Dandelion Optimizer-Based Combined Automatic Voltage Regulation and Load Frequency Control in a Multi-Area, Multi-Source Interconnected Power System with Nonlinearities
Abstract
:1. Introduction
- AVR-LFC control loops modeling for a two-area IPS without nonlinearities.
- AVR-LFC control loops modeling for a two- and three-area realistic IPS with nonlinearities such as GRC, GDB and BD.
- The design of a PI-PD controller with dandelion optimizer (DO)-based tuning methodology.
- The performance evaluation and supremacy of a DO-based PI-PD were demonstrated with other control schemes such as HAEFA Fuzzy PID [3], AOA, MPSO and LPBO-based PI-PD.
- The study of the proposed DO-based control methodology was conducted in a realistic environment with different nonlinearities for a two- and three-area multi-source IPS to demonstrate its effectiveness.
Reference | Year | Research Area | Controller | Tuning Method | Covered Area | Generation Sources in All Areas | Generation Sources | Nonlinearities | Additional Incorporation for Improvements |
---|---|---|---|---|---|---|---|---|---|
[3] | 2022 | AVR with LFC | Fuzzy PID | HAEFA | 2 | 6 | Reheat thermal, hydro, gas | - | UCs, SMES, RFBs |
[4] | 2022 | AVR with LFC | PI-PD | AOA, LPBO, MPSO | 2 3 | 2 and 3 | - | - | - |
[5] | 2022 | AVR with LFC | PIDA | DPO | 2 | 10 | Three bioenergy technologies and two solar energy sources | - | - |
[6] | 2022 | AVR with LFC | CPDN-FOPIDN | AFA | 3 | 6 | Reheat thermal, hydro, gas and geothermal | GRC, GDB | RFBs, CES, SMES, FESS, HVDC link |
[7] | 2022 | AVR with LFC | CFOTDN-FOPDN | AFA | 2 | 4 | Hydro and dish-Stirling, Reheat thermal and solar thermal | GDB, CTD, GRC | - |
[8] | 2022 | AVR with LFC | CFPD-TID | AFA | 3 | 6 | Thermal, hydro and geothermal | GDB, GRC | RFBs, HVDC link |
[9] | 2022 | AVR with LFC | 2DOF I-TDF | HHO | 3 | 6 | reheat thermal, wind, dish-Stirling and solar thermal | GRC, GDB | - |
[10] | 2022 | AVR with LFC | ADRC | 2nd order error-driven control law | 3 | 6 | Solar, geothermal, wind and EVs | - | - |
[11] | 2021 | AVR with LFC | TIDF | HHO | 3 | 6 | Combined cycle gas turbine (CCGT) and reheat thermal | GDB, GRC, BD | - |
[12] | 2021 | AVR with LFC | PIDA | hFPAPFA | 1 | 1 | Thermal | - | - |
[13] | 2021 | AVR with LFC | PID | FA | 2 | 4 | Reheat thermal and hydro | TD, GRC, GDB | - |
[14] | 2021 | AVR with LFC | PIDD | GWO | 2 | 6 | Reheat thermal, hydro and nuclear | GRC, GDB | SMES, UPFC |
[15] | 2021 | AVR with LFC | PID | NLTA | 2 | 2 | - | - | - |
[16] | 2020 | AVR with LFC | PIDF, PI | SCA | 2 | 2 | Reheat thermal and non-reheat thermal | - | UPFC, RFBs |
[17] | 2020 | AVR with LFC | PID | DE-AEFA | 2 | 6 | Gas, diesel, hydro, solar photovoltaic, reheat thermal and wind | GRC | IPFC, RFBs |
[18] | 2020 | AVR with LFC | PID | DE-AEFA | 2 | 6 | Wind, hydro, thermal, gas, solar and diesel | GRC | HVDC link |
[19] | 2020 | AVR with LFC | CPSS | IPSO | 1 | 1 | Gas, reheat thermal and hydro | GDB, GRC | - |
[20] | 2019 | AVR with LFC | PID | FA | 2 | 4 | Hydro and non-reheat thermal | - | - |
[21] | 2019 | AVR with LFC | FOPID | MFO | 2 | 4 | Hydro and non-reheat thermal | GDB, BD | - |
[22] | 2018 | AVR with LFC | PIDF, PIDuF | LSA | 2 | 4 | Reheat thermal, wind and diesel | GDB, GRC | IPFC, SMES |
[23] | 2018 | AVR with LFC | PID, Fuzzy | ZN, FLC | 1 | 1 | - | - | - |
[24] | 2016 | AVR with LFC | Hybrid NN and FTF | NN-FTF | 1 | 1 | - | - | - |
[25] | 2016 | AVR with LFC | PID | SA, ZN | 2 | 4 | Hydro and non-reheat thermal | GDB | - |
Proposed Method | 2022 | AVR with LFC | PI-PD | DO, AOA, LPBO, MPSO | 2 and 3 | 6 and 9 | Thermal, gas and hydro | GDB, GRC, BD | - |
2. System Modeling
2.1. Power System with Nonlinearities
2.1.1. Generation Rate Constraint (GRC)
2.1.2. Governor Dead Band (GDB)
2.1.3. Boiler Dynamics (BD)
3. Proposed Methodology
4. Nature-Inspired Computation Algorithms
Dandelion Optimizer (DO)
- A vortex is formed above the dandelion seed during the rising stage, and it rises while being propelled higher by wind and sunlight. In contrast, there are no eddies above the seeds on a rainy day. In this situation, only local searches are possible.
- When seeds reach a specific height during the descending stage, they begin to steadily sink.
- Dandelion seeds finally randomly land in one location during the landing stage, where they will develop new dandelions as a result of the influence of the wind and weather.
- Stage 1: Initialization
- Stage 2: Rising stage
- Case 1:
- α represents a random perturbation between [0, 1];
- vx and vy demonstrate the dandelion’s lift component coefficients.
- Case 2:
- Stage 3: Descending stage
- Stage 4: Landing stage
5. Implementation and Results Discussion
5.1. Frequency and Voltage Stabilization in a Two-Area Multi-Source IPS without Nonlinearities
5.2. Frequency and Voltage Stabilization in a Two-Area Multi-Source IPS with Nonlinearities
5.3. Frequency and Voltage Stabilization in a Three-Area Multi-Source IPS with Nonlinearities
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Power System Parameters and Their Values
Parameter | Value | Parameter | Value |
B1, B2, B3 | 0.045 | H | 5 |
f | 60 | Kps = 1/D | 68.97 |
Rt | 2.4 | Tps = 2 ∗ H/f ∗ D | 11.49 |
Rh | 2.4 | K1 | 0.2 |
Rg | 2.4 | K2 | 0.1 |
Tgr | 0.08 | K3 | 0.5 |
Tre | 10 | K4 | 1.4 |
Kre | 0.3 | Ps | 1.5 |
Ttr | 0.3 | Ka | 10 |
Th | 0.3 | Ta | 0.1 |
Trs | 5 | Ke | 1 |
Trh | 28.75 | Te | 0.4 |
Tw | 0.025 | Kg | 0.8 |
X | 0.6 | Tg | 1.4 |
Y | 1 | Ks | 1 |
a | 1 | Ts | 0.05 |
b | 0.05 | T12 | 0.545 |
c | 1 | T13 | 0.545 |
Tcr | 0.01 | T21 | 0.545 |
Tf | 0.23 | T22 | 0.545 |
Tcd | 0.2 | T31 | 0.545 |
D | 0.0145 | T32 | 0.545 |
References
- Dekaraja, B.; Saikia, L.C. Combined Voltage and Frequency Control of Multiarea Multisource System Using CPDN-PIDN Controller. IETE J. Res. 2021, 1–16. [Google Scholar] [CrossRef]
- Ghosh, A.; Ray, A.K.; Nurujjaman, M.; Jamshidi, M. Voltage and frequency control in conventional and PV integrated power systems by a particle swarm optimized Ziegler-Nichols based PID controller. SN Appl. Sci. 2021, 3, 1–13. [Google Scholar] [CrossRef]
- Kalyan, C.N.S.; Goud, B.S.; Reddy, C.R.; Bajaj, M.; Sharma, N.K.; Alhelou, H.H.; Siano, P.; Kamel, S. Comparative Performance Assessment of Different Energy Storage Devices in Combined LFC and AVR Analysis of Multi-Area Power System. Energies 2022, 15, 629. [Google Scholar] [CrossRef]
- Ali, T.; Malik, S.A.; Hameed, I.A.; Daraz, A.; Mujlid, H.; Azar, A.T. Load Frequency Control and Automatic Voltage Regulation in a Multi-Area Interconnected Power System Using Nature-Inspired Computation-Based Control Methodology. Sustainability 2022, 14, 12162. [Google Scholar] [CrossRef]
- Fayek, H.H.; Rusu, E. Novel Combined Load Frequency Control and Automatic Voltage Regulation of a 100% Sustainable Energy Interconnected Microgrids. Sustainability 2022, 14, 9428. [Google Scholar] [CrossRef]
- Dekaraja, B.; Saikia, L.C.; Ramoji, S.K.; Behera, M.K.; Bhagat, S.K. Performance Analysis of Diverse Energy Storage on Combined ALFC and AVR Control of Multiarea Multiunit System with AC/HVDC interconnection. IFAC-Pap. OnLine 2022, 55, 479–485. [Google Scholar] [CrossRef]
- Dekaraja, B.; Saikia, L.C.; Ramoji, S.K. Combined ALFC-AVR Control of Diverse Energy Source Based Interconnected Power System using Cascade Controller. In Proceedings of the 2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP), Hyderabad, India, 21–23 July 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Dekaraja, B.; Saikia, L.C.; Ramoji, S.K.; Behera, M.K.; Bhagat, S.K. Impact of RFB and HVDC link on Combined ALFC-AVR Studies of a GTPP Integrated Hydro-Thermal Systems Using a Cascade Fuzzy PD-TID Controller. In Proceedings of the 4th International Conference on Energy, Power and Environment (ICEPE), Shillong, India, 29 April–1 May 2022; pp. 3–8. [Google Scholar] [CrossRef]
- Ramoji, S.K.; Saikia, L.C.; Dekaraja, B.; Behera, M.K.; Bhagat, S.K. Performance Comparison of Various Tilt Controllers in Coalesced Voltage and Frequency Regulation of Multi-Area Multi-Unit Power System. In Proceedings of the IEEE Delhi Section Conference (DELCON), New Delhi, India, 11–13 February 2022. [Google Scholar] [CrossRef]
- Safiullah, S.; Rahman, A.; Aftab, M.A.; Hussain, S.M.S. Performance study of ADRC and PID for concurrent Frequency-Voltage Control of Electric Vehicle Incorporated Hybrid Power System. In Proceedings of the PESGRE 2022—IEEE International Conference on Power Electronics, Smart Grid, and Renewable Energy (PESGRE), Trivandrum, India, 2–5 January 2022. [Google Scholar] [CrossRef]
- Ramoji, S.K.; Saikia, L.C. Optimal Coordinated Frequency and Voltage Control of CCGT-Thermal Plants with TIDF Controller. IETE J. Res. 2021, 1–18. [Google Scholar] [CrossRef]
- Oladipo, S.; Sun, Y.; Wang, Z. An effective hFPAPFA for a PIDA-based hybrid loop of Load Frequency and terminal voltage regulation system. In Proceedings of the 2021 IEEE PES/IAS PowerAfrica, PowerAfrica 2021, Nairobi, Kenya, 23–27 August 2021. [Google Scholar] [CrossRef]
- Anusha, P.; Patra, S.; Roy, A.; Saha, D. Combined Frequency and Voltage Control of a Deregulated Hydro-Thermal Power System employing FA based Industrial Controller. In Proceedings of the2021 International Conference on Computational Performance Evaluation (ComPE), Shillong, India, 1–3 December 2021; pp. 848–853. [Google Scholar] [CrossRef]
- Kalyan, C.N.S. UPFC and SMES based Coordinated Control Strategy for Simultaneous Frequency and Voltage Stability of an Interconnected Power System. In Proceedings of the 1st International Conference on Power Electronics and Energy (ICPEE), Bhubaneswar, India, 2–3 January 2021. [Google Scholar] [CrossRef]
- Nahas, N.; Abouheaf, M.; Darghouth, M.N.; Sharaf, A. A multi-objective AVR-LFC optimization scheme for multi-area power systems. Electr. Power Syst. Res. 2021, 200, 107467. [Google Scholar] [CrossRef]
- Prakash, A.; Parida, S.K. Combined frequency and voltage stabilization of thermal-thermal system with UPFC and RFB. In Proceedings of the PIICON 2020—9th IEEE Power India International Conference (PIICON), Sonepat, India, 28 February–1 March 2020. [Google Scholar] [CrossRef]
- Kalyan, C.H.N.S.; Rao, G.S. Combined frequency and voltage stabilisation of multi-area multisource system by DE-AEFA optimised PID controller with coordinated performance of IPFC and RFBs. Int. J. Ambient. Energy 2020, 1–20. [Google Scholar] [CrossRef]
- Kalyan, C.H.N.S.; Rao, G.S. Frequency and voltage stabilisation in combined load frequency control and automatic voltage regulation of multiarea system with hybrid generation utilities by AC/DC links. Int. J. Sustain. Energy 2020, 39, 1009–1029. [Google Scholar] [CrossRef]
- Morsali, J.; Esmaeili, Z. Proposing a new hybrid model for LFC and AVR loops to improve effectively frequency stability using coordinative CPSS. In Proceedings of the 28th Iranian Conference on Electrical Engineering (ICEE), Tabriz, Iran, 4–6 August 2020. [Google Scholar] [CrossRef]
- Nahas, N.; Abouheaf, M.; Sharaf, A.; Gueaieb, W. A Self-Adjusting Adaptive AVR-LFC Scheme for Synchronous Generators. IEEE Trans. Power Syst. 2019, 34, 5073–5075. [Google Scholar] [CrossRef]
- Sahani, A.K.; Raj, U.; Shankar, R.; Mandal, R.K. Firefly optimization based control strategies for combined load frequency control and automatic voltage regulation for two-area interconnected power system. Int. J. Electr. Eng. Inform. 2019, 11, 747–758. [Google Scholar] [CrossRef]
- Lal, D.K.; Barisal, A.K. Combined load frequency and terminal voltage control of power systems using moth flame optimization algorithm. J. Electr. Syst. Inf. Technol. 2019, 6, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Rajbongshi, R.; Saikia, L.C. Coordinated performance of interline power flow controller and superconducting magnetic energy storage in combined ALFC and AVR system under deregulated environment. J. Renew. Sustain. Energy 2018, 10, 044102. [Google Scholar] [CrossRef]
- Sharma, D.; Kushwaha, V.; Pandey, K.; Rani, N. Intelligent avr control of a single thermal area combined with lfc loop. Adv. Intell. Syst. Comput. 2018, 624, 779–789. [Google Scholar] [CrossRef]
- Gupta, M.; Srivastava, S.; Gupta, J.R.P. A Novel Controller for Model with Combined LFC and AVR Loops of Single Area Power System. J. Inst. Eng. Ser. B 2014, 97, 21–29. [Google Scholar] [CrossRef]
- Kumar, V. Model Predictive Controller-Based Voltage and Frequency Regulation in Renewable Energy Integrated Power System Coordinated with Virtual Inertia and Redox Flow Battery. Iran. J. Sci. Technol. Trans. Electr. Eng. 2022, 0123456789. [Google Scholar] [CrossRef]
- Sijakovic, N.; Terzic, A.; Fotis, G.; Mentis, I.; Zafeiropoulou, M.; Maris, T.I.; Zoulias, E.; Elias, C.; Ristic, V.; Vita, V. Active System Management Approach for Flexibility Services to the Greek Transmission and Distribution System. Energies 2022, 15, 6134. [Google Scholar] [CrossRef]
- Adewumi, O.B.; Fotis, G.; Vita, V.; Nankoo, D.; Ekonomou, L. The Impact of Distributed Energy Storage on Distribution and Transmission Networks’ Power Quality. Appl. Sci. 2022, 12, 6466. [Google Scholar] [CrossRef]
- Daraz, A.; Malik, S.A.; Waseem, A.; Azar, A.T.; Haq, I.U.; Ullah, Z.; Aslam, S. Automatic generation control of multi-source interconnected power system using FOI-TD controller. Energies 2021, 14, 5867. [Google Scholar] [CrossRef]
- Daraz, A.; Malik, S.A.; Mokhlis, H.; Haq, I.U.; Laghari, G.F.; Mansor, N.N. Fitness Dependent Optimizer-Based Automatic Generation Control of Multi-Source Interconnected Power System with Non-Linearities. IEEE Access 2020, 8, 100989–101003. [Google Scholar] [CrossRef]
- Daraz, A.; Malik, S.A.; Mokhlis, H.; Haq, I.U.; Zafar, F.; Mansor, N.N. Improved-Fitness Dependent Optimizer Based FOI-PD Controller for Automatic Generation Control of Multi-Source Interconnected Power System in Deregulated Environment. IEEE Access 2020, 8, 197757. [Google Scholar] [CrossRef]
- Daraz, A.; Malik, S.A.; Azar, A.T.; Aslam, S.; Alkhalifah, T.; Alturise, F. Optimized Fractional Order Integral-Tilt Derivative Controller for Frequency Regulation of Interconnected Diverse Renewable Energy Resources. IEEE Access 2022, 10, 43514–43527. [Google Scholar] [CrossRef]
- Daraz, A.; Malik, S.A.; Haq, I.U.; Khan, K.B.; Laghari, G.F.; Zafar, F. Modified PID controller for automatic generation control of multi-source interconnected power system using fitness dependent optimizer algorithm. PLoS ONE 2020, 15, e0242428. [Google Scholar] [CrossRef]
- Wang, L.; Cao, Q.; Zhang, Z.; Mirjalili, S.; Zhao, W. Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems. Eng. Appl. Artif. Intell. 2022, 114, 105082. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, T.; Ma, S.; Chen, M. Dandelion Optimizer: A nature-inspired metaheuristic algorithm for engineering applications. Eng. Appl. Artif. Intell. 2022, 114, 105075. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, T.; Ma, S.; Wang, M. Sea-horse optimizer: A novel nature-inspired meta-heuristic for global optimization problems. Appl. Intell. 2022. [Google Scholar] [CrossRef]
- Hashim, F.A.; Hussain, K.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W. Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems. Appl. Intell. 2020, 51, 1531–1551. [Google Scholar] [CrossRef]
- MQais, H.; Hasanien, H.M.; Alghuwainem, S. Transient search optimization: A new meta-heuristic optimization algorithm. Appl. Intell. 2020, 50, 3926–3941. [Google Scholar] [CrossRef]
- Rahman, C.M.; Rashid, T.A. A new evolutionary algorithm: Learner performance based behavior algorithm. Egypt. Inform. J. 2021, 22, 213–223. [Google Scholar] [CrossRef]
- Guha, D.; Roy, P.K.; Banerjee, S. Application of backtracking search algorithm in load frequency control of multi-area interconnected power system. Ain Shams Eng. J. 2018, 9, 257–276. [Google Scholar] [CrossRef]
- Guha, D.; Roy, P.K.; Banerjee, S. Symbiotic organism search algorithm applied to load frequency control of multi-area power system. Energy Syst. 2018, 9, 439–468. [Google Scholar] [CrossRef]
- Tripathy, S.C.; Balasubramanian, R.; Nair, P.S.C. Effect of Superconducting Magnetic Energy Storage on Automatic Generation Control Considering Governor Deadband and Boiler Dynamics. IEEE Trans. Power Syst. 1992, 7, 1266–1273. [Google Scholar] [CrossRef] [Green Version]
- Zou, H.; Li, H. Tuning of PI-PD controller using extended non-minimal state space model predictive control for the stabilized gasoline vapor pressure in a stabilized tower. Chemom. Intell. Lab. Syst. 2015, 142, 1–8. [Google Scholar] [CrossRef]
- Raja, G.L.; Ali, A. New PI-PD Controller Design Strategy for Industrial Unstable and Integrating Processes with Dead Time and Inverse Response. J. Control Autom. Electr. Syst. 2021, 32, 266–280. [Google Scholar] [CrossRef]
- Kaya, I. Optimal PI-PD Controller Design for Pure Integrating Processes with Time Delay. J. Control Autom. Electr. Syst. 2021, 32, 563–572. [Google Scholar] [CrossRef]
- Irshad, M.; Ali, A. Robust PI-PD controller design for integrating and unstable processes. IFAC-Pap. OnLine 2020, 53, 135–140. [Google Scholar] [CrossRef]
- Peram, M.; Mishra, S.; Vemulapaty, M.; Verma, B.; Padhy, P.K. Optimal PI-PD and I-PD Controller Design Using Cuckoo Search Algorithm. In Proceedings of the 5th Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 2–3 February 2018; pp. 643–646. [Google Scholar] [CrossRef]
- Ali, T.; Malik, S.A.; Adeel, M.; Amir, M. Set point tracking of Ball and Beam System Using Genetic Algorithm based PI-PD Controller. NUST J. Eng. Sci. 2018, 11, 12–16. [Google Scholar] [CrossRef]
- Zheng, M.; Huang, T.; Zhang, G. A New Design Method for PI-PD Control of Unstable Fractional-Order System with Time Delay. Complexity 2019, 2019, 3253497. [Google Scholar] [CrossRef]
- Ali, T.; Adeel, M.; Malik, S.A.; Amir, M. Stability Control of Ball and Beam System Using Heuristic Computation Based PI-D and PI-PD Controller. Tech. J. 2019, 24, 21–29. [Google Scholar]
Acronym | Definition | Acronym | Definition |
---|---|---|---|
DO | Dandelion Optimizer | SMES | Superconducting Magnetic Energy Storage |
GRC | Generation Rate Constraint | PD | Proportional Derivative |
PI | Proportional Integral | AVR | Automatic Voltage Regulator |
Vt | Terminal Voltage | B | Area Bias Factor |
CES | Capacitive Energy Storage | FESS | Flywheel Energy Storage System |
SLP | Step Load Perturbation | UC | Ultra-Capacitors |
PID | Proportional Integral Derivative | ∆PD | Load Deviation |
LPBO | Learner Performance-Based Behavior Optimization | MPSO | Modified Particle Swarm Optimization |
∆f | Frequency Deviation | RFB | Redox Flow Battery |
IPFC | Interline Power Flow Controller | PI-PD | Proportional Integral-Proportional Derivative |
BD | Boiler Dynamics | HAEFA | Hybridized Approach of the Artificial Electric Field Algorithm |
LFC | Load Frequency Control | PIDA | Accelerated Proportional Integral Derivative |
AFA | Artificial Flora Algorithm | UPFC | Unified Power Flow Controller |
AOA | Archimedes Optimization Algorithm | GDB | Governor Dead Band |
∆Ptie | Tie-Line Power Deviation | Ri | Speed Regulation |
ΔXG | Valve Position of Governor | ΔPG | Deviation in the Output of Generator |
DPO | Doctor and Patient Optimization | IPS | Interconnected Power System |
Tgr | Time Constant of Speed Governor | TCD | Compressor Discharge Volume Time Constant |
Kre | Gain of Reheat Steam Turbine | Kp | Gain of Power System |
Tre | Time Constant of Reheat Steam Turbine | Tp | Time Constant of Power System |
Ttr | Time Constant of Thermal Turbine | Ka | Gain of Amplifier |
Th | Main Servo Time Constant | Ta | Time Constant of Amplifier |
Trs | Speed Governor Rest time | Ke | Gain of Exciter |
Trh | Transient droop Time Constant | Te | Time Constant of Exciter |
Tw | Water Time Constant | Kg | Gain of Generator Field |
X | Speed Governor Lead Time Constant | Tg | Time Constant of Generator Field |
Y | Speed Governor Lag Time Constant | Ks | Gain of Voltage Sensor |
a,b,c | Valve Positional Time Constant | Ts | Time Constant of Voltage Sensor |
TCR | Combustion Reaction Time Delay | Tf | Fuel Time Constant |
AOA | LPBO | MPSO | DO | ||||
---|---|---|---|---|---|---|---|
Parameter | Value | Parameter | Value | Parameter | Value | Parameter | Value |
Iterations | 4, 6, 4 | Iterations | 4, 6, 4 | Iterations | 5, 6, 5 | Iterations | 5, 6, 5 |
C1 | 2 | Crossover Percentage | 0.65 | Inertia Weight Damping Ratio | 1 | Lower Bound | 0 |
C2 | 6 | Mutation Percentage | 0.3 | Personal Learning Coefficient | 2.74 | Upper Bound | 2 |
C3 | 2 | Mutation Rate | 0.03 | Global Learning Coefficient | 2.88 | Population Size | 20, 10, 20 |
C4 | 0.5 | Number of Mutants | 6 | Max. Velocity Limit | 0.2 | ||
Range of Normalization (u,L) | 0.9, 0.1 | Number of Offspring | 14 | Min. Velocity Limit | −0.2 | - | - |
Population Size | 25, 10, 25 | Population Size | 20, 13, 20 | Population Size | 20, 10, 20 | - | - |
Area | Parameters of Controllers | AOA-Based PI-PD | LPBO-Based PI-PD | MPSO-Based PI-PD | DO-Based PI-PD |
---|---|---|---|---|---|
Area-1 | Kp1 | 1.59 | 1.09 | 0.46 | 0.97 |
Ki1 | 0.93 | 1.10 | 0.78 | 1.97 | |
Kp2 | 0.89 | 1.44 | 1.14 | 0.67 | |
Kd1 | 1.57 | 1.27 | 1.47 | 1.39 | |
Kp3 | 1.32 | 1.82 | 1.06 | 2 | |
Ki2 | 1.87 | 1.22 | 1.73 | 1.83 | |
Kp4 | 1.29 | 0.35 | 1.20 | 0.67 | |
Kd2 | 0.73 | 0.42 | 0.73 | 0.75 | |
Area-2 | Kp5 | 1.59 | 0.68 | 1.16 | 1.03 |
Ki3 | 0.94 | 0.68 | 0.17 | 0.23 | |
Kp6 | 1.13 | 1.24 | 0.97 | 0.73 | |
Kd3 | 1.34 | 1.60 | 1.56 | 0.92 | |
Kp7 | 1.82 | 1.78 | 1.38 | 2 | |
Ki4 | 1.73 | 1.57 | 1.60 | 1.1 | |
Kp8 | 1.04 | 0.96 | 0.98 | 0.33 | |
Kd4 | 0.97 | 0.93 | 0.66 | 0.77 | |
ITSE | 0.35 | 0.28 | 0.39 | 0.24 |
Control Scheme | Area-1 | Area-2 | ||||||
---|---|---|---|---|---|---|---|---|
Settling Time | % Overshoot | Undershoot | s-s Error | Settling Time | % Overshoot | Undershoot | s-s Error | |
AOA-based PI-PD | 6.12 | 0 | −0.094 | 0 | 6.12 | 0 | −0.094 | 0 |
LPBO-based PI-PD | 7.14 | 0 | −0.108 | 0 | 7.30 | 0 | −0.102 | 0 |
MPSO-based PI-PD | 5.55 | 0.001 | −0.094 | 0 | 5.60 | 0.001 | −0.095 | 0 |
DO-based PI-PD | 5.44 | 0.004 | −0.126 | 0 | 5.61 | 0.004 | −0.130 | 0 |
Control Scheme | Area-1 | Area-2 | ||||
---|---|---|---|---|---|---|
Settling Time | % Overshoot | s-s Error | Settling Time | % Overshoot | s-s Error | |
HAEFA Fuzzy PID [3] | 2.21 | 12 | 0 | 2.02 | 14 | 0 |
AOA-based PI-PD | 2.85 | 0.0020 | 0 | 2.45 | 0.040 | 0 |
LPBO-based PI-PD | 2.10 | 10.80 | 0 | 2.66 | 0.016 | 0 |
MPSO-based PI-PD | 2.30 | 0.43 | 0 | 2.60 | 3.99 × 10−4 | 0 |
DO-based PI-PD | 1.32 | 1.63 | 0 | 1.40 | 1.94 | 0 |
Control Scheme | Settling Time | % Overshoot | Undershoot | s-s Error |
---|---|---|---|---|
HAEFA Fuzzy PID [3] | 15.59 | 0.0005 | −0.0035 | 0 |
AOA-based PI-PD | 12.80 | 0.0023 | −0.021 | 0 |
LPBO-based PI-PD | 3.87 | 0.027 | −0.057 | 0 |
MPSO-based PI-PD | 13.69 | 0.00125 | −0.022 | 0 |
DO-based PI-PD | 8.84 | 0.006 | −0.0235 | 0 |
Area | Parameters of Controllers | AOA-Based PI-PD | LPBO-Based PI-PD | MPSO-Based PIPD | DO-Based PI-PD |
---|---|---|---|---|---|
Area-1 | Kp1 | 0.24 | 0.0069 | 0.40 | 1.05 |
Ki1 | 0.20 | 0.10 | 1.24 | 1.74 | |
Kp2 | 0.65 | 1.46 | 0 | 0.63 | |
Kd1 | 0.95 | 1.76 | 0.89 | 2 | |
Kp3 | 1.66 | 1.91 | 1.34 | 1.92 | |
Ki2 | 1.62 | 1.52 | 1.82 | 1.98 | |
Kp4 | 0.75 | 0.94 | 0.91 | 1.32 | |
Kd2 | 1.68 | 1.42 | 0.32 | 0.92 | |
Area-2 | Kp5 | 0.87 | 1.49 | 1.49 | 1.14 |
Ki3 | 0.66 | 0.68 | 0.85 | 1.21 | |
Kp6 | 1.84 | 1.72 | 1.68 | 1.17 | |
Kd3 | 1.86 | 0.53 | 0.40 | 1.77 | |
Kp7 | 1.31 | 1.17 | 1.94 | 1.37 | |
Ki4 | 1.16 | 1.73 | 1.70 | 0.80 | |
Kp8 | 0.37 | 1.68 | 1.59 | 0.39 | |
Kd4 | 0.28 | 0.31 | 1.48 | 0.62 | |
ITSE | 0.48 | 0.43 | 0.45 | 0.35 |
Area-1 | Area-2 | |||||||
---|---|---|---|---|---|---|---|---|
Control Scheme | Settling Time | % Overshoot | Undershoot | s-s Error | Settling Time | % Overshoot | Undershoot | s-s Error |
AOA-based PI-PD | 7.26 | 0.0215 | −0.121 | 0 | 8.47 | 0.0318 | −0.107 | 0 |
LPBO-based PI-PD | 8.24 | 0 | −0.0845 | 0 | 8.14 | 0 | −0.1079 | 0 |
MPSO-based PI-PD | 7.72 | 0 | −0.176 | 0 | 7.68 | 0.000975 | −0.171 | 0 |
DO-based PI-PD | 7.21 | 0.00212 | −0.0958 | 0 | 7.54 | 0.0026 | −0.0955 | 0 |
Control Scheme | Area-1 | Area-1 | ||||
---|---|---|---|---|---|---|
Settling Time | % Overshoot | s-s Error | Settling Time | % Overshoot | s-s Error | |
AOA-based PI-PD | 5.67 | 10.03 | 0 | 2.51 | 12.90 | 0 |
LPBO-based PI-PD | 4.83 | 3.09 | 0 | 5.07 | 1.43 × 10−4 | 0 |
MPSO-based PI-PD | 3.48 | 7.94 | 0 | 4.48 | 0.0025 | 0 |
DO-based PI-PD | 3.30 | 0.0015 | 0 | 2.48 | 0.016 | 0 |
Control Scheme | Settling Time | % Overshoot | Undershoot | s-s Error |
---|---|---|---|---|
AOA-based PI-PD | 14.49 | 0.0166 | −0.0441 | 0 |
LPBO-based PI-PD | 14.58 | 0.051 | −0.0392 | 0 |
MPSO-based PI-PD | 9.36 | 0.034 | −0.0991 | 0 |
DO-based PI-PD | 8.52 | 0.0056 | −0.00813 | 0 |
Area | Parameters of Controllers | AOA-Based PI-PD | LPBO-Based PI-PD | MPSO-Based PI-PD | DO-Based PI-PD |
---|---|---|---|---|---|
Area-1 | Kp1 | 1.49 | 1.90 | 1.36 | 1.61 |
Ki1 | 1.56 | 0.15 | 0.42 | 1.44 | |
Kp2 | 1.44 | 0 | 0.62 | 0.32 | |
Kd1 | 1.93 | 0.74 | 0.43 | 1.52 | |
Kp3 | 1.83 | 1.68 | 1.16 | 0.99 | |
Ki2 | 1.63 | 0.95 | 1.00 | 1.60 | |
Kp4 | 1.57 | 0.32 | 0.92 | 1.10 | |
Kd2 | 1.61 | 0.26 | 0.27 | 0.40 | |
Area-2 | Kp5 | 1.78 | 0.66 | 1.15 | 1.66 |
Ki3 | 1.76 | 0.96 | 1.73 | 1.82 | |
Kp6 | 1.78 | 1.065 | 0.26 | 1.69 | |
Kd3 | 1.80 | 0.64 | 1.04 | 0.72 | |
Kp7 | 1.79 | 0.85 | 1.05 | 0.13 | |
Ki4 | 1.68 | 1.13 | 1.80 | 1.68 | |
Kp8 | 1.36 | 0.96 | 1.40 | 1.93 | |
Kd4 | 1.15 | 0.88 | 1.12 | 0.35 | |
Area-3 | Kp9 | 1.73 | 0.12 | 1.11 | 0.45 |
Ki5 | 1.70 | 1.13 | 1.73 | 1.19 | |
Kp10 | 1.95 | 1.18 | 0.23 | 2 | |
Kd5 | 1.65 | 1.68 | 0.36 | 1.78 | |
Kp11 | 1.53 | 1.77 | 0.75 | 1.34 | |
Ki6 | 1.71 | 0.80 | 0.29 | 1.68 | |
Kp12 | 1.71 | 0.37 | 0.09 | 1.13 | |
Kd6 | 1.56 | 1.42 | 0.21 | 1.05 | |
ITSE | 0.90 | 0.81 | 0.90 | 0.89 |
Control Scheme | Area-1 | Area-2 | Area-3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Settling Time | % Overshoot | Undershoot | s-s Error | Settling Time | % Overshoot | Undershoot | s-s Error | Settling Time | % Overshoot | Undershoot | s-s Error | |
AOA-based PI-PD | 9.48 | 0 | −0.067 | 0 | 9.62 | 0 | 0.0027 | 0 | 9.41 | 0 | −0.0068 | 0 |
LPBO-based PI-PD | 5.21 | 0.0049 | −0.19 | 0 | 9.89 | 0.0030 | 0.10 | 0 | 8.37 | 0.0057 | −0.099 | 0 |
MPSO-based PI-PD | 7.74 | 0.0032 | −0.17 | 0 | 7.73 | 0.021 | 0.15 | 0 | 7.84 | 0.0041 | −0.17 | 0 |
DO-based PI-PD | 7.21 | 0 | −0.10 | 0 | 7.59 | 0.00017 | 0.086 | 0 | 7.54 | 0 | −0.075 | 0 |
Control Scheme | Area-1 | Area-2 | Area-3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Settling Time | % Overshoot | s-s Error | Settling Time | % Overshoot | s-s Error | Settling Time | % Overshoot | s-s Error | |
AOA-based PI-PD | 4.09 | 0.013 | 0 | 3.83 | 0.0056 | 0 | 3.78 | 0.098 | 0 |
LPBO-based PI-PD | 3.85 | 17.39 | 0 | 2.80 | 1.67 | 0 | 7.04 | 6.09 | 0 |
MPSO-based PI-PD | 6.10 | 0 | 0 | 3.84 | 2.24 | 0 | 5.69 | 0 | 0 |
DO-based PI-PD | 3.27 | 0.034 | 0 | 2.02 | 0.0009 | 0 | 2.23 | 1.65 | 0 |
Control Scheme | Area-1 | Area-2 | Area-3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Settling Time | % Overshoot | Undershoot | s-s Error | Settling Time | % Overshoot | Undershoot | s-s Error | Settling Time | % Overshoot | Undershoot | s-s Error | |
AOA-based PI-PD | 12.42 | 0.0035 | −0.006 | 0 | 11.51 | 0.0056 | −0.0052 | 0 | 11.71 | 0.0056 | −0.0031 | 0 |
LPBO-based PI-PD | 12.19 | 0.011 | −0.077 | 0 | 12.21 | 0.027 | −0.0076 | 0 | 13.64 | 0.050 | −0.017 | 0 |
MPSO-based PI-PD | 13.50 | 0.031 | −0.024 | 0 | 11.13 | 0.036 | −0.041 | 0 | 11.83 | 0.0232 | −0.024 | 0 |
DO-based PI-PD | 10.79 | 0.019 | −0.030 | 0 | 11.31 | 0.0093 | −0.0054 | 0 | 10.35 | 0.0211 | −0.014 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, T.; Malik, S.A.; Daraz, A.; Aslam, S.; Alkhalifah, T. Dandelion Optimizer-Based Combined Automatic Voltage Regulation and Load Frequency Control in a Multi-Area, Multi-Source Interconnected Power System with Nonlinearities. Energies 2022, 15, 8499. https://doi.org/10.3390/en15228499
Ali T, Malik SA, Daraz A, Aslam S, Alkhalifah T. Dandelion Optimizer-Based Combined Automatic Voltage Regulation and Load Frequency Control in a Multi-Area, Multi-Source Interconnected Power System with Nonlinearities. Energies. 2022; 15(22):8499. https://doi.org/10.3390/en15228499
Chicago/Turabian StyleAli, Tayyab, Suheel Abdullah Malik, Amil Daraz, Sheraz Aslam, and Tamim Alkhalifah. 2022. "Dandelion Optimizer-Based Combined Automatic Voltage Regulation and Load Frequency Control in a Multi-Area, Multi-Source Interconnected Power System with Nonlinearities" Energies 15, no. 22: 8499. https://doi.org/10.3390/en15228499
APA StyleAli, T., Malik, S. A., Daraz, A., Aslam, S., & Alkhalifah, T. (2022). Dandelion Optimizer-Based Combined Automatic Voltage Regulation and Load Frequency Control in a Multi-Area, Multi-Source Interconnected Power System with Nonlinearities. Energies, 15(22), 8499. https://doi.org/10.3390/en15228499