Photovoltaic Production Management in a Hall of Residence with High Energy Consumption
Abstract
:1. Introduction
2. Related Works
3. Materials and Methods
3.1. Case Study
3.2. Data Collection
3.3. Data Processing
4. Results and Discussion
4.1. Calculation of the Total Daily Average Sunlight Hours
4.2. Calculation of PV Energy Production Potential and Distribution of Production by Working Hours of the Day
4.3. Estimated Monthly Average Hourly Production and Average Building Consumption
4.4. Analysis of the Evolution of Production, Consumption, and Balances in an Annual Time Horizon
4.5. Management Actions to Optimize the Efficiency of Energy Use in the Building
4.5.1. Management of Tasks to Fit into the Periods of PV Energy Production
4.5.2. Installation of Consumption Monitoring Systems
4.5.3. Education and Awareness for Energy Saving and Energy Efficiency
4.5.4. Negotiation of the Contracted Power with the Energy Provider
4.5.5. Optimization of Surplus PV Energy by Converting It into Other Energy Forms
4.5.6. Installation of Complementary Storage Systems for Surplus Production
4.5.7. Reinforcement of PV Energy Production Capacity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Siddique, A.; Shahzad, A.; Lawler, J.; Mahmoud, K.A.; Lee, D.S.; Ali, N.; Bilal, M.; Rasool, K. Unprecedented environmental and energy impacts and challenges of COVID-19 pandemic. Environ. Res. 2021, 193, 110443. [Google Scholar] [CrossRef] [PubMed]
- Potrč, S.; Čuček, L.; Martin, M.; Kravanja, Z. Sustainable renewable energy supply networks optimization—The gradual transition to a renewable energy system within the European Union by 2050. Renew. Sustain. Energy Rev. 2021, 146, 111186. [Google Scholar] [CrossRef]
- Tian, J.; Yu, L.; Xue, R.; Zhuang, S.; Shan, Y. Global low-carbon energy transition in the post-COVID-19 era. Appl. Energy 2022, 307, 118205. [Google Scholar] [CrossRef] [PubMed]
- Eckert, E.; Kovalevska, O. Sustainability in the European Union: Analyzing the discourse of the European green deal. J. Risk Financ. Manag. 2021, 14, 80. [Google Scholar] [CrossRef]
- De La Peña, L.; Guo, R.; Cao, X.; Ni, X.; Zhang, W. Accelerating the energy transition to achieve carbon neutrality. Resour. Conserv. Recycl. 2022, 177, 105957. [Google Scholar] [CrossRef]
- Steffen, B.; Patt, A. A historical turning point? Early evidence on how the Russia-Ukraine war changes public support for clean energy policies. Energy Res. Soc. Sci. 2022, 91, 102758. [Google Scholar] [CrossRef]
- Le Billon, P.; Lujala, P.; Singh, D.; Culbert, V.; Kristoffersen, B. Fossil fuels, climate change, and the COVID-19 crisis: Pathways for a just and green post-pandemic recovery. Clim. Policy 2021, 21, 1347–1356. [Google Scholar] [CrossRef]
- Mohan, A.; Geden, O.; Fridahl, M.; Buck, H.J.; Peters, G.P. UNFCCC must confront the political economy of net-negative emissions. One Earth 2021, 4, 1348–1351. [Google Scholar] [CrossRef]
- Jiang, Q.; Khattak, S.I.; Rahman, Z.U. Measuring the simultaneous effects of electricity consumption and production on carbon dioxide emissions (CO2e) in China: New evidence from an EKC-based assessment. Energy 2021, 229, 120616. [Google Scholar] [CrossRef]
- Krarti, M.; Aldubyan, M. Review analysis of COVID-19 impact on electricity demand for residential buildings. Renew. Sustain. Energy Rev. 2021, 143, 110888. [Google Scholar] [CrossRef]
- Deng, Y.; Gou, Z.; Gui, X.; Cheng, B. Energy consumption characteristics and influential use behaviors in university dormitory buildings in China’s hot summer-cold winter climate region. J. Build. Eng. 2021, 33, 101870. [Google Scholar] [CrossRef]
- Oyedepo, S.O.; Anifowose, E.G.; Obembe, E.O.; Khanmohamadi, S. Energy-saving strategies on university campus buildings: Covenant University as case study. In Energy Services Fundamentals and Financing; Elsevier: Amsterdam, The Netherlands, 2021; pp. 131–154. [Google Scholar]
- Alam, M.; Lin, F.-R. Internalizing Sustainability into Research Practices of Higher Education Institutions: Case of a Research University in Taiwan. Sustainability 2022, 14, 9793. [Google Scholar] [CrossRef]
- Caputo, F.; Ligorio, L.; Pizzi, S. The contribution of higher education institutions to the SDGs—An evaluation of sustainability reporting practices. Adm. Sci. 2021, 11, 97. [Google Scholar] [CrossRef]
- Sanchez-Carrillo, J.; Cadarso, M.; Tobarra, M. Embracing higher education leadership in sustainability: A systematic review. J. Clean. Prod. 2021, 298, 126675. [Google Scholar] [CrossRef]
- Drif, M.; Pérez, P.J.; Aguilera, J.; Almonacid, G.; Gomez, P.; De la Casa, J.; Aguilar, J.D. Univer Project. A grid connected photovoltaic system of 200 kWp at Jaén University. Overview and performance analysis. Sol. Energy Mater. Sol. Cells 2007, 91, 670–683. [Google Scholar] [CrossRef]
- Hasapis, D.; Savvakis, N.; Tsoutsos, T.; Kalaitzakis, K.; Psychis, S.; Nikolaidis, N.P. Design of large scale prosuming in Universities: The solar energy vision of the TUC campus. Energy Build. 2017, 141, 39–55. [Google Scholar] [CrossRef]
- Tsoutsos, T.; Tournaki, S.; de Santos, C.A.; Vercellotti, R. Nearly zero energy buildings application in Mediterranean hotels. Energy Procedia 2013, 42, 230–238. [Google Scholar] [CrossRef] [Green Version]
- Sunanda, W.; Tiandho, Y.; Gusa, R.F. Monitoring of Photovoltaic Performance as an Alternative Energy Source in Campus Buildings. Instrum. Mes. Metrol. 2021, 20, 153–159. [Google Scholar] [CrossRef]
- Minai, A.F.; Usmani, T.; Alotaibi, M.A.; Malik, H.; Nassar, M.E. Performance Analysis and Comparative Study of a 467.2 kWp Grid-Interactive SPV System: A Case Study. Energies 2022, 15, 1107. [Google Scholar] [CrossRef]
- Talavera, D.; Muñoz-Cerón, E.; De La Casa, J.; Ortega, M.; Almonacid, G. Energy and economic analysis for large-scale integration of small photovoltaic systems in buildings: The case of a public location in Southern Spain. Renew. Sustain. Energy Rev. 2011, 15, 4310–4319. [Google Scholar] [CrossRef]
- Mokhtara, C.; Negrou, B.; Settou, N.; Bouferrouk, A.; Yao, Y. Optimal design of grid-connected rooftop PV systems: An overview and a new approach with application to educational buildings in arid climates. Sustain. Energy Technol. Assess. 2021, 47, 101468. [Google Scholar] [CrossRef]
- D’Adamo, I.; de Monte, F.; Ferella, F.; Gastaldi, M. The case study of a photovoltaic plant located at the university of L’Aquila: An economic analysis. J. Clean. Prod. 2021, 278, 123561. [Google Scholar] [CrossRef]
- Hrayshat, E.S. Viability of solar photovoltaics as an electricity generation source for Jordan. Int. J. Sustain. Eng. 2009, 2, 67–77. [Google Scholar] [CrossRef]
- Al-Najideen, M.I.; Alrwashdeh, S.S. Design of a solar photovoltaic system to cover the electricity demand for the faculty of Engineering-Mu’tah University in Jordan. Resour.-Effic. Technol. 2017, 3, 440–445. [Google Scholar] [CrossRef]
- Ayadi, O.; Al-Assad, R.; Al Asfar, J. Techno-economic assessment of a grid connected photovoltaic system for the University of Jordan. Sustain. Cities Soc. 2018, 39, 93–98. [Google Scholar] [CrossRef]
- D’Adamo, I.; Falcone, P.M.; Gastaldi, M.; Morone, P. The economic viability of photovoltaic systems in public buildings: Evidence from Italy. Energy 2020, 207, 118316. [Google Scholar] [CrossRef]
- Mazzeo, D.; Matera, N.; Bevilacqua, P.; Arcuri, N. Energy and economic analysis of solar photovoltaic plants located at the University of Calabria. Int. J. Heat Technol. 2015, 33, 41–50. [Google Scholar] [CrossRef]
- Mukherji, R.; Mathur, V.; Bhati, A.; Mukherji, M. Assessment of 50 kWp rooftop solar photovoltaic plant at The ICFAI University, Jaipur: A case study. Environ. Prog. Sustain. Energy 2020, 39, e13353. [Google Scholar] [CrossRef]
- Silva, T.C.; Pinto, G.M.; de Souza, T.A.; Valerio, V.; Silvério, N.M.; Coronado, C.J.; Guardia, E.C. Technical and economical evaluation of the photovoltaic system in Brazilian public buildings: A case study for peak and off-peak hours. Energy 2020, 190, 116282. [Google Scholar] [CrossRef]
- Decree-Law n. 172/2006 of 23 of Agosto from Ministério da Economia e da Inovação; Diário da República: Lisboa, Portugal, 2006; pp. 6118–6156. Available online: https://dre.pt/dre/detalhe/decreto-lei/172-2006-540627 (accessed on 10 September 2022).
- Decree-Law n. 162/2019 of 25 of Outubro from Presidência do Conselho de Ministros; Diário da República: Lisboa, Portugal, 2019; pp. 45–62. Available online: https://files.dre.pt/1s/2019/10/20600/0004500062.pdf (accessed on 10 September 2022).
- Directive n. 1/2021 of 8 of Janeiro from Entidade Reguladora dos Serviços Energéticos; Diário da República: Lisboa, Portugal, 2021; pp. 162–255. Available online: https://files.dre.pt/2s/2021/01/005000000/0016200255.pdf (accessed on 10 September 2022).
- Ministerial Order n. 4/2020 of 3 of Fevereiro from Ministério do Ambiente e Ação Climática; Direção Geral de Energia e Geologia: Lisboa, Portugal, 2020; p. 24. Available online: https://www.dgeg.gov.pt/media/augmvfve/2020_despacho_4_ric_rtq-e-anexo.pdf (accessed on 10 September 2022).
- Ministerial Order n. 46/2019 of 30 of Dezembro from Ministério do Ambiente e Ação Climática; Direção Geral de Energia e Geologia: Lisboa, Portugal, 2019; p. 20. Available online: https://www.apren.pt/contents/legislation/despacho-46-2019-dgeg.pdf (accessed on 10 September 2022).
- Ordinance n. 16/2020 of 23 of Agosto from Ministério do Ambiente e Ação Climática; Diário da República: Lisboa, Portugal, 2020; pp. 6–7. Available online: https://dre.pt/dre/detalhe/portaria/16-2020-128415687 (accessed on 10 September 2022).
- Regulation n. 8/2021 of 7 of Abril from Entidade Reguladora dos Serviços Energéticos; Lisboa, Portugal, 2021; p. 46. Available online: https://www.erse.pt/media/b5rmusyr/regulamento-erse-n-%C2%BA-8_2021.pdf (accessed on 10 September 2022).
- Hathaway, D.H. The solar cycle. Living Rev. Sol. Phys. 2015, 12, 4. [Google Scholar] [CrossRef]
- Pesnell, W.D.; Thompson, B.J.; Chamberlin, P. The solar dynamics observatory (SDO). In The Solar Dynamics Observatory; Springer: Berlin/Heidelberg, Germany, 2011; pp. 3–15. [Google Scholar]
- Golestaneh, F.; Pinson, P.; Gooi, H.B. Very short-term nonparametric probabilistic forecasting of renewable energy generation—With application to solar energy. IEEE Trans. Power Syst. 2016, 31, 3850–3863. [Google Scholar] [CrossRef] [Green Version]
- El-Shobokshy, M.S.; Hussein, F.M. Effect of dust with different physical properties on the performance of photovoltaic cells. Sol. Energy 1993, 51, 505–511. [Google Scholar] [CrossRef]
Item | Specification |
---|---|
Manufacturer | JA SOLAR |
Model | JAM72S20-455/MR/100V |
Maximum Power (Pmax) (W) | 455 |
Voltage at Maximum Power (Vmp) (V) | 41.82 |
Current at Maximum Power (Impp) (A) | 10.88 |
Open-Circuit Voltage (Voc) (V) | 49.85 |
Short-Circuit Current (Isc) (A) | 11.41 |
Operating Temperature Range (°C) | −40~85 |
Temperature Coefficient of Pmax (%/°C) | −0.350 |
Temperature Coefficient of Voc (%/°C) | −0.272 |
Temperature Coefficient of Isc (%/°C) | +0.044 |
Month | Sunrise | Sunset | Upper Meridian | Daily Sunlight Hours | ||||
---|---|---|---|---|---|---|---|---|
Average | Integer | Average | Integer | Average | Integer | Average | Integer | |
January | 07:58 | 08:00 | 17:28 | 17:00 | 12:43 | 13:00 | 09:30 | 09:00 |
February | 07:30 | 08:00 | 18:06 | 18:00 | 12:48 | 13:00 | 10:36 | 10:00 |
March | 06:47 | 07:00 | 18:39 | 18:00 | 12:43 | 13:00 | 11:52 | 11:00 |
April | 06:55 | 07:00 | 20:13 | 20:00 | 13:34 | 14:00 | 13:18 | 13:00 |
May | 06:16 | 07:00 | 20:44 | 20:00 | 13:30 | 14:00 | 14:28 | 13:00 |
June | 06:01 | 07:00 | 21:08 | 21:00 | 13:34 | 14:00 | 15:07 | 14:00 |
July | 06:14 | 07:00 | 21:05 | 21:00 | 13:39 | 14:00 | 14:51 | 14:00 |
August | 06:44 | 06:00 | 20:32 | 20:00 | 13:38 | 14:00 | 13:48 | 14:00 |
September | 07:15 | 07:00 | 19:42 | 19:00 | 13:28 | 13:00 | 12:27 | 12:00 |
October | 07:46 | 07:00 | 18:52 | 18:00 | 13:19 | 13:00 | 11:06 | 11:00 |
November | 07:23 | 07:00 | 17:13 | 17:00 | 12:18 | 12:00 | 09:50 | 10:00 |
December | 07:53 | 07:00 | 17:04 | 17:00 | 12:28 | 12:00 | 09:11 | 10:00 |
Hours | Production (kWh) | Production (%) | January | February | March | April | May | June | July | August | September | October | November | December |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 0% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 0% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 0 | 0% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 1 | 1% | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 6 | 3% | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
9 | 11 | 6% | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
10 | 16 | 9% | 4 | 4 | 4 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
11 | 20 | 11% | 5 | 5 | 5 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
12 | 20 | 12% | 6 | 6 | 6 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
13 | 21 | 12% | 7 | 7 | 7 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
14 | 21 | 12% | 8 | 8 | 8 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
15 | 19 | 11% | 9 | 9 | 9 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
16 | 17 | 10% | 0 | 10 | 10 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 |
17 | 13 | 7% | 0 | 11 | 11 | 10 | 10 | 10 | 10 | 10 | 10 | 0 | 0 | 0 |
18 | 7 | 4% | 0 | 0 | 0 | 11 | 11 | 11 | 11 | 11 | 11 | 0 | 0 | 0 |
19 | 3 | 1% | 0 | 0 | 0 | 0 | 12 | 12 | 12 | 12 | 0 | 0 | 0 | 0 |
20 | 0 | 0% | 0 | 0 | 0 | 0 | 13 | 13 | 13 | 13 | 0 | 0 | 0 | 0 |
21 | 0 | 0% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
22 | 0 | 0% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
23 | 0 | 0% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Month | Hours of the Day | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0–6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21–24 | |
January | 0 | 0.8 | 5.5 | 11.1 | 14.2 | 15.8 | 14.2 | 11.1 | 5.5 | 0.8 | 0 | 0 | 0 | 0 | 0 | 0 |
February | 0 | 1.19 | 6.0 | 10.7 | 14.3 | 17.9 | 19.0 | 17.9 | 14.28 | 10.7 | 6.0 | 1.2 | 0 | 0 | 0 | 0 |
March | 0 | 1.52 | 7.6 | 13.7 | 18.2 | 22.8 | 24.3 | 22.8 | 18.2 | 13.7 | 7.6 | 1.5 | 0 | 0 | 0 | 0 |
Abril | 0 | 0 | 1.9 | 9.7 | 17.4 | 23.2 | 29.0 | 30.9 | 29.0 | 23.2 | 17.4 | 9.7 | 1.9 | 0 | 0 | 0 |
May | 0 | 0 | 2.3 | 6.8 | 13.5 | 20.3 | 24.8 | 29.3 | 31.5 | 29.3 | 24.8 | 20.3 | 13.5 | 6.8 | 2.3 | 0 |
June | 0 | 0 | 2.5 | 7.4 | 14.8 | 22.2 | 27.8 | 32.1 | 34.6 | 32.1 | 27.8 | 22.2 | 14.9 | 7.4 | 2.5 | 0 |
July | 0 | 0 | 2.7 | 8.1 | 16.3 | 24.4 | 29.9 | 35.2 | 37.9 | 35.2 | 29.8 | 24.4 | 16.3 | 8.1 | 2.7 | 0 |
August | 0 | 0 | 2.5 | 7.6 | 15.1 | 22.7 | 27.7 | 32.8 | 35.3 | 32.8 | 27.7 | 22.7 | 15.1 | 7.6 | 2.5 | 0 |
September | 0 | 0 | 2.1 | 10.7 | 19.2 | 25.6 | 31.9 | 34.1 | 31.9 | 25.6 | 19.8 | 10.7 | 2.1 | 0 | 0 | 0 |
October | 0 | 0 | 1.3 | 9.1 | 18.2 | 23.4 | 26 | 23.4 | 18.2 | 9.1 | 1.3 | 0 | 0 | 0 | 0 | 0 |
November | 0 | 0 | 0.9 | 6.2 | 12.5 | 16.0 | 17.8 | 16.0 | 12.5 | 6.2 | 0.9 | 0 | 0 | 0 | 0 | 0 |
December | 0 | 0 | 0.9 | 6.1 | 12.2 | 15.7 | 17.4 | 15.7 | 12.2 | 6.1 | 0.9 | 0 | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araújo, I.; Nunes, L.J.R.; Vilas, D.P.; Curado, A. Photovoltaic Production Management in a Hall of Residence with High Energy Consumption. Energies 2022, 15, 8412. https://doi.org/10.3390/en15228412
Araújo I, Nunes LJR, Vilas DP, Curado A. Photovoltaic Production Management in a Hall of Residence with High Energy Consumption. Energies. 2022; 15(22):8412. https://doi.org/10.3390/en15228412
Chicago/Turabian StyleAraújo, Ivo, Leonel J. R. Nunes, David Patíño Vilas, and António Curado. 2022. "Photovoltaic Production Management in a Hall of Residence with High Energy Consumption" Energies 15, no. 22: 8412. https://doi.org/10.3390/en15228412
APA StyleAraújo, I., Nunes, L. J. R., Vilas, D. P., & Curado, A. (2022). Photovoltaic Production Management in a Hall of Residence with High Energy Consumption. Energies, 15(22), 8412. https://doi.org/10.3390/en15228412