cao, X.; Cui, L.; Liu, B.; Liu, Y.; Jia, D.; Yang, W.; Razal, J.M.; Liu, J. Reverse synthesis of star anise-like cobalt doped Cu-MOF/Cu 2+ 1 O hybrid materials based on a Cu (OH) 2 precursor for high performance supercapacitors. J. Mater. Chem. A 2019, 7, 3815–3827. [Google Scholar] [CrossRef]
- Elshahawy, A.M.; Guan, C.; Li, X.; Zhang, H.; Hu, Y.; Wu, H.; Pennycook, S.J.; Wang, J. Sulfur-doped cobalt phosphide nanotube arrays for highly stable hybrid supercapacitor. Nano Energy 2017, 39, 162–171. [Google Scholar] [CrossRef]
- Chhetri, K.; Dahal, B.; Tiwari, A.P.; Mukhiya, T.; Muthurasu, A.; Ojha, G.P.; Lee, M.; Kim, T.; Chae, S.-H.; Kim, H.Y. Controlled Selenium Infiltration of Cobalt Phosphide Nanostructure Arrays from a Two-Dimensional Cobalt Metal–Organic Framework: A Self-Supported Electrode for Flexible Quasi-Solid-State Asymmetric Supercapacitors. ACS Appl. Energy Mater. 2020, 4, 404–415. [Google Scholar] [CrossRef]
- Miao, C.; Xiao, X.; Gong, Y.; Zhu, K.; Cheng, K.; Ye, K.; Yan, J.; Cao, D.; Wang, G.; Xu, P. Facile synthesis of metal–organic framework-derived CoSe2 nanoparticles embedded in the N-doped carbon nanosheet array and application for supercapacitors. ACS Appl. Mater. Interfaces 2020, 12, 9365–9375. [Google Scholar] [CrossRef]
- Luo, X.; Han, W.; Ren, H.; Zhuang, Q. Metallic organic framework-derived Fe, N, S co-doped carbon as a robust catalyst for the oxygen reduction reaction in microbial fuel cells. Energies 2019, 12, 3846. [Google Scholar] [CrossRef] [Green Version]
- Fei, H.; Yang, Y.; Fan, X.; Wang, G.; Ruan, G.; Tour, J.M. Tungsten-based porous thin-films for electrocatalytic hydrogen generation. J. Mater. Chem. A 2015, 3, 5798–5804. [Google Scholar] [CrossRef]
- Stoerzinger, K.A.; Hong, W.T.; Azimi, G.; Giordano, L.; Lee, Y.-L.; Crumlin, E.J.; Biegalski, M.D.; Bluhm, H.; Varanasi, K.K.; Shao-Horn, Y. Reactivity of perovskites with water: Role of hydroxylation in wetting and implications for oxygen electrocatalysis. J. Phys. Chem. C 2015, 119, 18504–18512. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Ma, G.; Zhu, Y.; Wang, J.; Xiong, W.; Xia, Y. Metal-organic-framework-derived bi-metallic sulfide on N, S-codoped porous carbon nanocomposites as multifunctional electrocatalysts. J. Power Sources 2016, 334, 112–119. [Google Scholar] [CrossRef]
- Hu, H.; Han, L.; Yu, M.; Wang, Z.; Lou, X.W. Metal–organic-framework-engaged formation of Co nanoparticle-embedded carbon@Co9S8 double-shelled nanocages for efficient oxygen reduction. Energy Environ. Sci. 2016, 9, 107–111. [Google Scholar] [CrossRef]
- Tsujiguchi, T.; Abdelkareem, M.A.; Kudo, T.; Nakagawa, N.; Shimizu, T.; Matsuda, M. Development of a passive direct methanol fuel cell stack for high methanol concentration. J. Power Sources 2010, 195, 5975–5979. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; Morohashi, N.; Nakagawa, N. Factors affecting methanol transport in a passive DMFC employing a porous carbon plate. J. Power Sources 2007, 172, 659–665. [Google Scholar] [CrossRef]
- Guo, F.; Yang, H.; Liu, L.; Han, Y.; Al-Enizi, A.M.; Nafady, A.; Kruger, P.E.; Telfer, S.G.; Ma, S. Hollow capsules of doped carbon incorporating metal@metal sulfide and metal@metal oxide core–shell nanoparticles derived from metal–organic framework composites for efficient oxygen electrocatalysis. J. Mater. Chem. A 2019, 7, 3624–3631. [Google Scholar] [CrossRef]
- Feng, C.; Li, Z.; Wang, J.; Yan, T.; Dong, H.; Feng, J.; Zhang, Q.; Sui, J.; Yu, L.; Dong, L. Synthesis of metal-organic framework-derived cobalt disulfide with high-performance oxygen reduction reaction catalytic properties. J. Electroanal. Chem. 2019, 840, 27–34. [Google Scholar] [CrossRef]
- Son, S.; Lim, D.; Nam, D.; Kim, J.; Shim, S.E.; Baeck, S.-H. N, S-doped nanocarbon derived from ZIF-8 as a highly efficient and durable electro-catalyst for oxygen reduction reaction. J. Solid State Chem. 2019, 274, 237–242. [Google Scholar] [CrossRef]
- Yan, X.; Li, X.; Fu, C.; Lin, C.; Hu, H.; Shen, S.; Wei, G.; Zhang, J. Large specific surface area S-doped Fe–N–C electrocatalysts derived from Metal–Organic frameworks for oxygen reduction reaction. Prog. Nat. Sci. Mater. Int. 2020, 30, 896–904. [Google Scholar] [CrossRef]
- Wang, K.; Chu, Y.; Zhang, X.; Zhao, R.; Tan, X. Facile Method to Synthesize a High-Activity S-Doped Fe/SNC Single-Atom Catalyst by Metal–Organic Frameworks for Oxygen Reduction Reaction in Acidic Medium. Energy Fuels 2021, 35, 20243–20249. [Google Scholar] [CrossRef]
- Walling, C. Fenton’s reagent revisited. Acc. Chem. Res. 1975, 8, 125–131. [Google Scholar] [CrossRef]
- Kang, S.-F.; Chang, H.-M. Coagulation of textile secondary effluents with Fenton’s reagent. Water Sci. Technol. 1997, 36, 215–222. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, D.; Kou, X.; Dong, X.; Chi, X.; Ma, H.; Wang, G. High-performance oxygen reduction electrocatalysts derived from bimetal-organic framework and sulfur-doped precursors for use in microbial fuel cells. J. Power Sources 2022, 521, 230944. [Google Scholar] [CrossRef]
- Ao, X.; Gu, Y.; Li, C.; Wu, Y.; Wu, C.; Xun, S.; Nikiforov, A.; Xu, C.; Jia, J.; Cai, W. Sulfurization-Functionalized 2D Metal-Organic Frameworks for High-Performance Urea Fuel Cell. Appl. Catal. B Environ. 2022, 315, 121586. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alnaqbi, H.; El-Kadri, O.; Abdelkareem, M.A.; Al-Asheh, S. Recent Progress in Metal-Organic Framework-Derived Chalcogenides (MX; X = S, Se) as Electrode Materials for Supercapacitors and Catalysts in Fuel Cells. Energies 2022, 15, 8229. https://doi.org/10.3390/en15218229
Alnaqbi H, El-Kadri O, Abdelkareem MA, Al-Asheh S. Recent Progress in Metal-Organic Framework-Derived Chalcogenides (MX; X = S, Se) as Electrode Materials for Supercapacitors and Catalysts in Fuel Cells. Energies. 2022; 15(21):8229. https://doi.org/10.3390/en15218229
Chicago/Turabian StyleAlnaqbi, Halima, Oussama El-Kadri, Mohammad Ali Abdelkareem, and Sameer Al-Asheh. 2022. "Recent Progress in Metal-Organic Framework-Derived Chalcogenides (MX; X = S, Se) as Electrode Materials for Supercapacitors and Catalysts in Fuel Cells" Energies 15, no. 21: 8229. https://doi.org/10.3390/en15218229
APA StyleAlnaqbi, H., El-Kadri, O., Abdelkareem, M. A., & Al-Asheh, S. (2022). Recent Progress in Metal-Organic Framework-Derived Chalcogenides (MX; X = S, Se) as Electrode Materials for Supercapacitors and Catalysts in Fuel Cells. Energies, 15(21), 8229. https://doi.org/10.3390/en15218229