Pore Characteristics and Influencing Factors of Marine and Lacustrine Shale in the Eastern Sichuan Basin, China
Abstract
:1. Introduction
2. Geological Setting
3. Sample and Methods
3.1. Samples
3.2. Analytical Methods
4. Results
4.1. Organic Geochemical Characteristics
4.1.1. Total Organic Carbon Contents
4.1.2. Maturity of Organic Matter
4.2. Mineralogy
4.3. Pore Morphology Analyses Based on FE-SEM Images
4.4. Microscopic Pore Structure Characteristics
4.5. Reservoir Physical Property
5. Discussion
5.1. Difference in Formation Mechanism of the Pores
5.2. Arrangement Differences of the Pores
5.3. Difference in Tectonic Evolution
6. Conclusions
- (1)
- The TOC of the marine shale is in the range of 0.97–6.00%, with an average 3.39%, which is richer than the lacustrine shale, with an average 1.74%. Meanwhile, the thermal evolution of the marine shale (av. eq Ro = 1.96%) is also more mature than the lacustrine shale (av. Ro is 1.64% in well and 0.68% in outcrops). These are benefits of OM pores formation in marine shale. In marine shale, TOC is positively correlated to porosity. Few intergranular pores are observed in the FE-SEM images. It is indicated that the pores in the marine shale are mainly composed of OM pores. However, there is little correlation between TOC content and porosity in the lacustrine shale. Dissolution pores and intergranular pores are commonly observed in the FE-SEM images. It is indicated that the pores in the lacustrine shale are mainly composed of dissolution pores and intergranular pores. This difference is not only correlated to the difference in TOC content but also the difference in thermal evolution. In the over-mature stage, the OM pores would be expanded, with the kerogen cracking and hydrocarbon generation pressurization.
- (2)
- The arrangement of the pores is obviously different in marine and lacustrine shale. In the marine shale, the cluster pores are levitated in the shale as kites and connected by past channels. The marine shale is characterized by small-caliber and large-volume pores. However, in the lacustrine shale, the cluster pores and the past channels are mainly arranged according to the flow channels in the vertical direction. Although the porosity of the marine shale is smaller than that of the lacustrine shale, the permeability is similar in each. No obvious correlation has been observed between porosity and permeability in the shale. The permeability of the shale is likely dominated by the arrangement of the pores.
- (3)
- The arrangement of the pores in marine shale is obviously deformed by compaction. Hydrocarbon generation pressurization is a benefit to the pores to offset the compaction, which promotes formation of lateral cluster pores. However, in lacustrine shale, although the porosity of the core samples is smaller than in the outcrops, the pores are not obviously compacted with the characteristic of lateral arrangement. The lacustrine shale is characterized by under-compaction, which commonly results from fluid pressure conducted upward by the vertical channels. The compaction action is stronger in marine shale than in lacustrine shale in the Eastern Sichuan Basin, China.
Author Contributions
Funding
Conflicts of Interest
References
- He, J.; Wang, J.; Yu, Q.; Liu, W.; Ge, X.; Gou, Q.; Qiu, Z. The discovery of exogenous type shale gas and its application to the hydrocarbon exploration. Acta Pet. Sin. 2018, 39, 12–22. [Google Scholar]
- Zhao, B.; Li, R.; Qin, X.; Wang, N.; Zhou, W.; Khaled, A.; Zhao, D.; Zhang, Y.; Wu, X.; Liu, Q. Geochemical characteristics and mechanism of organic matter accumulation of marine-continental transitional shale of the lower permian Shanxi Formation, southeastern Ordos Basin, north China. J. Pet. Sci. Eng. 2021, 205, 108815. [Google Scholar] [CrossRef]
- Dai, J.; Zou, C.; Dong, D.; Ni, Y.; Wu, W.; Gong, D.; Wang, Y.; Huang, S.; Huang, J.; Fang, C.; et al. Geochemical characteristics of marine and terrestrial shale gas in China. Mar. Pet. Geol. 2016, 76, 444–463. [Google Scholar] [CrossRef]
- Shi, X.; Wu, W.; Wu, Q.; Zhong, K.; Jiang, Z.; Miao, H. Controlling Factors and Forming Types of Deep Shale Gas Enrichment in Sichuan Basin, China. Energies 2022, 15, 7023. [Google Scholar] [CrossRef]
- Shi, X.; Wu, W.; Shi, Y.; Jiang, Z.; Zeng, L.; Ma, S.; Shao, X.; Tang, X.; Zheng, M. Influence of Multi-Period Tectonic Movement and Faults on Shale Gas Enrichment in Luzhou Area of Sichuan Basin, China. Energies 2019, 15, 6846. [Google Scholar] [CrossRef]
- Tang, X.; Jiang, Z.; Jiang, S.; Wang, H.; He, Z.; Feng, J. Structure, burial, and gas accumulation mechanisms of lower Silurian Longmaxi Formation shale gas reservoirs in the Sichuan Basin (China) and its periphery. AAPG Bull. 2021, 105, 2425–2447. [Google Scholar] [CrossRef]
- Xu, S.; Hao, F.; Zhang, Y.; Gou, Q. High-quality marine shale reservoir prediction in the lower Silurian Longmaxi Formation, Sichuan Basin, China. Interpretation 2020, 8, 1–42. [Google Scholar] [CrossRef]
- Yu, W.; Sepehrnoori, K. Optimization of multiple hydraulically fractured horizontal wells in unconventional gas reservoirs. J. Pet. Eng. 2013, 2013, 1–16. [Google Scholar]
- Peng, C.; Peng, J.; Chen, Y.; Zhang, H. Seismic prediction of sweet spots in the Da’anzhai shale play, Yuanba area, the Sichuan Basin. Nat. Gas Ind. B 2014, 1, 185–191. [Google Scholar]
- Gao, J.; Wang, X.; He, S.; Guo, X.; Zhang, B.; Chen, X. Geochemical characteristics and source correlation of natural gas in Jurassic shales in the North Fuling area, Eastern Sichuan Basin, China. J. Pet. Sci. Eng. 2017, 158, 284–292. [Google Scholar] [CrossRef]
- Shu, Z.; Zhou, L.; Li, X.; Liu, H.; Zeng, Y.; Xie, H.; Yao, M.; Wang, Y. Geological characteristics of gas condensate reservoirs and their exploration and development prospect in the Jurassic continental shale of the Dongyuemiao Member of Ziliujing Formation, Fuxing area, eastern Sichuan Basin. Oil Gas Geol. 2021, 42, 212–223. [Google Scholar]
- He, W.; He, H.; Wang, Y.; Cui, B.; Meng, Q.; Guo, X.; Bai, X.; Wang, Y. Major breakthrough and significance of shale oil of the Jurassic Lianggaoshan Formation in Well Ping’an 1 in northeastern Sichuan Basin. China Pet. Explor. 2022, 27, 40–49. [Google Scholar]
- Li, W.; Jiang, Z.; Qiu, H.; Zhu, D.; Gao, X.; Su, Z.; Yang, Z. Reservoir capacity evaluation of continental shale reservoirs in Da’anzhai Member of Lower Jurassic Ziliujing Formation in Northeast Sichuan. China Energy Environ. Prot. 2022, 44, 143–153. [Google Scholar]
- Li, Y.; Feng, Y.; Liu, H.; Zhang, L.; Zhao, S. Geological characteristics and resource potential of lacustrine shale gas in the Sichuan Basin, SW China. Pet. Explor. Dev. 2013, 40, 454–460. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, D. Geological characteristics and new understandings of exploration and development of Jurassic lacustrine shale oil and gas in the Sichuan Basin. J. Nat. Gas Ind. 2019, 39, 22–33. [Google Scholar]
- Qiu, Z.; Zou, C.N. Controlling factors on the formation and distribution of “sweet-spot areas” of marine gas shales in South China and a preliminary discussion on unconventional petroleum sedimentology. J. Asian Earth Sci. 2020, 194, 103989. [Google Scholar] [CrossRef]
- Ma, Y.S.; Guo, X.S.; Guo, T.L.; Huang, R.; Cai, X.Y.; Li, G.X. The Puguang gas field: New giant discovery in the mature Sichuan Basin, southwest China. AAPG Bull. 2007, 91, 627–643. [Google Scholar] [CrossRef]
- Qiu, Z.; He, J. Depositional environment changes and organic matter accumulation of Pliensbachian-Toarcian lacustrine shales in the Sichuan basin, SW China. J. Asian Earth Sci. 2022, 232, 1–16. [Google Scholar] [CrossRef]
- Wei, L.; Shengfei, Q.; Guoyi, H.; Yanjie, G. Accumulation of water-soluble gas by degasification: One of important mechanisms of large gas accumulations in the Xujiahe Formation, Sichuan Basin. Pet. Explor. Dev. 2011, 38, 662–670. [Google Scholar] [CrossRef]
- Gu, Z.; Yin, J.; Yuan, M.; Bo, D.; Liang, D.; Zhang, H.; Zhang, L. Accumulation conditions and exploration directions of natural gas in deep subsalt Sinian-Cambrian System in the eastern Sichuan Basin, SW China. Pet. Explor. Dev. 2015, 42, 152–166. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, Y.; Huang, B.; Dong, Y.; Li, S.; Zhang, G.; Yu, S. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea. Earth-Sci. Rev. 2018, 186, 268–286. [Google Scholar] [CrossRef]
- He, J.; Wang, J.; Milsch, H.; Qiu, Z.; Yu, Q. The characteristics and formation mechanism of a regional fault in shale strata: Insights from the Middle-Upper Yangtze, China. Mar. Pet. Geol. 2020, 121, 1–20. [Google Scholar] [CrossRef]
- Creveling, J.R.; Finnegan, S.; Mitrovica, J.X.; Bergmann, K.D. Spatial variation in Late Ordovician glacioeustatic sea-level change. Earth Planet. Sci. Lett. 2018, 496, 1–9. [Google Scholar] [CrossRef]
- Zou, C.; Qiu, Z.; Poulton, S.W.; Dong, D.; Wang, H.; Chen, D.; Lu, B.; Shi, Z.; Tao, H. Ocean euxinia and climate change" double whammy" drove the Late Ordovician mass extinction. Geology 2018, 46, 535–538. [Google Scholar] [CrossRef]
- Liu, Y.J.; Huang, C.Y.; Zhou, Y.Q.; Lu, Y.C.; Ma, Q. The controlling factors of lacustrine shale lithofacies in the Upper Yangtze Platform (South China) using artificial neural networks. Mar. Pet. Geol. 2020, 118, 104350. [Google Scholar] [CrossRef]
- Wang, X.Y.; Jin, Z.K.; Zhao, J.H.; Zhu, Y.X.; Hu, Z.Q.; Liu, G.X.; Jiang, T.; Wang, H.; Li, S.; Shi, S.T. Depositional environment and organic matter accumulation of Lower Jurassic nonmarine fine-grained deposits in the Yuanba Area, Sichuan Basin, SW China. Mar. Pet. Geol. 2020, 116, 104352. [Google Scholar] [CrossRef]
- Li, Y.; He, D. Evolution of tectonic-depositional environment and prototype basins of the Early Jurassic in Sichuan Basin and adjacent areas. Acta Pet. Sin. 2014, 35, 219–232. [Google Scholar]
- Jacob, H. Disperse solid bitumens as an indicator for migration and maturity in prospecting for oil and gas. Erdoel Kohle Erdgas Petrochem. 1985, 38, 365. [Google Scholar]
- Zhu, D.; Jiang, Z.; Jiang, S.; Yang, W.; Song, Y.; Gao, Z.; Jiang, T.; Cao, X.; Li, W.; Zhang, Y. Water-bearing characteristics and their influences on the reservoir capacity in terrestrial shale reservoirs: A case study of the lower Jurassic Ziliujing Formation in the Northeast Sichuan Basin, China. Mar. Pet. Geol. 2021, 123, 1–16. [Google Scholar] [CrossRef]
- Li, D.; Li, R.; Zhu, Z.; Wu, X.; Cheng, J.; Liu, F.; Zhao, B. Origin of organic matter and paleo-sedimentary environment reconstruction of the Triassic oil shale in Tongchuan City, southern Ordos Basin (China). Fuel 2017, 208, 223–235. [Google Scholar] [CrossRef]
- Hou, H.; Shao, L.; Li, Y.; Lu, J.; Li, Z.; Wang, S.; Zhang, W.; Wen, H. Geochemistry, reservoir characterization and hydrocarbon generation potential of lacustrine shales: A case of YQ-1 well in the Yuqia Coalfield, northern Qaidam Basin, NW China. Mar. Pet. Geol. 2017, 88, 458–471. [Google Scholar] [CrossRef]
- Xiong, F.; Jiang, Z.; Li, P.; Wang, X.; Bi, H.; Li, Y.; Wang, Z.; Amooie, M.A.; Soltanian, M.R.; Moortgat, J. Pore structure of transitional shales in the Ordos Basin, NW China: Effects of composition on gas storage capacity. Fuel 2017, 206, 504–515. [Google Scholar] [CrossRef]
- Ma, Y.; Pan, Z.; Zhong, N.; Connell, L.D.; Down, D.I.; Lin, W.; Zhang, Y. Experimental study of anisotropic gas permeability and its relationship with fracture structure of Longmaxi Shales, Sichuan Basin, China. Fuel 2016, 180, 106–115. [Google Scholar] [CrossRef]
- Liang, F.; Zhang, Q.; Lu, B.; Chen, P.; Su, C.; Zhang, Y.; Liu, Y. Pore Structure in Shale Tested by Low Pressure N2 Adsorption Experiments: Mechanism, Geological Control and Application. Energies 2022, 15, 4875. [Google Scholar] [CrossRef]
- Wang, S.; Elsworth, D.; Liu, J. Permeability evolution in fractured coal: The roles of fracture geometry and water-content. Int. J. Coal Geol. 2011, 87, 13–25. [Google Scholar] [CrossRef]
- Rist, U.; Günes, H. Qualitative and quantitative characterization of a jet and vortex actuator. In Proceedings of the 7th Ercoftac SIG33 Workshop, Genova, Italy, 16–18 October 2008; pp. 16–18. [Google Scholar]
- Kumar, S.; Das, S.; Bastia, R.; Ojha, K. Mineralogical and morphological characterization of Older Cambay Shale from North Cambay Basin, India: Implication for shale oil/gas development. Mar. Pet. Geol. 2018, 97, 339–354. [Google Scholar] [CrossRef]
- Li, W.; Yu, H.; Deng, H. Stratigraphic division and correlation and sedimentary characteristics of the Cambrian in central-southern Sichuan Basin. Pet. Explor. Dev. 2012, 39, 725–735. [Google Scholar] [CrossRef]
- Chen, L.; Jiang, Z.; Liu, Q.; Jiang, S.; Liu, K.; Tan, J.; Gao, F. Mechanism of shale gas occurrence: Insights from comparative study on pore structures of marine and lacustrine shales. Mar. Pet. Geol. 2019, 104, 200–216. [Google Scholar] [CrossRef]
- Hu, H.; Hao, F.; Lin, J.; Lu, Y.; Ma, Y.; Li, Q. Organic matter-hosted pore system in the Wufeng-Longmaxi (O3w-S11) shale, Jiaoshiba area, Eastern Sichuan Basin, China. Int. J. Coal Geol. 2017, 173, 40–50. [Google Scholar] [CrossRef]
- Milliken, K.L.; Rudnicki, M.; Awwiller, D.N.; Zhang, T. Organic matter–hosted pore system, Marcellus formation (Devonian), Pennsylvania. AAPG Bull. 2013, 97, 177–200. [Google Scholar] [CrossRef]
- Song, H.; Yu, M.; Zhu, W.; Wu, P.; Lou, Y.; Wang, Y.; Killough, J. Numerical investigation of gas flow rate in shale gas reservoirs with nanoporous media. Int. J. Heat Mass Transf. 2015, 80, 626–635. [Google Scholar] [CrossRef]
- Zhang, L.; Li, B.; Jiang, S.; Xiao, D.; Lu, S.; Zhang, Y.; Gong, C.; Chen, L. Heterogeneity characterization of the lower Silurian Longmaxi marine shale in the Pengshui area, South China. Int. J. Coal Geol. 2018, 195, 250–266. [Google Scholar] [CrossRef]
- Sing, K.S. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Li, F.; Wang, M.; Liu, S.; Hao, Y. Pore characteristics and influencing factors of different types of shales. Mar. Pet. Geol. 2019, 102, 391–401. [Google Scholar] [CrossRef]
- Yang, F.; Ning, Z.; Wang, Q.; Zhang, R.; Krooss, B.M. Pore structure characteristics of lower Silurian shales in the southern Sichuan Basin, China: Insights to pore development and gas storage mechanism. Int. J. Coal Geol. 2016, 156, 12–24. [Google Scholar] [CrossRef]
- Borjigin, T.; Shen, B.; Yu, L.; Yang, Y.; Zhang, W.; Tao, C.; Xi, B.; Zhang, Q.; Bao, F.; Qin, J. Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng-Longmaxi Formation, Sichuan Basin, SW China. Pet. Explor. Dev. 2017, 44, 69–78. [Google Scholar] [CrossRef]
- Chen, C. Multiscale imaging, modeling, and principal component analysis of gas transport in shale reservoirs. Fuel 2016, 182, 761–770. [Google Scholar] [CrossRef]
- Wang, X.; Gao, S.; Gao, C. Geological features of Mesozoic lacustrine shale gas in south of Ordos Basin, NW China. Pet. Explor. Dev. 2014, 41, 326–337. [Google Scholar] [CrossRef]
- Guo, T. The Fuling Shale Gas Field—A highly productive Silurian gas shale with high thermal maturity and complex evolution history, southeastern Sichuan Basin, China. Interpretation 2015, 3, 25–34. [Google Scholar] [CrossRef]
Shale Type | Sample NO. | Formation | Depth (m)/ Area | TOC (%) | Rb (%) | Ro (%) | Mineral Composition (%) | Brittleness Index | Porosity (%) | Permeability (md) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Quartz | Feldspar | Carbonates | Pyrite | Clay | ||||||||||
Marine Shale | HD1-1 | O3w | 1337.12 | 0.95 | 2.62 | 2.02 | 38.9 | 6.3 | 15.4 | 0.7 | 38.7 | 61.3 | - | - |
HD1-2 | O3w | 1336.26 | 2.7 | 2.68 | 2.06 | 35.4 | 5 | 16.1 | 6.8 | 36.7 | 63.3 | 7.16 | 0.328 | |
HD1-3 | O3w | 1335.30 | 3.28 | 2.63 | 2.02 | 41.1 | 8.3 | 14.2 | 8.3 | 28.1 | 71.9 | - | - | |
HD1-4 | O3w | 1334.26 | 2.99 | 2.58 | 1.99 | 40 | 4 | 20.4 | 4.1 | 31.5 | 68.5 | 3.27 | 0.027 | |
HD1-5 | O3w | 1333.50 | 3.76 | 2.57 | 1.99 | 53.6 | 5 | 4.3 | 3.5 | 33.6 | 66.4 | - | - | |
HD1-6 | O3w | 1333.20 | 3.98 | 2.72 | 2.08 | 89.6 | 0 | 5.6 | 4.8 | 0 | 100 | - | - | |
HD1-7 | O3g | 1331.81 | 4.31 | 2.57 | 1.99 | 85 | 1.4 | 0 | 2.8 | 10.8 | 89.2 | 2.1 | 0.049 | |
HD1-9 | S1l | 1329.66 | 3.2 | 2.58 | 1.99 | 53.1 | 11.3 | 6.1 | 3.7 | 25.8 | 74.2 | 2.5 | 0.001 | |
HD1-10 | S1l | 1328.79 | 4.3 | 2.47 | 1.93 | 47 | 13.1 | 8.1 | 6.7 | 25.1 | 74.9 | 1.88 | 0.001 | |
HD1-11 | S1l | 1327.74 | 4.43 | 2.52 | 1.96 | 39.5 | 13 | 12.8 | 6.4 | 28.3 | 71.7 | - | - | |
HD1-12 | S1l | 1326.63 | 3.69 | - | - | 39.7 | 11.6 | 13.6 | 4.1 | 31 | 69 | - | - | |
HD1-13 | S1l | 1325.65 | 4.23 | - | - | 36.6 | 10.2 | 24.5 | 2.2 | 26.5 | 73.5 | 1.9 | 0.001 | |
HD1-14 | S1l | 1324.69 | 3.62 | - | - | 42.8 | 12.8 | 8.1 | 4 | 32.3 | 67.7 | - | - | |
HD1-15 | S1l | 1323.82 | 3.39 | - | - | 3.5 | 0.8 | 0.3 | 49.4 | 46 | 54 | 1.83 | 0.224 | |
HD1-16 | S1l | 1322.78 | 3.03 | 2.22 | 1.77 | 43.5 | 17 | 10.9 | 3.3 | 25.3 | 74.7 | - | - | |
HD1-17 | S1l | 1321.80 | 3.54 | - | - | 33.7 | 11.9 | 25.6 | 3.3 | 25.5 | 74.5 | 3.26 | 0.017 | |
HD1-18 | S1l | 1320.88 | 3.06 | - | - | 24.5 | 4.7 | 7.3 | 2.3 | 61.2 | 38.8 | - | - | |
HD1-19 | S1l | 1320.07 | 3.28 | 2.53 | 1.96 | 37.3 | 7.2 | 7.8 | 3 | 44.7 | 55.3 | 3.86 | 0.005 | |
HD1-20 | S1l | 1319.00 | 3.35 | - | - | 32.5 | 6.2 | 15.8 | 3.1 | 42.4 | 57.6 | 3.92 | 0.051 | |
HD1-21 | S1l | 1317.77 | 3.47 | - | - | 40.1 | 6.7 | 11.5 | 2.7 | 39 | 61 | 1.99 | 0.007 | |
HD1-22 | S1l | 1316.76 | 3.43 | 2.56 | 1.98 | 39 | 6.6 | 6.4 | 3.8 | 44.2 | 55.8 | - | - | |
HD1-23 | S1l | 1315.82 | 3.82 | - | - | 45.3 | 6.4 | 10.2 | 4.7 | 33.4 | 66.6 | 2.39 | 0.007 | |
HD1-24 | S1l | 1314.78 | 3.4 | - | - | 41.8 | 7.1 | 6.8 | 6 | 38.3 | 61.7 | - | - | |
HD1-25 | S1l | 1313.91 | 3.7 | - | - | 43.4 | 5.4 | 8.3 | 2.5 | 40.4 | 59.6 | 2.45 | 0.006 | |
HD1-26 | S1l | 1312.82 | 3.82 | - | - | 46.5 | 6.4 | 6 | 3.6 | 37.5 | 62.5 | - | - | |
HD1-27 | S1l | 1311.84 | 3.44 | 2.12 | 1.71 | 43.4 | 6.3 | 5.5 | 2.2 | 42.6 | 57.4 | - | - | |
HD1-28 | S1l | 1310.84 | 2.51 | - | - | 61.6 | 6.5 | 9.4 | 1.9 | 20.6 | 79.4 | 1.15 | 0.001 | |
HD1-29 | S1l | 1309.91 | 2.81 | - | - | 59.3 | 6.4 | 3.6 | 2.3 | 28.4 | 71.6 | - | - | |
HD1-30 | S1l | 1308.78 | 2.92 | - | - | 58.4 | 4.5 | 1.8 | 1.3 | 34 | 66 | 1.08 | 0.001 | |
SBT-R1 | O3w | SBT | 3.44 | 2.04 | 1.66 | 48.7 | 1.1 | 0 | 1.1 | 49.1 | 50.9 | 5.19 | 0.861 | |
SBT-R2 | O3w | SBT | 2.60 | - | - | 4.2 | 0 | 0 | 8.1 | 87.7 | 12.3 | 4.12 | 7.182 | |
SBT-R3 | O3w | SBT | 3.40 | 1.64 | 1.41 | 87.7 | 0 | 0 | 0 | 12.3 | 87.7 | - | - | |
SBT-R4 | O3w | SBT | 4.31 | - | - | 87.6 | 0 | 0 | 0 | 12.4 | 87.6 | 2.62 | 0.005 | |
SBT-R5 | O3w | SBT | 4.28 | 1.19 | 1.14 | 100 | 0 | 0 | 0 | 0 | 100 | 3.30 | 0.010 | |
SBT-R6 | O3w | SBT | 5.31 | 1.61 | 1.4 | 83 | 0 | 0 | 0 | 17 | 83 | - | - | |
SBT-R7 | O3g | SBT | 6.00 | - | - | 54 | 8.4 | 0 | 1.1 | 36.5 | 63.5 | - | - | |
SBT-R8 | S1l | SBT | 2.37 | - | - | 83.7 | 0 | 0 | 0 | 16.3 | 83.7 | 4.77 | 0.002 | |
SBT-R9 | S1l | SBT | 1.83 | 2.41 | 1.89 | 72.4 | 8.3 | 0 | 0 | 19.3 | 80.7 | 2.46 | 0.002 | |
SBT-R10 | S1l | SBT | 0.97 | - | - | 45 | 8.1 | 0 | 1.5 | 45.4 | 54.6 | 3.39 | 0.915 | |
SBT-R11 | S1l | SBT | 1.94 | - | - | 41.3 | 3.8 | 0 | 4.2 | 50.7 | 49.3 | 4.16 | 0.532 | |
SBT-R12 | S1l | SBT | 1.78 | - | - | 41.7 | 6.4 | 0 | 0.6 | 51.3 | 48.7 | 4.72 | 0.680 | |
SBT-R13 | S1l | SBT | 1.39 | - | - | 42.7 | 7.6 | 0 | 3.7 | 46 | 54 | 2.23 | 0.007 | |
Lacustrine Shale | LMS-T1 | J1–2z 1 | LMS | 1.86 | - | 0.82 | 25 | 5 | 13 | 0 | 57 | 43 | 2.90 | 0.003 |
LMS-T2 | J1–2z 1 | LMS | 1.09 | - | 0.64 | 42 | 7 | 0 | 0 | 51 | 49 | 3.60 | 0.380 | |
LMS-T3 | J1–2z 1 | LMS | 1.02 | - | 0.59 | 37 | 4 | 4 | 0 | 55 | 45 | 6.35 | 0.045 | |
LMS-T4 | J1–2z 1 | LMS | 1.72 | - | 0.63 | 46 | 8 | 0 | 0 | 46 | 54 | 2.84 | 0.500 | |
LMS-T5 | J1–2z 1 | LMS | 1.88 | - | 0.51 | 28 | 6 | 0 | 0 | 66 | 34 | 3.87 | 0.167 | |
LMS-T6 | J1–2z 1 | LMS | 1.41 | - | 0.57 | 18 | 5 | 2 | 0 | 75 | 25 | 3.83 | 0.063 | |
LMS-T7 | J1–2z 1 | LMS | 1.53 | - | 0.84 | 17 | 3 | 34 | 0 | 46 | 54 | 3.00 | 1.221 | |
LMS-T8 | J1–2z 1 | LMS | 3.61 | - | 0.73 | 17 | 4 | 8 | 3 | 68 | 32 | 6.94 | 0.396 | |
LMS-T9 | J1–2z 1 | LMS | 1.4 | - | 0.82 | 16 | 5 | 8 | 0 | 71 | 29 | 4.76 | 1.127 | |
LMS-T10 | J1–2z 1 | LMS | 1.13 | - | 0.67 | 11 | 0 | 49 | 1 | 39 | 61 | 6.63 | 1.230 | |
FY-10 | J1–2z 1 | 2810.12 | 1.74 | - | 1.23–2.09 | 16–35 | 4.3–5.2 | 0–23.8 | 0–5.1 | 46–68 | 40 | 4.5 (1.64–6.68) | 0.134 (0.044–0.376) | |
XL101 | J1–2z 1 | 2268.95 | 1.26 | - | 1.42 | 25.6 | 4.7 | 9.5 | 4.5 | 55.7 | 44.3 | 2.86 | 0.664 | |
HF-1 | J1–2z 1 | 2710.02 | 3.74 | - | - | 27.4 | 4.1 | 3.6 | 4 | 60.9 | 39.1 | 4.6 | 0.7269 |
Shale Type | Sample NO. | Formation | Specific Area (m2/g) | Total Pore Volume (cc/g) | Mean Pore Diameter (nm) | Shale Type | Sample NO. | Formation | Specific Area (m2/g) | Total Pore Volume (cc/g) | Mean Pore Diameter (nm) |
---|---|---|---|---|---|---|---|---|---|---|---|
Marine shale | HD1-M1 | S1l | 35.95 | 0.05953 | 6.623 | Marine shale | HD1-M22 | S1l | 13.43 | 0.01615 | 4.811 |
HD1-M2 | S1l | 3.991 | 0.007563 | 7.58 | HD1-M23 | S1l | 11.57 | 0.01235 | 4.271 | ||
HD1-M3 | S1l | 21.41 | 0.08668 | 16.19 | HD1-M24 | S1l | 17.23 | 0.02027 | 4.707 | ||
HD1-M4 | S1l | 18.51 | 0.02768 | 5.981 | HD1-M25 | S1l | 17.73 | 0.02192 | 4.945 | ||
HD1-M5 | S1l | 35.74 | 0.05325 | 5.96 | HD1-M26 | S1l | 21.3 | 0.02111 | 3.965 | ||
HD1-M6 | S1l | 18.51 | 0.02768 | 5.981 | HD1-M27 | S1l | 34.35 | 0.04355 | 5.071 | ||
HD1-M7 | S1l | 4.728 | 0.007848 | 6.639 | HD1-M28 | S1l | 23.1 | 0.02637 | 4.565 | ||
HD1-M8 | S1l | 24.58 | 0.04076 | 6.634 | HD1-M29 | S1l | 16.8 | 0.02148 | 5.115 | ||
HD1-M9 | S1l | 26.92 | 0.06761 | 10.04 | HD1-M30 | S1l | 10.18 | 0.01313 | 5.157 | ||
HD1-M10 | S1l | 17.67 | 0.03358 | 7.602 | Lacustrine Shale | LMS-M1 | J1–2z1 | 18.7 | 0.04417 | 9.447 | |
HD1-M11 | S1l | 5.798 | 0.04927 | 33.99 | LMS-M2 | J1–2z1 | 22.75 | 0.05354 | 9.415 | ||
HD1-M12 | S1l | 11.6 | 0.02949 | 10.17 | LMS-M3 | J1–2z1 | 22.26 | 0.07386 | 13.27 | ||
HD1-M13 | S1l | 12.74 | 0.01587 | 4.98 | LMS-M4 | J1–2z1 | 19.02 | 0.04755 | 10 | ||
HD1-M14 | S1l | 3.455 | 0.0107 | 12.39 | LMS-M5 | J1–2z1 | 14.78 | 0.04274 | 11.57 | ||
HD1-M15 | S1l | 1.678 | 0.004379 | 10.44 | LMS-M6 | J1–2z1 | 13.22 | 0.03711 | 11.23 | ||
HD1-M16 | S1l | 4.511 | 0.01172 | 10.39 | LMS-M7 | J1–2z1 | 23.18 | 0.06262 | 10.81 | ||
HD1-M17 | S1l | 18.4 | 0.01831 | 3.98 | LMS-M8 | J1–2z1 | 8.889 | 0.02454 | 11.04 | ||
HD1-M18 | S1l | 15.82 | 0.01905 | 4.817 | LMS-M9 | J1–2z1 | 8.736 | 0.02563 | 11.73 | ||
HD1-M19 | S1l | 18.23 | 0.01706 | 3.744 | LMS-M10 | J1–2z1 | 13.31 | 0.0245 | 7.365 | ||
HD1-M20 | S1l | 19.32 | 0.01962 | 4.063 | LMS-M11 | J1–2z1 | 8.422 | 0.02367 | 11.24 | ||
HD1-M21 | S1l | 17.49 | 0.01861 | 4.257 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Zhu, L.; Zhao, A.; Wang, D.; Qiu, Z.; Yang, P. Pore Characteristics and Influencing Factors of Marine and Lacustrine Shale in the Eastern Sichuan Basin, China. Energies 2022, 15, 8438. https://doi.org/10.3390/en15228438
He J, Zhu L, Zhao A, Wang D, Qiu Z, Yang P. Pore Characteristics and Influencing Factors of Marine and Lacustrine Shale in the Eastern Sichuan Basin, China. Energies. 2022; 15(22):8438. https://doi.org/10.3390/en15228438
Chicago/Turabian StyleHe, Jianglin, Lixia Zhu, Ankun Zhao, Dong Wang, Zhen Qiu, and Ping Yang. 2022. "Pore Characteristics and Influencing Factors of Marine and Lacustrine Shale in the Eastern Sichuan Basin, China" Energies 15, no. 22: 8438. https://doi.org/10.3390/en15228438
APA StyleHe, J., Zhu, L., Zhao, A., Wang, D., Qiu, Z., & Yang, P. (2022). Pore Characteristics and Influencing Factors of Marine and Lacustrine Shale in the Eastern Sichuan Basin, China. Energies, 15(22), 8438. https://doi.org/10.3390/en15228438