Synergistic Evolution of Palaeoenvironment—Bionts and Hydrocarbon Generation of Permian Saline Lacustrine Source Rocks in Jimusar Sag, Junggar Basin
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Experiments
3.1. Samples
3.2. Experiments
3.2.1. Organic Geochemistry Experiments
3.2.2. The Thermal Simulation Experiments
4. Results
4.1. Organic Matter Abundance
4.2. Biomarkers
4.2.1. n-Alkanes and Isoprenoid Alkanes
4.2.2. Terpanes
4.2.3. Steranes
4.3. Pyrolysis Simulation Experiments
5. Discussion
5.1. Biomarker Characteristics of Source Rocks
5.1.1. Maturity of Organic Matter
5.1.2. Sedimentary Environment of Organic Matter
5.1.3. Origin of Organic Matter
5.1.4. Controlling Factors of Organic Matter Accumulation
5.2. Synergistic Evolution of Environment—Bionts of Source Rocks
5.3. Hydrocarbon Generation Potential of Source Rocks
5.3.1. Liquid Hydrocarbon Yields
5.3.2. Gaseous Hydrocarbon Yield
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kelts, K. Environments of deposition of lacustrine petroleum source rocks: An introduction. Geol. Soc. Lond. Spec. Publ. 1988, 40, 3–26. [Google Scholar] [CrossRef]
- Carroll, A.R.; Brassell, S.C.; Graham, S.A. Upper Permian lacustrine oil shales, southern Junggar basin, northwest China. AAPG Bull. 1992, 76, 1874–1902. [Google Scholar] [CrossRef]
- Qiu, Z.; Zou, C.N. Controlling factors on the formation and distribution of “sweet-spot areas” of marine gas shales in South China and a preliminary discussion on unconventional petroleum sedimentology. J. Asian Earth Sci. 2019, 194, 103989. [Google Scholar] [CrossRef]
- Adegoke, A.K.; Abdullah, W.H.; Hakimi, M.H.; Yandoka, B.M.S. Geochemical characterisation of Fika Formation in the Chad (Bornu) Basin, northeastern Nigeria: Implications for depositional environment and tectonic setting. Appl. Geochem. 2014, 43, 1–12. [Google Scholar] [CrossRef]
- Xia, L.W.; Cao, J.; Bian, L.Z.; Hu, W.X.; Wang, T.T.; Zhi, D.M.; Tang, Y.; Li, E.T. Co-evolution of paleo-environment and bio-precursors in a Permian alkaline lake, Mahu mega-oil province, Junggar Basin: Implications for oil sources. Sci. China Earth Sci. 2022, 65, 462–476. [Google Scholar] [CrossRef]
- Keym, M.; Dieckmann, V.; Horsfield, B.; Erdmann, M.; Galimberti, R.; Kua, L.C.; Leith, L.; Podlaha, O. Source rock heterogeneity of the Upper Jurassic Draupne Formation, North Viking Graben, and its relevance to petroleum generation studies. Org. Geochem. 2006, 37, 220–243. [Google Scholar] [CrossRef]
- Tao, H.F.; Qiu, Z.; Qu, Y.Q.; Liu, J.; Qin, Z.; Xie, Z.B.; Qiu, J.L.; Liu, B. Geochemistry of Middle Permian lacustrine shales in the Jimusar Sag, Junggar Basin, NW China: Implications for hydrothermal activity and organic matter enrichment. J. Asian Earth Sci. 2022, 232, 105267. [Google Scholar] [CrossRef]
- Harris, N.B.; Freeman, K.H.; Pancost, R.D.; White, T.S.; Mitchell, G.D. The character and origin of lacustrine source rocks in the Lower Cretaceous synrift section, Congo Basin, west Africa. AAPG Bull. 2004, 88, 1163–1184. [Google Scholar] [CrossRef]
- Ding, X.J.; Liu, G.D.; Zha, M.; Gao, C.H.; Huang, Z.L.; Qu, J.X.; Lu, X.J.; Wang, P.G.; Chen, Z.L. Geochemical characterization and depositional environment of source rocks of small fault basin in Erlian Basin, northern China. Mar. Pet. Geol. 2016, 69, 231–240. [Google Scholar] [CrossRef]
- Liang, C.; Jiang, Z.; Cao, Y.C.; Wu, J.; Wang, Y.S.; Hao, F. Sedimentary characteristics and origin of lacustrine organic-rich shales in the salinized Eocene Dongying Depression. Geol. Soc. Am. Bull. 2018, 130, 154–174. [Google Scholar] [CrossRef]
- Meyers, P.A.; Ishiwatari, R. Lacustrine organic geochemistry—An overview of indicators of organic matter sources and diagenesis in lake sediments. Org. Geochem. 1993, 20, 867–900. [Google Scholar] [CrossRef]
- Arthur, M.A.; Dean, W.E. Organic-matter production and preservation and evolution of anoxia in the Holocene Black Sea. Paleoceanography 1998, 13, 395–411. [Google Scholar] [CrossRef]
- Burdige, D.J. Preservation of organic matter in marine sediments: Controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem. Rev. 2007, 107, 467–485. [Google Scholar] [CrossRef]
- Wu, H.G.; Hu, W.X.; Cao, J.; Wang, X.L.; Wang, X.L.; Liao, Z.W. A unique lacustrine mixed dolomitic-clastic sequence for tight oil reservoir within the middle Permian Lucaogou Formation of the Junggar Basin, NW China: Reservoir characteristics and origin. Mar. Pet. Geol. 2016, 76, 115–132. [Google Scholar] [CrossRef]
- Wu, P.; Hou, D.J.; Gan, J.; Li, X.; Ding, W.J.; Gang, L.; Wu, B.B. Paleoenvironment and controlling factors of Oligocene source rock in the eastern deep-water area of the Qiongdongnan basin: Evidences from organic geochemistry and palynology. Energy Fuels 2018, 32, 7423–7437. [Google Scholar] [CrossRef]
- Meyers, P.A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org. Geochem. 1997, 27, 213–250. [Google Scholar] [CrossRef]
- Kuang, L.C.; Hu, W.X.; Wang, X.L.; Wu, H.G.; Wang, X.L. Research of the Tight Oil Reservoir in the Lucaogou Formation in Jimusar Sag: Analysis of Lithology and Porosity Characteristics. Geol. J. China Univ. 2013, 19, 529–535, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Jiang, Y.Q.; Liu, Y.Q.; Zhao, Y.; Nan, Y.; Wang, R.; Zhou, P.; Yang, Y.J.; Kou, J.Y.; Zhou, N.C. Characteristics and origin of tuff-type tight oil in Jimusaer sag, Junggar Basin, NW China. Pet. Explor. Dev. 2015, 42, 810–818. [Google Scholar] [CrossRef]
- Uematsu, M.; Toratani, M.; Kajino, M.; Narita, Y.; Senga, Y.; Kimoto, T. Enhancement of primary productivity in the western North Pacific caused by the eruption of the Miyake-jima Volcano. Geophys. Res. Lett. 2004, 31, 177–182. [Google Scholar] [CrossRef]
- Duggen, S.; Croot, P.; Schacht, U.; Hoffmann, L. Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: Evidence from biogeochemical experiments and satellite data. Geophys. Res. Lett. 2007, 34, 95–119. [Google Scholar] [CrossRef]
- Wang, X.Q.; Sun, L.; Zhu, R.K.; Jin, X.; Li, J.M.; Wu, S.T.; Bi, L.N.; Liu, X.D. Application of charging effects in evaluating storage space of tight reservoirs: A case study from Permian Lucaogou Formation in Jimusar sag, Junggar Basin, NW China. Pet. Explor. Dev. 2015, 42, 516–524. [Google Scholar] [CrossRef]
- Zhang, D.W.; Wang, L.H.; Su, L.; Wu, Y.D.; Sun, R.; Wu, C.J.; Song, D.J.; Tuo, J.C. The chemical kinetics of the semi-open hydrous pyrolysis system: Time series analysis of lithostatic pressure and fluid pressure. Int. J. Coal Geol. 2020, 220, 103418. [Google Scholar] [CrossRef]
- Kuang, L.C.; Wang, X.T.; Guo, X.G.; Chang, Q.S.; Jia, X.Y. Geological characteristics and exploration practice of tight oil of Lucaogou Formation in Jimsar Sag. Xinjiang Pet. Geol. 2015, 36, 629–634, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Xie, Z.B.; Qu, Y.Q.; Wu, T.; Wang, T.H.; Liu, Y.T.; Hei, C.L.; Tao, H.F. Discussion on the sedimentary paleoenvironment and biological source of Permian Lucaogou Formation in Jimusar Sag, Junggar Basin. Nat. Gas Geosci. 2023, 6. Available online: http://kns.cnki.net/kcms/detail/62.1177.TE.20230218.2248.002.html (accessed on 11 February 2023). (In Chinese).
- Cao, Z.; Liu, G.D.; Xiang, B.L.; Wang, P.; Niu, G.; Niu, Z.C.; Li, C.Z.; Wang, C.Y. Geochemical characteristics of crude oil from a tight oil reservoir in the Lucaogou Formation, Jimusar sag, Junggar Basin. AAPG Bull. 2017, 101, 39–72. [Google Scholar] [CrossRef]
- Cao, Z.; Liu, G.D.; Zhan, H.B.; Gao, J.; Zhang, J.Y.; Li, C.Z.; Xiang, B.L. Geological roles of the siltstones in tight oil play. Mar. Pet. Geol. 2017, 83, 333–344. [Google Scholar] [CrossRef]
- Qiu, Z.; Wu, X.Z.; Tang, Y.; Zheng, M.; Wang, G.J.; Guo, Q.L.; Wang, S.J.; Xie, H.B. Resource Assessment of Tight Oil from the Permian Lucaogou Formation in Jimusar Sag, Junggar Basin, China. Nat. Gas Geosci. 2016, 27, 1688–1698, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Zhang, S.M. Diagenesis and Genetic Mechanism of Tight Oil Reservoir of the Permian Lucaogou Formation, Jimusar Sag, China. Ph.D. Thesis, China University of Petroleum (East China), Beijing, China, 2019. [Google Scholar] [CrossRef]
- Song, D.J.; Wu, C.J.; Chen, K.; Zhang, M.F.; He, W.; Su, L.; Zhang, D.W.; Fu, S.; Tuo, J.C. Gas Generation from Marine and Terrestrial Shales by Semi-Closed Pyrolysis Experiments. Earth Sci. 2019, 44, 3639–3652. [Google Scholar] [CrossRef]
- Fang, S.H.; Xu, H.M.; Song, Y.; Li, J.M.; Liu, L.J.; Zhang, J. Characteristics and evolution of the composite petroleum system in Jimusar depression, eastern Junggar Basin. Acta Geosci. Sin. 2005, 3, 259–264. [Google Scholar] [CrossRef]
- Qiu, N.S.; Yang, H.B.; Wang, X.L. Tectono-thermal evolution in the Junggar Basin. Chin. J. Geol. 2002, 4, 423–429. [Google Scholar] [CrossRef]
- Wang, J.; He, K.; Zhi, W.D.; Wang, Z.; Wang, L. Characteristics of temperature and pressure fields in Zhundong area, Junggar Basin. Xinjiang Pet. Geol. 2010, 31, 51–53. [Google Scholar] [CrossRef]
- Song, D.J.; Tuo, J.C.; Zhang, M.F.; Wu, C.J.; Su, L.; Li, J.; Zhang, Y.H.; Zhang, D.W. Hydrocarbon generation potential and evolution of pore characteristics of Mesoproterozoic shales in north China: Results from semi-closed pyrolysis experiments. J. Nat. Gas Sci. Eng. 2019, 62, 171–183. [Google Scholar] [CrossRef]
- Shiea, J.; Brassell, S.C.; Ward, D.M. Mid-chain branched mono-and dimethyl alkanes in hot spring cyanobacterial mats: A direct biogenic source for branched alkanes in ancient sediments? Org Geochem. 1990, 15, 223–231. [Google Scholar] [CrossRef]
- Luo, G.M.; Hallmann, C.; Xie, S.C.; Ruan, X.Y.; Summons, R.E. Comparative microbial diversity and redox environments of black shale and stromatolite facies in the Mesoproterozoic Xiamaling Formation. Geochim. Cosmochim. Acta 2015, 151, 150–167. [Google Scholar] [CrossRef]
- Ding, W.J.; Hou, D.J.; Jiang, L.; Jiang, Y.H.; Wu, P. High abundance of carotanes in the brackish-saline lacustrine sediments: A possible cyanobacteria source? Int. J. Coal Geol. 2020, 219, 103373. [Google Scholar] [CrossRef]
- Hao, F.; Zhou, X.H.; Zhu, Y.M.; Yang, Y.Y. Lacustrine source rock deposition in response to co-evolution of environments and organisms controlled by tectonic subsidence and climate, Bohai Bay Basin, China. Org. Geochem. 2011, 42, 323–339. [Google Scholar] [CrossRef]
- Seifert, W.K.; Moldowan, J.M. The effect of thermal stress on source-rock quality as measured by hopane stereochemistry. Phys. Chem. Earth 1980, 12, 229–237. [Google Scholar] [CrossRef]
- Justwan, H.; Dahl, B.; Isaksen, G.H. Geochemical characterisation and genetic origin of oils and condensates in the South Viking Graben, Norway. Mar. Pet. Geol. 2006, 23, 213–239. [Google Scholar] [CrossRef]
- Connan, J.; Cassou, A.M. Properties of gases and petroleum liquids derived from terrestrial kerogen at various maturation levels. Geochem. Cosmochim. Acta 1980, 44, 1–23. [Google Scholar] [CrossRef]
- De Grande, S.M.B.; Neto, F.R.A.; Mello, M.R. Extended tricyclic terpanes in sediments and petroleums. Org. Geochem. 1993, 20, 1039–1047. [Google Scholar] [CrossRef]
- Huang, W.Y.; Meinschein, W.G. Sterols as ecological indicators. Geochem. Cosmochim. Acta 1979, 43, 739–745. [Google Scholar] [CrossRef]
- Shi, J.Y.; Mackenzie, A.S.; Alexander, R.; Eglinton, G.; Gowar, A.P.; Wolff, G.A.; Maxwell, J.R. A biological marker investigation of petroleum and shales from the Shengli oilfifield, the People’s Republic of China. Chem. Geol. 1982, 35, 1–31. [Google Scholar] [CrossRef]
- Knoll, A.H.; Summons, R.E.; Waldbauer, J.R.; Zumberge, J.E. The geological succession of primary producers in the oceans. In Evolution of Primary Producers in the Sea; Academic Press: Cambridge, MA, USA, 2007; pp. 133–163. [Google Scholar] [CrossRef]
- Volkman, J.K. A review of sterol markers for marine and terrigenous organic matter. Org. Geochem. 1986, 9, 83–99. [Google Scholar] [CrossRef]
- Damsté, J.S.S.; Muyzer, G.; Abbas, B.; Rampen, S.W.; Masse, G.; Allard, W.G.; Belt, S.T.; Robert, J.M.; Rowland, S.J.; Moldowan, J.M.; et al. The rise of the rhizosolenid diatoms. Science 2004, 304, 584–587. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.N. On the genesis and function of coccolithophore calcification. Front. Mar. Sci. 2019, 6, 49. [Google Scholar] [CrossRef]
- Volkman, J.K.; Barrett, S.M.; Blackburn, S.I.; Mansour, M.P.; Sikes, E.L.; Gelin, F. Microalgal biomarkers: A review of recent research developments. Org. Geochem. 1998, 29, 1163–1179. [Google Scholar] [CrossRef]
- Peters, K.E.; Walters, C.C.; Moldowan, J.M. The Biomarker Guide: Biomarkers and Isotopes in Petroleum Exploration and Earth History; The Press Syndicate of the University of Cambridge: Cambridge, MA, USA, 2005; Volume 2. [Google Scholar]
- Tissot, B.P.; Welte, D.H. Petroleum Formation and Occurrence, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Rohrssen, M.; Love, G.D.; Fischer, W.; Finnegan, S.; Fike, D.A. Lipid biomarkers record fundamental changes in the microbial community structure of tropical seas during the Late Ordovician Hirnantian glaciation. Geology 2013, 41, 127–130. [Google Scholar] [CrossRef]
- Boudou, J.P.; Espitalié, J. Molecular nitrogen from coal pyrolysis: Kinetic modeling. Chem. Geol. 1995, 126, 319–333. [Google Scholar] [CrossRef]
- Boudou, J.P.; Trichet, J.; Robinson, N.; Brassell, S.C. Profile of Aliphatic Hydrocarbons in a Recent Polynesian Microbial Mat. Int. J. Environ. Anal. Chem. 1985, 26, 137–155. [Google Scholar] [CrossRef]
- Kenig, F.; Damsté, J.S.S.; Kock-van Dalen, A.C.; Rijpstra, W.I.C.; Huc, A.Y.; De Leeuw, J.W. Occurrence and origin of mono-, di-, and trimethylalkanes in modern and Holocene cyanobacterial mats from Abu Dhabi, United Arab Emirates. Geochim. Cosmochim. Acta 1995, 59, 2999–3015. [Google Scholar] [CrossRef]
- Summons, R.E.; Jahnke, L.L.; Hope, J.M.; Logan, G.A. 2-Methylhopanoids as biomarker for cyanobacterial oxygenic photosynthesis. Nature 1999, 400, 554–557. [Google Scholar] [CrossRef]
- Xie, S.; Pancost, R.D.; Yin, H.; Wang, H.; Evershed, R.P. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature 2005, 434, 494–497. [Google Scholar] [CrossRef]
- Calvert, T.F. Anoxia vs. productivity: What controls the formation of organic carbon rich sediments and sedimentary rocks? AAPG Bull. 1990, 74, 454–466. [Google Scholar] [CrossRef]
- Haven, H.L.T.; Rohmer, M.; Rullkötter, J.; Bisseret, P. Tetrahymanol, the most likely precursor of gammacerane, occurs ubiquitously in marine sediments. Geochem. Cosmochim. Acta 1989, 53, 3073–3079. [Google Scholar] [CrossRef]
- Zhang, S.M.; Cao, Y.C.; Liu, K.Y.; Jahren, J.; Xi, K.L.; Zhu, R.K.; Yang, T.; Cao, X.; Wang, W. Characterization of lacustrine mixed fine-grained sedimentary rocks using coupled chemostratigraphic-petrographic analysis: A case study from a tight oil reservoir in the Jimusar Sag, Junggar Basin. Mar. Pet. Geol. 2019, 99, 453–472. [Google Scholar] [CrossRef]
Stratum | Sample No. | Depth (m) | Lithology | TOC (%) * | Pr/Ph | nC21− /nC22+ | G/H * | S/H | 20S (%) * | ββ (%) * | ETR * | C22T/ C21T | 27% | 28% | 29% | (C28 + C29 − St)/St | (7- + 8-C18 MMAs) /Cmax * | 2α − C32Meh/C32H * |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P2l2 | Jl2-1 | 3402 | Mudstone | 6.02 | 1.00 | 1.56 | 0.16 | 0.09 | 0.39 | 0.19 | 0.57 | 0.10 | 34% | 22% | 44% | 0.66 | 9.29% | 5.17% |
Jl2-2 | 3410 | Mudstone | 7.30 | 0.93 | 1.61 | 0.17 | 0.10 | 0.39 | 0.18 | 0.47 | 0.10 | 36% | 22% | 42% | 0.64 | 9.53% | 5.01% | |
Jl2-3 | 3422 | Mudstone | 4.36 | 1.00 | 0.77 | 0.19 | 0.16 | 0.36 | 0.18 | 0.65 | 0.10 | 30% | 26% | 44% | 0.70 | 6.32% | 4.95% | |
Jl2-4 | 3430 | Mudstone | 5.02 | 0.93 | 1.62 | 0.20 | 0.18 | 0.37 | 0.18 | 0.58 | 0.10 | 34% | 27% | 39% | 0.66 | 8.88% | 4.25% | |
Jl2-5 | 3446 | Mudstone | 5.50 | 0.80 | 4.79 | 0.25 | 0.18 | 0.46 | 0.26 | 0.52 | 0.12 | 19% | 37% | 45% | 0.81 | 9.42% | 4.42% | |
Jl2-6 | 3450 | Mudstone | 5.94 | 0.90 | 0.51 | 0.22 | 0.22 | 0.36 | 0.20 | 0.75 | 0.11 | 29% | 34% | 37% | 0.71 | 3.55% | 5.33% | |
Jl2-7 | 3462 | Mudstone | 3.70 | 0.96 | 1.12 | 0.35 | 0.13 | 0.39 | 0.16 | 0.74 | 0.11 | 18% | 34% | 48% | 0.82 | 7.16% | 5.32% | |
Jl2-8 | 3470 | Mudstone | 2.83 | 0.88 | 0.77 | 0.22 | 0.36 | 0.37 | 0.18 | 0.66 | 0.11 | 26% | 32% | 42% | 0.74 | 8.09% | 5.34% | |
Jl2-9 | 3486 | Mudstone | 3.45 | 0.62 | 1.07 | 0.18 | 0.25 | 0.43 | 0.24 | 0.89 | 0.15 | 10% | 36% | 54% | 0.90 | 11.60% | 5.72% | |
Average of P2l2 | 4.90 | 0.89 | 1.54 | 0.22 | 0.19 | 0.39 | 0.20 | 0.65 | 0.11 | 26% | 30% | 44% | 0.08 | 8.20% | 5.06% | |||
P2l1 | Jl1-10 | 3498 | Mudstone | 6.08 | 0.68 | 2.61 | 0.24 | 0.26 | 0.43 | 0.21 | 0.87 | 0.12 | 11% | 40% | 49% | 0.89 | 17.78% | 5.96% |
Jl1-11 | 3510 | Mudstone | 2.66 | 0.72 | 2.91 | 0.30 | 0.48 | 0.43 | 0.23 | 0.80 | 0.13 | 5% | 34% | 61% | 0.95 | 18.04% | 7.30% | |
Jl1-12 | 3518 | Mudstone | 7.55 | 0.63 | 3.29 | 0.18 | 0.42 | 0.43 | 0.21 | 0.88 | 0.12 | 18% | 37% | 45% | 0.82 | 15.82% | 5.63% | |
Jl1-13 | 3522 | Mudstone | 3.30 | 0.48 | 0.71 | 0.22 | 0.27 | 0.44 | 0.25 | 0.93 | 0.15 | 11% | 35% | 54% | 0.89 | 13.65% | 5.68% | |
Jl1-14 | 3538 | Mudstone | 3.19 | 0.46 | 0.66 | 0.26 | 0.45 | 0.45 | 0.24 | 0.87 | 0.14 | 8% | 35% | 57% | 0.92 | 17.66% | 5.67% | |
Jl1-15 | 3554 | Mudstone | 6.20 | 0.82 | 5.30 | 0.25 | 0.30 | 0.44 | 0.24 | 0.80 | 0.13 | 10% | 35% | 55% | 0.90 | 14.64% | 6.92% | |
Jl1-16 | 3562 | Mudstone | 7.58 | 0.85 | 4.10 | 0.26 | 0.25 | 0.45 | 0.26 | 0.72 | 0.13 | 8% | 37% | 55% | 0.92 | 16.21% | 6.25% | |
Jl1-17 | 3578 | Mudstone | 9.21 | 0.86 | 3.85 | 0.26 | 0.24 | 0.44 | 0.26 | 0.70 | 0.14 | 8% | 37% | 56% | 0.92 | 15.00% | 6.39% | |
Jl1-18 | 3582 | Mudstone | 5.15 | 0.72 | 0.82 | 0.21 | 0.24 | 0.44 | 0.26 | 0.75 | 0.14 | 10% | 34% | 56% | 0.90 | 14.89% | 6.05% | |
Jl1-19 | 3586 | Mudstone | 8.30 | 0.62 | 0.91 | 0.23 | 0.26 | 0.46 | 0.27 | 0.79 | 0.15 | 9% | 36% | 55% | 0.91 | 16.36% | 6.48% | |
Average of P2l1 | 5.92 | 0.69 | 2.52 | 0.24 | 0.32 | 0.44 | 0.24 | 0.81 | 0.14 | 10% | 36% | 54% | 0.16 | 16.01% | 6.23% |
Sample | Pyrolysis Temperature (°C) | Liquid Hydrocarbon Yield (mg/g TOC) | Gaseous Hydrocarbon Yield (mg/g TOC) | ||||
---|---|---|---|---|---|---|---|
Residual Oil | Expelled Oil | Total Oil | Total Hydrocarbon Gasses | Total Non-Hydrocarbon Gasses | Total Gasses | ||
Jl2-6 | 300 | 79.60 | 130.98 | 210.58 | 3.01 | 57.23 | 60.24 |
350 | 182.61 | 293.00 | 475.61 | 30.11 | 66.55 | 96.66 | |
375 | 147.17 | 274.26 | 421.43 | 150.73 | 158.56 | 309.29 | |
400 | 92.35 | 218.89 | 311.24 | 310.00 | 230.98 | 540.98 | |
450 | 39.34 | 140.85 | 180.19 | 457.63 | 253.27 | 710.90 | |
500 | 19.15 | 65.29 | 84.44 | 535.04 | 294.63 | 829.67 | |
Jl1-15 | 300 | 90.43 | 155.26 | 245.69 | 0.80 | 76.58 | 77.38 |
350 | 158.33 | 285.74 | 444.07 | 6.72 | 78.15 | 84.87 | |
375 | 245.13 | 343.21 | 588.34 | 73.57 | 176.50 | 250.07 | |
400 | 107.37 | 280.15 | 387.52 | 244.99 | 259.52 | 504.51 | |
450 | 64.60 | 149.22 | 213.82 | 406.00 | 297.93 | 703.93 | |
500 | 13.34 | 153.27 | 166.61 | 451.37 | 356.10 | 807.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Z.; Tao, H.; Qu, Y.; Wu, T.; Ma, D.; Wang, T.; Qin, Z.; Su, L.; Li, Z. Synergistic Evolution of Palaeoenvironment—Bionts and Hydrocarbon Generation of Permian Saline Lacustrine Source Rocks in Jimusar Sag, Junggar Basin. Energies 2023, 16, 3797. https://doi.org/10.3390/en16093797
Xie Z, Tao H, Qu Y, Wu T, Ma D, Wang T, Qin Z, Su L, Li Z. Synergistic Evolution of Palaeoenvironment—Bionts and Hydrocarbon Generation of Permian Saline Lacustrine Source Rocks in Jimusar Sag, Junggar Basin. Energies. 2023; 16(9):3797. https://doi.org/10.3390/en16093797
Chicago/Turabian StyleXie, Zaibo, Huifei Tao, Yongqiang Qu, Tao Wu, Dongzheng Ma, Tianhai Wang, Zhen Qin, Long Su, and Zhongping Li. 2023. "Synergistic Evolution of Palaeoenvironment—Bionts and Hydrocarbon Generation of Permian Saline Lacustrine Source Rocks in Jimusar Sag, Junggar Basin" Energies 16, no. 9: 3797. https://doi.org/10.3390/en16093797
APA StyleXie, Z., Tao, H., Qu, Y., Wu, T., Ma, D., Wang, T., Qin, Z., Su, L., & Li, Z. (2023). Synergistic Evolution of Palaeoenvironment—Bionts and Hydrocarbon Generation of Permian Saline Lacustrine Source Rocks in Jimusar Sag, Junggar Basin. Energies, 16(9), 3797. https://doi.org/10.3390/en16093797