Reduction in Energy Consumption by Mitigation of Cultivation Resistance Due to the New Fallow Harrow Concept
Abstract
:1. Introduction
2. Materials and Methods
2.1. The New Harrow Machine
2.2. Theoretical Considerations
2.3. Experimental Methodology
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ghimire, R.; Ghimire, B.; Mesbah, A.O.; Sainju, U.M.; Idowu, O.J. Soil health response of cover crops in winter wheat-fallow system. Agron. J. 2019, 111, 2108–2115. [Google Scholar] [CrossRef] [Green Version]
- Guerrieri, A.S.; Anifantis, A.S.; Santoro, F.; Pascuzzi, S. Study of a Large Square Baler with Innovative Technological Systems that Optimize the Baling Effectiveness. Agriculture 2019, 9, 86. [Google Scholar] [CrossRef] [Green Version]
- Bogomazov, S.V.; Kochmin, A.G.; Tkachuk, O.A.; Pavlikova, E.V.; Sharunov, O.A. Effects of precursor and growth regulators on the productivity of winter wheat. Bulg. J. Crop Sci. 2017, 54, 29–34. [Google Scholar]
- Schillinger, W.F.; Kennedy, A.C.; Young, D.L. Eight years of annual no-till cropping in Washington’s winter wheat-summer fallow region. Agric. Ecosyst. Environ. 2007, 120, 345–358. [Google Scholar] [CrossRef]
- Hunt, J.R.; Browne, C.; McBeath, T.M.; Verburg, K.; Craig, S.; Whitbread, A.M. Summer fallow weed control and residue management impacts on winter crop yield through soil water and N accumulation in a winter-dominant, low rainfall region of southern Australia. Crop Pasture Sci. 2013, 64, 922–934. [Google Scholar] [CrossRef]
- Kettler, T.A.; Lyon, D.J.; Doran, W.; Powers, W.L.; Stroup, W.W. Soil Quality Assessment after Weed-Control Tillage in a No-Till Wheat-Fallow Cropping System. Soil Sci. Soc. Am. J. 2000, 64, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Schillinger, W.F. Minimum and Delayed Conservation Tillage for Wheat-Fallow Farming. Soil. Sci. Soc. Am. J. 2001, 65, 1203–1209. [Google Scholar] [CrossRef] [Green Version]
- Janosky, J.S.; Young, D.L.; Schillinger, W.F. Economics of Conservation Tillage in a Wheat-Fallow Rotation. Agron. J. 2002, 94, 527–531. [Google Scholar] [CrossRef] [Green Version]
- Dahiya, R.; Ingwersen, J.; Streck, T. The effect of mulching and tillage on the water and temperature regimes of a loess soil: Experimental findings and modeling. Soil Tillage Res. 2007, 96, 52–63. [Google Scholar] [CrossRef]
- Angelaki, A.; Dionysidis, A.; Sihag, P.; Golia, E.E. Assessment of Contamination Management Caused by Copper and Zinc Cations Leaching and Their Impact on the Hydraulic Properties of a Sandy and a Loamy Clay Soil. Land 2022, 11, 290. [Google Scholar] [CrossRef]
- Donaldson, E.; Schilinger, W.F.; Dofing, S.M. Straw Production and Grain Yield Relationships in Winter Wheat. Crop Sci. 2001, 41, 100–106. [Google Scholar] [CrossRef]
- Li, R.; Ma, J.; Sun, X.; Guo, X.; Zheng, L. Simulation of Soil Water and Heat Flow under Plastic Mulching and Different Ridge Patterns. Agriculture 2021, 11, 1099. [Google Scholar] [CrossRef]
- Goncharov, V.M.; Shein, E.V. Agrophysics; Fenix: Rostov-na-Don, Russia, 2006; ISBN 978-5222077412. (In Russian) [Google Scholar]
- Al-Mulla, Y.A.; Wu, J.Q.; Singh, P.; Flury, M.; Schillinger, W.F.; Huggins, D.R.; Stöckel, C.O. Soil water and temperature in chemical versus reduced-tillage fallow in a Mediterranean climate. Appl. Eng. Agric. 2009, 25, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Riar, D.S.; Ball, D.A.; Yenish, J.P.; Wuest, S.B.; Corp, M.K. Comparison of fallow tillage methods in the intermediate rainfall inland Pacific Northwest. Agron. J. 2010, 102, 1664–1673. [Google Scholar] [CrossRef] [Green Version]
- Peruzzi, A.; Ginanni, M.; Fontanelli, M.; Raffaelli, M.; Bàrberi, P. Innovative strategies for on-farm weed management in organic carrot. Renew. Agric. Food Syst. 2007, 22, 246–259. [Google Scholar] [CrossRef]
- Peruzzi, A.; Martelloni, L.; Frasconi, C.; Fontanelli, M.; Pirchio, M.; Raffaelli, M. Machines for non-chemical intra-row weed control in narrow and wide-row crops: A review. J. Agric. Eng. 2017, 48, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Lindwall, C.W.; Anderson, D.T. Agronomic evaluation of minimum tillage systems for summer fallow in southern Alberta. Can. J. Plant Sci. 1981, 61, 247–253. [Google Scholar] [CrossRef]
- Bulgakov, V.; Pascuzzi, S.; Ivanovs, S.; Nadykto, V.; Nowak, J. Kinematic discrepancy between driving wheels evaluated for a modular traction device. Biosyst. Eng. 2020, 196, 88–96. [Google Scholar] [CrossRef]
- Pascuzzi, S.; Anifantis, A.S.; Santoro, F. The concept of a compact profile agricultural tractor suitable for use on specialised tree crops. Agriculture 2020, 10, 123. [Google Scholar] [CrossRef] [Green Version]
- Schillinger, W.F.; Papendick, R.I. Tillage Mulch Depth Effects during Fallow on Wheat Production and Wind Erosion Control Factors. Soil Sci. Soc. Am. J. 1997, 61, 871–876. [Google Scholar] [CrossRef]
- Schillinger, W.F.; Papendick, R.I.; Guy, S.O.; Rasmussen, P.E.; van Kessel, C. Dryland Agriculture, 2nd ed.; American Society of Agronomy: Madison, WI, USA; Crop Science Society of America: Madison, WI, USA; Soil Scie Society of America: Madison, WI, USA, 2006; pp. 365–393. [Google Scholar]
- Smith, E.G.; Peters, T.L.; Blackshaw, R.E.; Lindwall, C.W.; Larney, F.J. Economics of reduced tillage fallow-crop systems in the dark brown soil zone of Alberta. Can. J. Soil Sci. 1996, 76, 411–416. [Google Scholar] [CrossRef]
- Chang, C.; Sommerfeldt, T.G.; Entz, T.; Stalker, D.R. Long-term soil moisture status in Southern Alberta. Can. J. Soil Sci. 1990, 70, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Lyon, D.J.; Baltensperger, D.D.; Blumenthal, J.M.; Burgener, P.; Harveson, R.M. Eliminating Summer Fallow Reduces Winter Wheat Yields, but Not Necessarily System Profitability. Crop Sci. 2004, 44, 855–860. [Google Scholar] [CrossRef] [Green Version]
- Massee, T.W.; Cary, J.W.; Plains, G.; Desert, A. Potential for reducing evaporation during summer fallow. J. Soil Water Conserv. 1978, 33, 126–129. [Google Scholar]
- Mielke, L.N.; Wilhelm, W.W.; Richards, K.A.; Fenster, C.R. Soil Physical Characteristics of Reduced Tillage in a Wheat-Fallow System. Trans. Am. Soc. Agric. Eng. 1984, 27, 1724–1728. [Google Scholar] [CrossRef]
- Licht, M.A.; Al-Kaisi, M. Strip-tillage effect on seedbed soil temperature and other soil physical properties. Soil Tillage Res. 2005, 80, 233–249. [Google Scholar] [CrossRef]
- Adamchuk, V.; Bulgakov, V.; Nadykto, V.; Ivanovs, S. Investigation of tillage depth of black fallow impact upon moisture evaporation intensity. Eng. Rural. Dev. 2020, 377–383. [Google Scholar] [CrossRef]
- Bulgakov, V.; Nadykto, V.; Kaminskiy, V.; Ruzhylo, Z.; Volskyi, V.; Olt, J. Experimental research into the effect operating speed on uniformity of cultivation depth during tillage in fallow field. Agron. Res. 2020, 18, 1962–1972. [Google Scholar] [CrossRef]
- Bulgakov, V.; Ivanovs, S.; Nadykto, V.; Kaminskiy, V.; Shymko, L.; Kaletnik, H. Movement Stability of a Section of the Machine for Black Fallow Cultivation in a Longitudinal-Verticale Plane. INMATEH Agric. Eng. 2020, 62, 99–106. [Google Scholar] [CrossRef]
- Orynycz, O.A. Influence of Tillage Technology on the Energy Efficiency of a Rapeseed Plantation, Procedia Engineering; Elsevier: Amsterdam, The Netherlands, 2017; Volume 182, pp. 532–539. [Google Scholar] [CrossRef]
- Nadykto, V.; Kyurchev, V.; Bulgakov, V.; Findura, P.; Karaiev, O. Influence of the plough with tekrone moldboards and landsides on ploughing parameters. Acta Technol. Agric. 2020, 1, 40–45. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bulgakov, V.; Nadykto, V.; Orynycz, O.; Pascuzzi, S. Reduction in Energy Consumption by Mitigation of Cultivation Resistance Due to the New Fallow Harrow Concept. Energies 2022, 15, 8500. https://doi.org/10.3390/en15228500
Bulgakov V, Nadykto V, Orynycz O, Pascuzzi S. Reduction in Energy Consumption by Mitigation of Cultivation Resistance Due to the New Fallow Harrow Concept. Energies. 2022; 15(22):8500. https://doi.org/10.3390/en15228500
Chicago/Turabian StyleBulgakov, Volodymyr, Volodymyr Nadykto, Olga Orynycz, and Simone Pascuzzi. 2022. "Reduction in Energy Consumption by Mitigation of Cultivation Resistance Due to the New Fallow Harrow Concept" Energies 15, no. 22: 8500. https://doi.org/10.3390/en15228500
APA StyleBulgakov, V., Nadykto, V., Orynycz, O., & Pascuzzi, S. (2022). Reduction in Energy Consumption by Mitigation of Cultivation Resistance Due to the New Fallow Harrow Concept. Energies, 15(22), 8500. https://doi.org/10.3390/en15228500