Maceral Control on the Hydrocarbon Generation Potential of Lacustrine Shales: A Case Study of the Chang 7 Member of the Triassic Yanchang Formation, Ordos Basin, North China
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Analytical Methods
3.1. Samples
3.2. Analytical Methods
3.2.1. Total Organic Carbon Content
3.2.2. Organic Petrography
3.2.3. Rock-Eval Pyrolysis
3.2.4. Scanning Electron Microscopic Imaging
4. Results
4.1. Organic Matter Content and Maceral Composition
4.2. Rock-Eval Pyrolysis
4.3. Organic Matter-Hosted Pores
5. Discussion
5.1. Sedimentological Control on OM Content and Maceral Variation
5.2. Maceral Control on Hydrocarbon Generation
5.3. Maceral Control on Organic Pore Development
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tissot, B.P.; Welte, D.H. Petroleum Formation and Occurrence, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Hackley, P.C.; Cardott, B.J. Application of organic petrography in North American shale petroleum systems: A review. Int. J. Coal Geol. 2016, 163, 8–51. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Z.; Zou, C. Controlling factors on the formation and distribution of “sweet-spot areas” of marine gas shales in South China and a preliminary discussion on unconventional petroleum sedimentology. J. Asian Earth Sci. 2020, 194, 103989. [Google Scholar] [CrossRef]
- Potter, J.; Stasiuk, L.D.; Cameron, A.R. A Petrographic Atlas of Canadian Coal Macerals and Dispersed Organic Matter; Canadian Society for Coal Science and Organic Petrology—Geological Survey of Canada (Calgary)—Canmet Energy Technology Centre: Calgary, AB, Canada, 1998. [Google Scholar]
- Stasiuk, L.D.; Burgess, J.; Thompson-Rizer, C.; Hutton, A.; Cardott, B. Status report on TSOP-ICCP dispersed organic matter classification working group. Soc. Org. Petrol. Newsl. 2002, 19, 14. [Google Scholar]
- Flores, D.; Suárez-Ruiz, I. Organic petrology in the study of dispersed organic matter. In The Role of Organic Petrology in the Exploration of Conventional and Unconventional Hydrocarbon Systems; Suárez-Ruiz, I., Filho, J.G.M., Eds.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2017; pp. 34–76. [Google Scholar]
- Mastalerz, M.; Drobniak, A.; Stankiewicz, A.B. Origin, properties, and implications of solid bitumen in source-rock reservoirs: A review. Int. J. Coal Geol. 2018, 195, 14–36. [Google Scholar] [CrossRef]
- Liu, B.; Mastalerz, M.; Schieber, J. SEM petrography of dispersed organic matter in black shales: A review. Earth Sci. Rev. 2022, 224, 103874. [Google Scholar] [CrossRef]
- Peters, K.E.; Cassa, M.R. Applied source rock geochemistry. In The Petroleum System—From Source to Trap; AAPG Memoir; Magoon, L.B., Dow, W.G., Eds.; American Association of Petroleum Geologists (AAPG): Tulsa, OK, USA, 1994; Volume 60, pp. 93–120. [Google Scholar]
- Pickel, W.; Kus, J.; Flores, D.; Kalaitzidis, S.; Christanis, K.; Cardott, B.J.; Misz-Kennan, M.; Rodrigues, S.; Hentschel, A.; Hamor-Vido, M.; et al. Classification of liptinite–ICCP System 1994. Int. J. Coal Geol. 2017, 169, 40–61. [Google Scholar] [CrossRef] [Green Version]
- Taylor, G.H.; Teichmüller, M.; Davis, A.; Diessel, C.F.K.; Littke, R.; Robert, P. Organic Petrology; Gebrüder Borntraeger: Berlin, Germany; Stuttgart, Germany, 1998. [Google Scholar]
- French, K.L.; Birdwell, J.E.; Berg, M.V. Biomarker similarities between the saline lacustrine Eocene Green River and the Paleoproterozoic Barney Creek Formations. Geochim. Cosmochim. Acta 2020, 274, 228–245. [Google Scholar] [CrossRef]
- Thompson-Rizer, C.L. Optical description of amorphous kerogen in both thin sections and isolated kerogen preparations of Precambrian to Eocene shale samples. Precambrian Res. 1993, 61, 181–190. [Google Scholar] [CrossRef]
- Kus, J.; Araujo, C.V.; Borrego, A.G.; Flores, D.; Hackley, P.C.; Hámor-Vidó, M.; Kalaitzidis, S.; Kommeren, C.J.; Kwiecińska, B.; Mastalerz, M.; et al. Identification of alginite and bituminite in rocks other than coal. 2006, 2009, and 2011 round robin exercises of the ICCP Identification of Dispersed Organic Matter Working Group. Int. J. Coal Geol. 2017, 178, 26–38. [Google Scholar] [CrossRef]
- Teng, J.; Mastalerz, M.; Liu, B. Petrographic and chemical structure characteristics of amorphous organic matter in marine black shales: Insights from Pennsylvanian and Devonian black shales in the Illinois Basin. Int. J. Coal Geol. 2021, 235, 103676. [Google Scholar] [CrossRef]
- Teng, J.; Deng, H.; Xia, Y.; Chen, W.; Fu, M. Controls of amorphous organic matter on the hydrocarbon generation potential of lacustrine shales: A case study on the Chang 7 Member of Yanchang Formation, Ordos Basin, North China. Energy Fuels 2021, 35, 5879–5888. [Google Scholar] [CrossRef]
- Liu, K.; Liu, J.; Huang, X. Coupled stratigraphic and petroleum system modeling: Examples from the Ordos Basin, China. AAPG Bull. 2021, 105, 1–28. [Google Scholar] [CrossRef]
- Zhao, M.; Behr, H.J.; Ahrendt, H.; Wemmer, K.; Ren, Z.; Zhao, Z. Thermal and tectonic history of the Ordos Basin, China: Evidence from apatite fission track analysis, vitrinite reflectance, and K-Ar dating. AAPG Bull. 1996, 80, 1110–1133. [Google Scholar]
- Teng, J.; Deng, H.; Liu, B.; Chen, W.; Fu, M.; Xia, Y.; Yu, H. Insights of the pore system of lacustrine shales from immature to late mature with the aid of petrology, mineralogy and porosimetry: A case study of the Triassic Yanchang Formation of the Ordos Basin, North China. J. Pet. Sci. Eng. 2021, 196, 107631. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Liu, H.; Deng, X.; Wanyan, R. Depocenter migration of the Ordos Basin in the late Triassic and its controls on shale distribution. Interpretation 2017, 5, 81–98. [Google Scholar] [CrossRef]
- Yang, Y.; Li, W.; Ma, L. Tectonic and stratigraphic controls of hydrocarbon systems in the Ordos basin: A multicycle cratonic basin in central China. AAPG Bull. 2005, 89, 255–269. [Google Scholar] [CrossRef]
- Zhao, J.; Mountney, N.P.; Liu, C.; Qu, H.; Lin, J. Outcrop architecture of a fluvio-lacustrine succession: Upper Triassic Yanchang Formation, Ordos Basin, China. Mar. Pet. Geol. 2015, 68, 394–413. [Google Scholar] [CrossRef]
- Xie, X. Provenance and sediment dispersal of the Triassic Yanchang Formation, southwest Ordos Basin, China, and its implications. Sediment. Geol. 2016, 335, 1–16. [Google Scholar] [CrossRef]
- Zou, C.; Zhu, R.; Chen, Z.; Ogg, J.G.; Wu, S.; Dong, D.; Qiu, Z.; Wang, Y.; Wang, L.; Lin, S.; et al. Organic-matter-rich shales of China. Earth Sci. Rev. 2019, 189, 51–78. [Google Scholar] [CrossRef]
- Zavala, C.; Liu, H.; Li, X.; Arcuri, M.; Di Meglio, M.; Zorzano, A.; Otharán, G.; Hao, B.; Wang, Y. Lacustrine sequence stratigraphy: New insights from the study of the Yanchang Formation (Middle-Late Triassic), Ordos Basin, China. In The Ordos Basin: Sedimentological Research for Hydrocarbons Exploration; Van Loon, T., Yang, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 309–335. [Google Scholar]
- Rowe, H.D.; Wang, X.; Fa, B.; Zhang, T.; Ruppel, S.C.; Milliken, K.; Loucks, R.G.; Shen, Y.; Zhang, J.; Liang, Q.; et al. Chemostratigraphic insights into fluvio-lacustrine deposition, Yanchang Formation, Upper Triassic, Ordos Basin, China. Interpretation 2017, 5, 149–165. [Google Scholar] [CrossRef]
- Feng, C.; Sun, M.; Liu, C.; Deng, X.; Xue, Y.; Dong, L. Seismic sedimentary characteristics and filling structure of the Upper Triassic Yanchang Formation, Ordos Basin, China. Interpretation 2020, 8, 259–274. [Google Scholar] [CrossRef]
- Yang, H.; Li, S.; Liu, X. Characteristics and resources prospects of tight oil and shale oil in Ordos Basin. Acta Pet. Sin. 2013, 34, 1–11, (In Chinese with English abstract). [Google Scholar]
- Qiu, Z.; Zou, C. Unconventional petroleum sedimentology: Connotation and prospect. Acta Sedimentol. Sin. 2020, 38, 1–29, (In Chinese with English abstract). [Google Scholar]
- ASTM-D2797; Standard Practice for Preparing Coal Samples for Microscopical Analysis by Reflected Light. ASTM International: West Conshohocken, PA, USA, 2015.
- Schieber, J. Common themes in the formation and preservation of intrinsic porosity in shales and mudstones-illustrated with examples across the Phanerozoic. In Proceedings of the SPE Unconventional Gas Conference, Pittsburgh, PA, USA, 23–25 February 2010. SPE Paper 132370. [Google Scholar]
- Schieber, J. SEM observations on ion-milled samples of Devonian black shales from Indiana and New York: The petrographic context of multiple pore types. In Electron Microscopy of Shale Hydrocarbon Reservoirs; AAPG Memoir; Camp, W., Diaz, E., Wawak, B., Eds.; American Association of Petroleum Geologists (AAPG): Tulsa, OK, USA, 2013; Volume 102, pp. 153–171. [Google Scholar]
- Schieber, J.; Lazar, R.; Bohacs, K.; Klimentidis, R.; Dumitrescu, M.; Ottmann, J. An SEM study of porosity in the Eagle Ford Shale of Texas—Pore types and porosity distribution in a depositional and sequence-stratigraphic Context. In The Eagle Ford Shale: A Renaissance in U.S. Oil Production; AAPG Memoir; Breyer, J.A., Ed.; American Association of Petroleum Geologists (AAPG): Tulsa, OK, USA, 2016; Volume 110, pp. 167–186. [Google Scholar]
- Mastalerz, M.; Schieber, J. Effect of ion milling on the perceived maturity of shale samples: Implications for organic petrography and SEM analysis. Int. J. Coal Geol. 2017, 183, 110–119. [Google Scholar] [CrossRef]
- Jarvie, D.M.; Claxton, B.L.; Henk, F.; Breyer, J.T. Oil and shale gas from the Barnett Shale, Ft. Worth Basin, Texas. In Proceedings of the AAPG Annual Meeting Program, Denver, CO, USA, 3–6 June 2001; Volume 10, p. A100. [Google Scholar]
- Mastalerz, M.; Hampton, L.; Drobniak, A. Thermal alteration index (TAI), vitrinite reflectance, and Tmax through maturation. In Proceedings of the 32nd Annual Meeting of the Society for Organic Petrology, Yogyakarta, Java, Indonesia, 20–27 September 2015. [Google Scholar]
- Laughrey, C.D. Introductory geochemistry for shale gas, condensate-rich shales and tight oil reservoirs. In Proceedings of the URTeC Annual Meeting Short Course, Denver, CO, USA, 27 August 2014; p. 325. [Google Scholar]
- Dong, T.; Harris, N.B.; Ayranci, K. Relative sea-level cycles and organic matter accumulation in shales of the Middle and Upper Devonian Horn River Group, northeastern British Columbia, Canada: Insights into sediment flux, redox conditions, and bioproductivity. GSA Bull. 2018, 130, 859–880. [Google Scholar] [CrossRef]
- Liu, B.; Schieber, J.; Mastalerz, M.; Teng, J. Organic matter content and type variation in the sequence stratigraphic context of the Upper Devonian New Albany Shale, Illinois Basin. Sediment. Geol. 2019, 383, 101–120. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, R.; Liu, Z. Sedimentary sequence evolution and organic matter accumulation characteristics of the Chang 8–Chang 7 members in the Upper Triassic Yanchang Formation, southwest Ordos Basin, central China. J. Pet. Sci. Eng. 2021, 196, 107751. [Google Scholar] [CrossRef]
- Zhang, T.; Hu, S.; Bu, Q.; Bai, B.; Tao, S.; Chen, Y.; Pan, Z.; Lin, S.; Pang, Z.; Xu, W.; et al. Effects of lacustrine depositional sequences on organic matter enrichment in the Chang 7 Shale, Ordos Basin, China. Mar. Pet. Geol. 2021, 124, 104778. [Google Scholar] [CrossRef]
- Yuan, X.; Lin, S.; Liu, Q.; Yao, J.; Wang, L.; Guo, H.; Deng, X.; Cheng, D. Lacustrine fine-grained sedimentary features and organic-rich shale distribution pattern: A case study of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China. Pet. Explor. Dev. 2015, 42, 34–43. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, Z.; Zhang, L. Control actions of sedimentary environments and sedimentation rates on lacustrine oil shale distribution, an example of the oil shale in the Upper Triassic Yanchang Formation, southeastern Ordos Basin (NW China). Mar. Pet. Geol. 2019, 102, 508–520. [Google Scholar] [CrossRef]
- Yuan, W.; Liu, G.; Stebbins, A.; Xu, L.; Niu, X.; Luo, W.; Li, C. Reconstruction of redox conditions during deposition of organic-rich shales of the Upper Triassic Yanchang Formation, Ordos Basin, China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 486, 158–170. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, S.; Bai, B.; Zhang, T.; Pang, Z.; Tao, S.; Hu, S. Effects of petroleum retention and migration within the Triassic Chang 7 Member of the Ordos Basin, China. Int. J. Coal Geol. 2020, 225, 103502. [Google Scholar] [CrossRef]
- Xiao, L.; Li, Z.; Hou, Y.; Xu, L.; Wang, L.; Yang, Y. Characteristics of organic macerals and their influence on hydrocarbon generation and storage: A case study of continental shale of the Yanchang Formation from the Ordos Basin, China. Geofluids 2021, 2021, 5537154. [Google Scholar] [CrossRef]
- Hackley, P.C.; Zhang, L.; Zhang, T. Organic petrology of peak oil maturity Triassic Yanchang Formation lacustrine mudrocks, Ordos Basin, China. Interpretation 2017, 5, SF211–SF223. [Google Scholar] [CrossRef]
- Liu, B.; Schieber, J.; Mastalerz, M. Petrographic and micro-FTIR study of organic matter in the Upper Devonian New Albany Shale during thermal maturation: Implications for kerogen transformation. In Mudstone Diagenesis: Research Perspectives for Shale Hydrocarbon Reservoirs, Seals, and Source Rocks; AAPG Memoir; Camp, W., Milliken, K., Taylor, K., Fishman, N., Hackley, P., Macquaker, J., Eds.; American Association of Petroleum Geologists (AAPG): Tulsa, OK, USA, 2019; Volume 120, pp. 165–188. [Google Scholar]
- Goodarzi, F.; Hosseininejad, S.; Pedersen, P.K.; Gentzis, T.; Sanei, H. Characterization of immature oil shales from the Cretaceous Second White Specks Formation in Saskatchewan and Manitoba, Canada. Mar. Pet. Geol. 2022, 143, 105774. [Google Scholar] [CrossRef]
- Teichmüller, M.; Ottenjann, K. Art und diagenese von liptiniten und lipoiden stoffen in einem Erdölmuttergestein auf grund fluoroeszenzmikroskopischer Untersuchungen. Erdöl Kohle Erdgas Petrochem. 1977, 30, 387–398. [Google Scholar]
- Liu, B.; Mastalerz, M.; Schieber, J.; Teng, J. Association of uranium with macerals in marine black shales: Insights from the Upper Devonian New Albany Shale, Illinois Basin. Int. J. Coal Geol. 2020, 217, 103351. [Google Scholar] [CrossRef]
- Chen, Y.; Mastalerz, M.; Schimmelmann, A. Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy. Int. J. Coal Geol. 2012, 104, 22–33. [Google Scholar] [CrossRef]
- Katz, B.J.; Lin, F. Consideration of the limitations of thermal maturity with respect to vitrinite reflectance, Tmax, and other proxies. AAPG Bull. 2021, 105, 695–720. [Google Scholar] [CrossRef]
- Yang, S.; Horsfield, B. Critical review of the uncertainty of Tmax in revealing the thermal maturity of organic matter in sedimentary rocks. Int. J. Coal Geol. 2020, 225, 103500. [Google Scholar] [CrossRef]
- Xie, K.; Zhang, Y.; Li, C.; Ling, D. Pyrolysis characteristics of macerals separated from a single coal and their artificial mixture. Fuel 1991, 70, 474–479. [Google Scholar] [CrossRef]
- Jarvie, D.M.; Lundell, L.L. Amount, type, and kinetics of thermal transformation of organic matter in the Miocene Monterey Formation. In The Monterey Formation: From Rocks to Molecules; Caroline, M.I., Jürgen, R., Eds.; Columbia University Press: New York, NY, USA, 2001; pp. 268–295. [Google Scholar]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Hammes, U. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull. 2012, 96, 1071–1098. [Google Scholar] [CrossRef] [Green Version]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Jarvie, D.M. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. J. Sediment. Res. 2009, 79, 848–861. [Google Scholar] [CrossRef] [Green Version]
- Cardott, B.J.; Landis, C.R.; Curtis, M.E. Post-oil solid bitumen network in the Woodford Shale, USA—A potential primary migration pathway. Int. J. Coal Geol. 2015, 139, 106–113. [Google Scholar] [CrossRef]
- Katz, B.J.; Arango, I. Organic porosity: A geochemist’s view of the current state of understanding. Org. Geochem. 2018, 123, 1–16. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Y.; Tian, S.; Guo, Y.; Wang, L.; Yasin, Q.; Yang, J. Impact of thermal maturity on the diagenesis and porosity of lacustrine oil-prone shales: Insights from natural shale samples with thermal maturation in the oil generation window. Int. J. Coal Geol. 2022, 261, 104079. [Google Scholar] [CrossRef]
- Ko, L.T.; Loucks, R.G.; Milliken, K.L.; Liang, Q.; Zhang, T.; Sun, X.; Hackley, P.C.; Ruppel, S.C.; Peng, S. Controls on pore types and pore-size distribution in the Upper Triassic Yanchang Formation, Ordos Basin, China: Implications for pore evolution models of lacustrine mudrocks. Interpretation 2017, 5, SF127–SF148. [Google Scholar] [CrossRef]
- Liu, B.; Schieber, J.; Mastalerz, M. Combined SEM and reflected light petrography of organic matter in the New Albany Shale (Devonian-Mississippian) in the Illinois Basin: A perspective on organic pore development with thermal maturation. Int. J. Coal Geol. 2017, 184, 57–72. [Google Scholar] [CrossRef]
- Ardakani, O.H.; Sanei, H.; Ghanizadeh, A.; Lavoie, D.; Chen, Z.; Clarkson, C.R. Do all fractions of organic matter contribute equally in shale porosity? A case study from Upper Ordovician Utica Shale, southern Quebec, Canada. Mar. Pet. Geol. 2018, 92, 794–808. [Google Scholar] [CrossRef]
- Wu, Z.; He, S.; Han, Y.; Zhai, G.; He, X.; Zhou, Z. Effect of organic matter type and maturity on organic matter pore formation of transitional facies shales: A case study on Upper Permian Longtan and Dalong Shales in middle Yangtze region, China. J. Earth Sci. 2020, 31, 368–384. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, C.; Li, X.; Zhang, Y.; Wang, X. Simulation of methane adsorption in diverse organic pores in shale reservoirs with multi-period geological evolution. Int. J. Coal Sci. Technol. 2021, 8, 844–855. [Google Scholar] [CrossRef]
- Fishman, N.S.; Hackley, P.C.; Lowers, H.A.; Hill, R.J.; Egenhoff, S.O.; Eberl, D.D.; Blum, A.E. The nature of porosity in organic-rich mudstones of the Upper Jurassic Kimmeridge Clay Formation, North Sea, offshore United Kingdom. Int. J. Coal Geol. 2012, 103, 32–50. [Google Scholar] [CrossRef]
- Liu, B.; Teng, J.; Li, C.; Li, B.; Bie, S.; Wang, Y. The control of shale composition on the pore structure characteristics of lacustrine shales: A case study of the Chang 7 Member of the Triassic Yanchang Formation, Ordos Basin, North China. Energies 2022, 15, 8353. [Google Scholar] [CrossRef]
- Liu, B.; Teng, J.; Mastalerz, M.; Schieber, J.; Schimmelmann, A.; Bish, D. Compositional control on shale pore structure characteristics across a maturation gradient: Insights from the Devonian New Albany Shale and Marcellus Shale in the eastern United States. Energy Fuels 2021, 35, 7913–7929. [Google Scholar] [CrossRef]
Sample | Location | TOC (wt.%) | Ro (%) | AOM | Alginite | Sporinite | Liptodetrinite | Vitrinite | Inertinite | Solid Bitumen |
---|---|---|---|---|---|---|---|---|---|---|
KQ-1 | Kuquan section, Yijun County, Tongchuan, Shaanxi | 12.48 | 0.69 | 60.6 | 24.2 | 1.5 | 1.5 | 1.5 | 1.5 | 9.1 |
KQ-2 | 22.80 | 0.67 | 62.1 | 14.7 | 0.0 | 2.1 | 2.1 | 1.1 | 17.9 | |
KQ-3 | 19.39 | 0.71 | 54.9 | 23.2 | 0.0 | 1.2 | 1.2 | 1.2 | 18.3 | |
KQ-4 | 21.62 | 0.67 | 68.8 | 17.2 | 0.0 | 1.1 | 3.2 | 1.1 | 8.6 | |
KQ-5 | 21.73 | 0.74 | 67.5 | 21.2 | 1.3 | 1.3 | 0.7 | 1.3 | 6.6 | |
KQ-6 | 33.15 | 0.69 | 78.6 | 4.2 | 0.4 | 4.2 | 0.7 | 0.7 | 11.2 | |
Average | 21.86 | 0.70 | 65.4 | 17.5 | 0.5 | 1.9 | 1.6 | 1.1 | 12.0 | |
DZ-1 | Danzhou section, Yichuan County, Yan’an, Shaanxi | 0.31 | 0.72 | 0.0 | 0.0 | 11.1 | 22.2 | 44.4 | 22.2 | 0.0 |
DZ-2 | 0.30 | 0.72 | 0.0 | 0.0 | 25.0 | 25.0 | 37.5 | 12.5 | 0.0 | |
DZ-3 | 0.30 | 0.71 | 0.0 | 0.0 | 10.5 | 26.3 | 52.6 | 10.5 | 0.0 | |
DZ-4 | 0.55 | 0.70 | 10.5 | 0.0 | 10.5 | 26.3 | 42.1 | 10.5 | 0.0 | |
DZ-5 | 0.72 | 0.71 | 0.0 | 0.0 | 7.1 | 21.4 | 50.0 | 21.4 | 0.0 | |
DZ-6 | 1.76 | 0.68 | 0.0 | 0.0 | 5.9 | 23.5 | 47.1 | 23.5 | 0.0 | |
DZ-7 | 3.70 | 0.70 | 0.0 | 0.0 | 3.7 | 7.4 | 77.8 | 11.1 | 0.0 | |
DZ-8 | 2.14 | 0.71 | 0.0 | 0.0 | 6.7 | 20.0 | 66.7 | 6.7 | 0.0 | |
DZ-9 | 3.54 | 0.71 | 0.0 | 0.0 | 4.0 | 8.0 | 80.0 | 8.0 | 0.0 | |
Average | 1.48 | 0.71 | 1.2 | 0.0 | 9.4 | 20.0 | 55.4 | 14.1 | 0.0 |
Sample | TOC (wt.%) | S1 (mg HC/g Sample) | S2 (mg HC/g Sample) | S3 (mg CO2/g Sample) | Tmax (°C) | HI (mg HC/g TOC) | OI (mg CO2/g TOC) | Ro (%) | Ro-1 | Ro-2 | Ro-3 |
---|---|---|---|---|---|---|---|---|---|---|---|
KQ-1 | 12.48 | 3.22 | 66.15 | 0.19 | 436 | 530 | 2 | 0.69 | 0.69 | 0.67 | 0.83 |
KQ-2 | 22.80 | 4.87 | 130.53 | 0.16 | 441 | 573 | 1 | 0.67 | 0.78 | 0.75 | 0.93 |
KQ-3 | 19.39 | 6.44 | 123.99 | 0.18 | 438 | 639 | 1 | 0.71 | 0.72 | 0.70 | 0.87 |
KQ-4 | 21.62 | 3.4 | 110.25 | 0.61 | 433 | 510 | 3 | 0.67 | 0.63 | 0.63 | 0.78 |
KQ-5 | 21.73 | 7.09 | 131.43 | 0.38 | 436 | 605 | 2 | 0.74 | 0.69 | 0.67 | 0.83 |
KQ-6 | 33.15 | 8.55 | 188.54 | 0.72 | 435 | 569 | 2 | 0.69 | 0.67 | 0.66 | 0.82 |
Average | 21.86 | 5.60 | 125.15 | 0.37 | 437 | 571 | 2 | 0.70 | 0.70 | 0.68 | 0.84 |
DZ-1 | 0.31 | 0.04 | 0.16 | 0.17 | 439 | 52 | 55 | 0.72 | 0.74 | 0.72 | 0.89 |
DZ-2 | 0.30 | 0.05 | 0.14 | 0.16 | 438 | 47 | 53 | 0.72 | 0.72 | 0.70 | 0.87 |
DZ-3 | 0.30 | 0.05 | 0.13 | 0.26 | 444 | 43 | 87 | 0.71 | 0.83 | 0.79 | 0.98 |
DZ-4 | 0.55 | 0.1 | 0.28 | 0.26 | 448 | 51 | 47 | 0.70 | 0.90 | 0.85 | 1.06 |
DZ-5 | 0.72 | 0.07 | 0.34 | 0.37 | 443 | 47 | 51 | 0.71 | 0.81 | 0.78 | 0.96 |
DZ-6 | 1.76 | 0.33 | 2.61 | 0.53 | 446 | 148 | 30 | 0.68 | 0.87 | 0.82 | 1.02 |
DZ-7 | 3.70 | 0.17 | 3.06 | 0.99 | 448 | 83 | 27 | 0.70 | 0.90 | 0.85 | 1.06 |
DZ-8 | 2.14 | 0.41 | 3.01 | 0.52 | 446 | 141 | 24 | 0.71 | 0.87 | 0.82 | 1.02 |
DZ-9 | 3.54 | 0.25 | 4.36 | 0.27 | 450 | 123 | 8 | 0.71 | 0.94 | 0.88 | 1.10 |
Average | 1.48 | 0.16 | 1.57 | 0.39 | 445 | 82 | 42 | 0.71 | 0.84 | 0.80 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Teng, J.; Mastalerz, M. Maceral Control on the Hydrocarbon Generation Potential of Lacustrine Shales: A Case Study of the Chang 7 Member of the Triassic Yanchang Formation, Ordos Basin, North China. Energies 2023, 16, 636. https://doi.org/10.3390/en16020636
Liu B, Teng J, Mastalerz M. Maceral Control on the Hydrocarbon Generation Potential of Lacustrine Shales: A Case Study of the Chang 7 Member of the Triassic Yanchang Formation, Ordos Basin, North China. Energies. 2023; 16(2):636. https://doi.org/10.3390/en16020636
Chicago/Turabian StyleLiu, Bei, Juan Teng, and Maria Mastalerz. 2023. "Maceral Control on the Hydrocarbon Generation Potential of Lacustrine Shales: A Case Study of the Chang 7 Member of the Triassic Yanchang Formation, Ordos Basin, North China" Energies 16, no. 2: 636. https://doi.org/10.3390/en16020636
APA StyleLiu, B., Teng, J., & Mastalerz, M. (2023). Maceral Control on the Hydrocarbon Generation Potential of Lacustrine Shales: A Case Study of the Chang 7 Member of the Triassic Yanchang Formation, Ordos Basin, North China. Energies, 16(2), 636. https://doi.org/10.3390/en16020636