Fundamentals and Recent Progress in the Flow of Water-Soluble Polymers in Porous Media for Enhanced Oil Recovery
Abstract
:1. Introduction
2. Polymer Flooding Mechanisms
2.1. Mobility Control
2.2. Effect of Polymer on Residual Oil Saturation
3. Polymer Rheology in Porous Media
3.1. Polymer Viscoelasticity in Porous Media
3.2. Rheological Models for Polymer Flow through Porous Media
4. Polymer Retention in Porous Media
4.1. Polymer Retention Mechanisms
4.2. Polymer Depletion and Inaccessible Pore Volume
4.3. Measurement of Polymer Retention in Porous Media
4.4. Modeling of Polymer Retention
5. Factors Influencing Polymer Performance in Porous Media
5.1. Polymer Type
5.2. Polymer Molecular Weight
5.3. Polymer Concentration Regimes
5.4. Porous Media Permeability
5.5. Residual Oil Saturation
5.6. Iron and Clay Content
5.7. Salinity and Hardness
5.8. Temperature
6. Advanced Water-Soluble Polymers
6.1. Hydrophobically Modified Polymers
- (a)
- General properties
- (b)
- Effect of salinity
- (c)
- Effect of temperature
6.2. Salt- and Temperature-Tolerant Modified Polyacrylamides
Polymer | Salinity (ppm) | Ref. | ||
---|---|---|---|---|
No.1 | Hydrophobically modified polyacrylamide with methylene | 100,000 | 25 | [236] |
No.2 | Hydrophobically modified polyacrylic acid with alkyl acrylate | 40,000 | 25 | [237] |
No.3 | Hydrophobically modified polyacrylic acid with 2-(N-ethylperfluorooctanesulfoamido) ethyl acrylate (FA) or 2-(N-ethylperfluorooctanesulfoamido) ethyl methacrylate (FMA) | 19,000 | 25 | [219] |
No.4 | Hydrophobically modified polyacrylamide with N-phenethylacrylamide | 90,000 | 25 | [238] |
No.5 | Terpolymers of acrylamide (AM) with sodium 3-acrylamido-3-methylbutanoate (Na-AMB) and 2-acrylamido- 2methylpropanedimethylammonium chloride (AMPDAC) | 30,000 | 30–60 | [229] |
No.6 | Hydrophobically modified polyacrylic acid with 3-pentadecylcyclohexylamine (3-PDCA) | 0 | 30–60 | [230] |
No.7 | Hydrophobically modified polyacrylamide 3-(2-acrylamido-2-methylpropanedimethylammonio)- l-propanesulfonate (AMPDAPS) | 0 | 25–60 | [231] |
No.8 | Poly(propylene oxide) methacrylate | 0 | 25–70 | [232] |
No.9 | Thermoviscosifying polymers (TVP) mainly based on thermosensitive poly(N-isopropylacrylamide) (PNIPAM) and polyethylene (PEO) | 33,000 (TDS), 900 (DC) | 90 | [239] |
No.10 | Copolymer of hydrolyzed polyacrylamide (HPAM) and 2-acrylamido-2-methylpropane sulfonic acid (AMPS) | 50,000 | 80 | [233] |
No.11 | Incorporation of Acrylamido-Tert-Butyl-Sulfonate (ATBS) and/or N-vinyl pyrrolidone (N-VP) into hydrolyzed polyacrylamide (HPAM) | 500–100,000 | 85–140 | [234] |
No.12 | Synergy of hydrolyzed polyacrylamide (HPAM) and 2-acrylamido-2-methylpropane sulfonic acid (AMPS) with surfactant | 172,000 | 95 | [240] |
No.13 | Incorporation of sodium 2-acrylamido-2-methylpropane sulfonic acid (Na-AMPS) and/or N-vinyl pyrrolidone (N-VP) and/or sodium 3-acrylamid 3-methyl butyrate (N-AMB) and/or N-vinyl amide (N-VAM) into hydrolyzed polyacrylamide (HPAM) | 34,600–180,000 (TDS) | 90–120 | [241] |
No.14 | Incorporation of Acrylamido-Tert-Butyl-Sulfonate (ATBS) and/or N-vinyl pyrrolidone (N-VP) into hydrolyzed polyacrylamide (HPAM) | 13,000 (TDS), 7000 (DC) | 85 | [242] |
No.15 | Copolymer of 2-acrylamido-2-methylpropane sulfonic acid (AMPS) and hydrolyzed polyacrylamide (HPAM) | 170,000 (TDS), 17,000 (DC) | 100 | [41] |
No.16 | Incorporation of sodium 2-acrylamido-2-methylpropane sulfonic acid (Na-AMPS) and/or N-vinyl pyrrolidone (N-VP) into hydrolyzed polyacrylamide (HPAM) | 43,700–179,800 (TDS), 2100–17,700 (DC) | 120 | [151] |
6.3. Polymer–Nanoparticles Hybrid
7. Polymer Flooding in Practice
Country | Field | Formation Water Salinity (ppm) | Temperature (°C) | Oil Viscosity (cP) | Polymer Type | Polymer Concentration (ppm) | Polymer Viscosity (cP) | Ref. |
---|---|---|---|---|---|---|---|---|
Canada | East Bodo | 29,000 | NR | 417–2000 | HPAM(F3630/F3830) | 1500 | 50–60 | [271] |
25,00–27,000 | 27 | 600–2000 | Associative polymer | 1750 | 30–80 | [272] | ||
Pelican Lake | 6853 | 23 | 1000–3000 | HPAM (13.6 MDa) | 600–3000 | 13–50 | [273] | |
Mooney | 28,700 | 29 | 300–1000 | Associative polymer | 2200 | NR | [272] | |
China | SZ36-1 | 6071 | 65 | 70 | Associative polymer | 600–2400 | 98 | [274] |
Daqing | 6000 | 45 | 10–30 | HPAM | 1000–2500 | 40–300 | [275,276] | |
Shengtuo | 21,000 | 80 | 10–40 | HPAM | 1800 | 30–50 | [261] | |
Bohai Bay | 2873– 20,000 | 50–70 | 30–450 | HPAM | 1200–2500 | 98 | [277] | |
6071–9347 | 65 | 24–452 | Associative polymer (AP-P4) | 1750 | 131 | [278] | ||
Gudao | 8207 | 65 | 50–150 | HPAM | 2000 | 350 | [261] | |
ShuangHe | 5060 | 72 | 7.8 | HPAM | 1090 | 93 | [279] | |
Brazil | Buracica | 41,000 | 60 | 7–20 | HPAM (Flopam) | 500 | 10 | [280] |
Carmopolis | 17,091 | 50 | 10.5 | HPAM (Flopam) | 500 | 40 | [281] | |
Oman | Marmul | 3000 | 46 | 80–90 | HPAM (Nalco Q41F) | 1000 | 15 | [282,283] |
Suriname | Tambaredjo | 5000 | 38 | 325–2209 | HPAM (3630S) | 1000–2500 | 45–140 | [284] |
India | Mangala | 5400 | 62 | 9–22 | HPAM | 2000–2500 | 20 | [285,286] |
Germany | Bockstedt | 186,000 | 54 | 11–29 | Schizophyllan | 300 | 25 | [268,269] |
Angola | Dalia/Camelia | 117,700 | 45–56 | 1–11 | HPAM (18–20 MDa) | 900 | 3 | [263,264] |
8. Final Remarks
9. Summary and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- BP Energy Outlook. 2019. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2019.pdf (accessed on 1 January 2020).
- Sandrea, I.; Sandrea, R. Global oil reserves—1: Recovery factors leave vast target for EOR technologies. Oil Gas J. 2007, 105, 44–48. [Google Scholar]
- Muggeridge, A.; Cockin, A.; Webb, K.; Frampton, H.; Collins, I.; Moulds, T.; Salino, P. Recovery rates, enhanced oil recovery and technological limits. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 372, 20120320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lake, L.; Johns, R.T.; Rossen, W.R.; Pope, G.A. Fundamentals of Enhanced Oil Recovery; Society of Petroleum Engineers: Richardson, TX, USA, 2014. [Google Scholar]
- Sorbie, K.S. Network Modeling of Xanthan Rheology in Porous Media in the Presence of Depleted Layer Effects. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 1 January 1989; p. 14. [Google Scholar]
- Sheng, J. Modern Chemical Enhanced Oil Recovery: Theory and Practice; Gulf Professional Publishing: Huston, TX, USA, 2010. [Google Scholar]
- Yegane, M.M.; Ayatollahi, S.; Bashtani, F.; Romero, C. Solar Generated Steam Injection in Hamca, Venezuelan Extra Heavy Oil Reservoir; Simulation Study for Oil Recovery Performance, Economical and Environmental Feasibilities. In Proceedings of the EUROPEC 2015, Madrid, Spain, 1–4 June 2015; p. 27. [Google Scholar]
- Yegane, M.M.; Bashtani, F.; Tahmasebi, A.; Ayatollahi, S.; Al-wahaibi, Y.M. Comparing Different Scenarios for Thermal Enhanced Oil Recovery in Fractured Reservoirs Using Hybrid (Solar-Gas) Steam Generators, A Simulation Study. In Proceedings of the SPE Europec featured at 78th EAGE Conference and Exhibition, Vienna, Austria, 30 May 2016; p. 19. [Google Scholar]
- Mirzaie Yegane, M.; Battistutta, E.; Zitha, P. Mechanistic Simulation and History Matching of Alkaline-Surfactant-Polymer ASP Core Flooding Experiment at Optimum vs. Under-Optimum Salinity Conditions. In Proceedings of the SPE Europec Featured at 81st EAGE Conference and Exhibition, London, UK, 3–6 June 2019; p. 22. [Google Scholar]
- Pye, D.J. Improved Secondary Recovery by Control of Water Mobility. J. Pet. Technol. 1964, 16, 911–916. [Google Scholar] [CrossRef]
- Sandiford, B.B. Laboratory and Field Studies of Water Floods Using Polymer Solutions to Increase Oil Recoveries. J. Pet. Technol. 1964, 16, 917–922. [Google Scholar] [CrossRef]
- Chang, H.L. Polymer Flooding Technology Yesterday, Today, and Tomorrow. J. Pet. Technol. 1978, 30, 1113–1128. [Google Scholar] [CrossRef]
- Jewett, R.L.; Schurz, G.F. Polymer Flooding-A Current Appraisal. J. Pet. Technol. 1970, 22, 675–684. [Google Scholar] [CrossRef]
- Needham, R.B.; Doe, P.H. Polymer Flooding Review. J. Pet. Technol. 1987, 39, 1503–1507. [Google Scholar] [CrossRef]
- Du, Y.; Guan, L. Field-scale Polymer Flooding: Lessons Learnt and Experiences Gained During Past 40 Years. In Proceedings of the SPE International Petroleum Conference in Mexico, Puebla Pue, Mexico, 7–9 November 2004; p. 6. [Google Scholar]
- Manrique, E.J.; Thomas, C.P.; Ravikiran, R.; Izadi Kamouei, M.; Lantz, M.; Romero, J.L.; Alvarado, V. EOR: Current Status and Opportunities. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 24–28 April 2010; p. 21. [Google Scholar]
- Corlay, P.; Lemouzy, P.; Eschard, R.; Zhang, L.R. Fully Integrated Reservoir Study and Numerical Forecast Simulations of Two-Polymer Pilots in Daqing Field. In Proceedings of the International Meeting on Petroleum Engineering, Beijing, China, 24–27 March 1992; p. 10. [Google Scholar]
- Wang, D.; Cheng, J.; Wu, J.; Wang, Y. Producing by Polymer Flooding more than 300 Million Barrels of Oil, What Experiences Have Been Learnt? In Proceedings of the SPE Asia Pacific Oil and Gas Conference and Exhibition, Melbourne, Australia, 8–10 October 2002; p. 9. [Google Scholar]
- Wang, D.; Wang, G.; Xia, H.; Yang, S.; Wu, W. Incremental Recoveries in the Field of Large Scale High Viscous-Elastic Fluid Flooding are Double that of Conventional Polymer Flooding. In Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 30 October–2 November 2011; p. 14. [Google Scholar]
- Yang, F.; Wang, D.; Yang, X.; Sui, X.; Chen, Q.; Zhang, L. High Concentration Polymer Flooding is Successful. In Proceedings of the SPE Asia Pacific Oil and Gas Conference and Exhibition, Perth, Australia, 18–20 October 2004; p. 7. [Google Scholar]
- Needham, R.B.; Threlkeld, C.B.; Gall, J.W. Control of Water Mobility Using Polymers and Multivalent Cations. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 22–24 April 1974; p. 10. [Google Scholar]
- Standnes, D.C.; Skjevrak, I. Literature review of implemented polymer field projects. J. Pet. Sci. Eng. 2014, 122, 761–775. [Google Scholar] [CrossRef]
- Mohsenatabar Firozjaii, A.; Saghafi, H.R. Review on chemical enhanced oil recovery using polymer flooding: Fundamentals, experimental and numerical simulation. Petroleum 2019, 6, 115–122. [Google Scholar] [CrossRef]
- Rellegadla, S.; Prajapat, G.; Agrawal, A. Polymers for enhanced oil recovery: Fundamentals and selection criteria. Appl. Microbiol. Biotechnol. 2017, 101, 4387–4402. [Google Scholar] [CrossRef]
- Wever, D.A.Z.; Picchioni, F.; Broekhuis, A.A. Polymers for enhanced oil recovery: A paradigm for structure–property relationship in aqueous solution. Prog. Polym. Sci. 2011, 36, 1558–1628. [Google Scholar] [CrossRef]
- Kamal, M.S.; Sultan, A.S.; Al-Mubaiyedh, U.A.; Hussein, I.A. Review on Polymer Flooding: Rheology, Adsorption, Stability, and Field Applications of Various Polymer Systems. Polym. Rev. 2015, 55, 491–530. [Google Scholar] [CrossRef]
- Thomas, A.; Gaillard, N.; Favero, C. Some Key Features to Consider When Studying Acrylamide-Based Polymers for Chemical Enhanced Oil Recovery. Oil Gas Sci. Technol.-Rev. D’ifp Energ. Nouv. 2012, 67, 887–902. [Google Scholar] [CrossRef] [Green Version]
- Scott, A.J.; Romero-Zerón, L.; Penlidis, A. Evaluation of Polymeric Materials for Chemical Enhanced Oil Recovery. Processes 2020, 8, 361. [Google Scholar] [CrossRef] [Green Version]
- Al-Hajri, S.; Mahmood, S.M.; Abdulelah, H.; Akbari, S. An Overview on Polymer Retention in Porous Media. Energies 2018, 11, 2751. [Google Scholar] [CrossRef] [Green Version]
- Weiss, W.W.; Baldwin, R.W. Planning and implementing a large-scale polymer flood. J. Pet. Technol. 1985, 37, 720–730. [Google Scholar] [CrossRef]
- Skauge, A.; Zamani, N.; Gausdal Jacobsen, J.; Shaker Shiran, B.; Al-Shakry, B.; Skauge, T. Polymer Flow in Porous Media: Relevance to Enhanced Oil Recovery. Colloids Interfaces 2018, 2, 27. [Google Scholar] [CrossRef] [Green Version]
- Abidin, A.Z.; Puspasari, T.; Nugroho, W.A. Polymers for Enhanced Oil Recovery Technology. Procedia Chem. 2012, 4, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Alfazazi, U.; AlAmeri, W.; Hashmet, M.R. Screening of New HPAM Base Polymers for Applications in High Temperature and High Salinity Carbonate Reservoirs. In Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, United Arab Emirates, 5–8 October 2008. [Google Scholar]
- Chauveteau, G. Fundamental Criteria in Polymer Flow Through Porous Media. In Water-Soluble Polymers; Advances in Chemistry; American Chemical Society: Washington, DC, USA, 1986; Volume 213, pp. 227–267. [Google Scholar]
- Kheradmand, H.; François, J.; Plazanet, V. Hydrolysis of polyacrylamide and acrylic acid-acrylamide copolymers at neutral pH and high temperature. Polymer 1988, 29, 860–870. [Google Scholar] [CrossRef]
- Ash, S.G.; Clarke-Sturman, A.J.; Calvert, R.; Nisbet, T.M. Chemical Stability of Biopolymer Solutions. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Francisco, CA, USA, 5–8 October 2008; p. 8. [Google Scholar]
- Cadmus, M.C.; Jackson, L.K.; Burton, K.A.; Plattner, R.D.; Slodki, M.E. Biodegradation of Xanthan Gum by Bacillus sp. Appl. Environ. Microbiol. 1982, 44, 5–11. [Google Scholar] [CrossRef] [Green Version]
- Schulz, D.N.; Kaladas, J.J.; Maurer, J.J.; Bock, J.; Pace, S.J.; Schulz, W.W. Copolymers of acrylamide and surfactant macromonomers: Synthesis and solution properties. Polymer 1987, 28, 2110–2115. [Google Scholar] [CrossRef]
- Senan, C.; Meadows, J.; Shone, P.T.; Williams, P.A. Solution Behavior of Hydrophobically Modified Sodium Polyacrylate. Langmuir 1994, 10, 2471–2479. [Google Scholar] [CrossRef]
- Durand, A.; Hourdet, D. Synthesis and thermoassociative properties in aqueous solution of graft copolymers containing poly(N-isopropylacrylamide) side chains. Polymer 1999, 40, 4941–4951. [Google Scholar] [CrossRef]
- Levitt, D.; Pope, G.A. Selection and Screening of Polymers for Enhanced-Oil Recovery. In Proceedings of the SPE Symposium on Improved Oil Recovery, Tulsa, OK, USA, 20–23 April 2008; p. 18. [Google Scholar]
- Doe, P.H.; Moradi-Araghi, A.; Shaw, J.E.; Stahl, G.A. Development and Evaluation of EOR Polymers Suitable for Hostile Environments Part 1: Copolymers of Vinylpyrrolidone and Acrylamide. SPE Reserv. Eng. 1987, 2, 461–467. [Google Scholar] [CrossRef]
- Wei, B.; Romero-Zerón, L.; Rodrigue, D. Oil displacement mechanisms of viscoelastic polymers in enhanced oil recovery (EOR): A review. J. Pet. Explor. Prod. Technol. 2014, 4, 113–121. [Google Scholar] [CrossRef] [Green Version]
- Al-Shakry, B.; Skauge, T.; Shaker Shiran, B.; Skauge, A. Impact of Mechanical Degradation on Polymer Injectivity in Porous Media. Polymers 2018, 10, 742. [Google Scholar] [CrossRef] [Green Version]
- Vermolen, E.C.; Haasterecht, M.J.; Masalmeh, S.K. A Systematic Study of the Polymer Visco-Elastic Effect on Residual Oil Saturation by Core Flooding. In Proceedings of the SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman, 31 March–2 April 2014. [Google Scholar]
- Clarke, A.; Howe, A.M.; Mitchell, J.; Staniland, J.; Hawkes, L.A. How Viscoelastic-Polymer Flooding Enhances Displacement Efficiency. SPE J. 2016, 21, 0675–0687. [Google Scholar] [CrossRef]
- Emami Meybodi, H.; Kharrat, R.; Wang, X. Study of Microscopic and Macroscopic Displacement Behaviors of Polymer Solution in Water-Wet and Oil-Wet Media. Transp. Porous Media 2011, 89, 97–120. [Google Scholar] [CrossRef]
- Mahajan, S.; Yadav, H.; Rellegadla, S.; Agrawal, A. Polymers for enhanced oil recovery: Fundamentals and selection criteria revisited. Appl. Microbiol. Biotechnol. 2021, 105, 8073–8090. [Google Scholar] [CrossRef]
- Rock, A.; Hincapie, R.E.; Tahir, M.; Langanke, N.; Ganzer, L. On the Role of Polymer Viscoelasticity in Enhanced Oil Recovery: Extensive Laboratory Data and Review. Polymers 2020, 12, 2276. [Google Scholar] [CrossRef]
- Han, X.; Li, C.; Pan, F.; Li, Y.; Feng, Y. A comparative study on enhancing oil recovery with partially hydrolyzed polyacrylamide: Emulsion versus powder. Can. J. Chem. Eng. 2022, 100, 1336–1348. [Google Scholar] [CrossRef]
- Gbadamosi, A.O.; Junin, R.; Manan, M.A.; Agi, A.; Yusuff, A.S. An overview of chemical enhanced oil recovery: Recent advances and prospects. International Nano Letters 2019, 9, 171–202. [Google Scholar] [CrossRef] [Green Version]
- Sorbie, K.S. Polymer-Improved Oil Recovery; Springer: Dordrecht, The Netherlands, 1991. [Google Scholar]
- Hu, Y.; Wang, S.Q.; Jamieson, A.M. Rheological and Rheooptical Studies of Shear-Thickening Polyacrylamide Solutions. Macromolecules 1995, 28, 1847–1853. [Google Scholar] [CrossRef]
- Kawale, D.; Marques, E.; Zitha, P.L.J.; Kreutzer, M.T.; Rossen, W.R.; Boukany, P.E. Elastic instabilities during the flow of hydrolyzed polyacrylamide solution in porous media: Effect of pore-shape and salt. Soft Matter 2017, 13, 765–775. [Google Scholar] [CrossRef] [PubMed]
- Portehault, D.; Petit, L.; Hourdet, D. Synthesis and self assembly processes of aqueous thermoresponsive hybrid formulations. Soft Matter 2010, 6, 2178–2186. [Google Scholar] [CrossRef]
- Green, D.W.; Willhite, G.P. Enhanced Oil Recovery; Society of Petroleum Engineers: Richardson, TX, USA, 1998. [Google Scholar]
- Doda, A.; Azad, M.S.; Trivedi, J.J. Effect of water saturation on the role of polymer elasticity during heavy oil recovery. J. Dispers. Sci. Technol. 2020, 41, 1265–1273. [Google Scholar] [CrossRef]
- Schneider, F.N.; Owens, W.W. Steady-State Measurements of Relative Permeability for Polymer/Oil Systems. Soc. Pet. Eng. J. 1982, 22, 79–86. [Google Scholar] [CrossRef]
- Taber, J.J. Technical Screening Guides for the Enhanced Recovery of Oil. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Francisco, CA, USA, 5–8 October 1983; p. 20. [Google Scholar]
- Mennella, A.; Chiappa, L.; Bryant, S.L.; Burrafato, G. Pore-scale Mechanism for Selective Permeability Reduction by Polymer Injection. In Proceedings of the SPE/DOE Improved Oil Recovery Symposium, Tulsa, OK, USA, 19–22 April 1998; p. 12. [Google Scholar]
- Liang, J.-T.; Seright, R.S. Further Investigations of Why Gels Reduce Water Permeability More Than Oil Permeability. SPE Prod. Facil. 1997, 12, 225–230. [Google Scholar] [CrossRef]
- Liang, B.; Jiang, H.; Li, J.; Chen, F.; Miao, W.; Yang, H.; Qiao, Y.; Chen, W. Mechanism Study of Disproportionate Permeability Reduction Using Nuclear Magnetic Resonance T2. Energy Fuels 2018, 32, 4959–4968. [Google Scholar] [CrossRef]
- Ye, Z.; He, E.; Xie, S.; Han, L.; Chen, H.; Luo, P.; Shu, Z.; Shi, L.; Lai, N. The mechanism study of disproportionate permeability reduction by hydrophobically associating water-soluble polymer gel. J. Pet. Sci. Eng. 2010, 72, 64–66. [Google Scholar] [CrossRef]
- Barreau, P.; Bertin, H.; Lasseux, D.; Glénat, P.; Zaitoun, A. Water Control in Producing Wells: Influence of an Adsorbed-Polymer Layer on Relative Permeabilities and Capillary Pressure. SPE Reserv. Eng. 1997, 12, 234–239. [Google Scholar] [CrossRef]
- Zaitoun, A.; Kohler, N. Two-Phase Flow Through Porous Media: Effect of an Adsorbed Polymer Layer. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 21–22 May 2001; p. 14. [Google Scholar]
- Wu, Q.; Ge, J.; Ding, L.; Guo, H.; Wang, W.; Fan, J. Insights into the key aspects influencing the rheological properties of polymer gel for water shutoff in fractured reservoirs. Colloids Surf. A Physicochem. Eng. Asp. 2022, 634, 127963. [Google Scholar] [CrossRef]
- Wang, D.; Cheng, J.; Yang, Q.; Wenchao, G.; Qun, L.; Chen, F. Viscous-Elastic Polymer Can Increase Microscale Displacement Efficiency in Cores. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 1–4 October 2000; p. 10. [Google Scholar]
- Hou, J.; Li, Z.; Zhang, S.; Cao, X.; Du, Q.; Song, X. Computerized Tomography Study of the Microscopic Flow Mechanism of Polymer Flooding. Transp. Porous Media 2009, 79, 407–418. [Google Scholar] [CrossRef]
- Wang, D.; Wang, G.; Wu, W.; Xia, H.; Yin, H. The Influence of Viscoelasticity on Displacement Efficiency—From Micro- to Macroscale. In Proceedings of the SPE Annual Technical Conference and Exhibition, Anaheim, CA, USA, 11–14 November 2007; p. SPE-109016-MS. [Google Scholar]
- Luo, D.; Wang, F.; Zhu, J.; Cao, F.; Liu, Y.; Li, X.; Willson, R.C.; Yang, Z.; Chu, C.-W.; Ren, Z. Nanofluid of graphene-based amphiphilic Janus nanosheets for tertiary or enhanced oil recovery: High performance at low concentration. Proc. Natl. Acad. Sci. USA 2016, 113, 7711–7716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delshad, M.; Kim, D.H.; Magbagbeola, O.A.; Huh, C.; Pope, G.A.; Tarahhom, F. Mechanistic Interpretation and Utilization of Viscoelastic Behavior of Polymer Solutions for Improved Polymer-Flood Efficiency. In Proceedings of the SPE Symposium on Improved Oil Recovery, Tulsa, OK, USA, 20–23 April 2008; p. SPE-113620-MS. [Google Scholar]
- Khalilinezhad, S.S.; Hashemi, A.; Mobaraki, S.; Zakavi, M.; Jarrahian, K. Experimental Analysis and Numerical Modeling of Polymer Flooding in Heavy Oil Recovery Enhancement: A Pore-Level Investigation. Arab. J. Sci. Eng. 2019, 44, 10447–10465. [Google Scholar] [CrossRef]
- Yakimchuk, I.; Evseev, N.; Korobkov, D.; Ridzel, O.; Pletneva, V.; Yaryshev, M.; Ilyasov, I.; Glushchenko, N.; Orlov, A. Study of Polymer Flooding at Pore Scale by Digital Core Analysis for East-Messoyakhskoe Oil Field. In Proceedings of the SPE Russian Petroleum Technology Conference, Virtual, 26–29 October 2020; p. D043S020R001. [Google Scholar]
- Xie, C.; Qi, P.; Xu, K.; Xu, J.; Balhoff, M.T. Oscillative Trapping of a Droplet in a Converging Channel Induced by Elastic Instability. Phys. Rev. Lett. 2022, 128, 054502. [Google Scholar] [CrossRef]
- Xie, C.; Xu, K.; Mohanty, K.; Wang, M.; Balhoff, M.T. Nonwetting droplet oscillation and displacement by viscoelastic fluids. Phys. Rev. Fluids 2020, 5, 063301. [Google Scholar] [CrossRef]
- Erincik, M.Z.; Qi, P.; Balhoff, M.T.; Pope, G.A. New Method To Reduce Residual Oil Saturation by Polymer Flooding. SPE J. 2018, 23, 1944–1956. [Google Scholar] [CrossRef]
- Qi, P.; Ehrenfried, D.H.; Koh, H.; Balhoff, M.T. Reduction of Residual Oil Saturation in Sandstone Cores by Use of Viscoelastic Polymers. SPE J. 2017, 22, 447–458. [Google Scholar] [CrossRef]
- McKinley, G.H.; Pakdel, P.; Öztekin, A. Rheological and geometric scaling of purely elastic flow instabilities. J. Non-Newton. Fluid Mech. 1996, 67, 19–47. [Google Scholar] [CrossRef]
- Clarke, A.; Howe, A.M.; Mitchell, J.; Staniland, J.; Hawkes, L.; Leeper, K. Mechanism of anomalously increased oil displacement with aqueous viscoelastic polymer solutions. Soft Matter 2015, 11, 3536–3541. [Google Scholar] [CrossRef] [PubMed]
- Moan, M.; Chauveteau, G.; Ghoniem, S. Entrance effect in capillary flow of dilute and semi-dilute polymer solutions. J. Non-Newton. Fluid Mech. 1979, 5, 463–474. [Google Scholar] [CrossRef]
- Chauveteau, G.; Moan, M.; Magueur, A. Thickening behaviour of dilute polymer solutions in non-inertial elongational flows. J. Non-Newton. Fluid Mech. 1984, 16, 315–327. [Google Scholar] [CrossRef]
- Hoa, N.T.C.G.; Gaudu, R.; Anne-Archard, D. Relation entre le champ de vitesse d’elongation et l’apparition d’un comportement dilatant d’une solution de polymere diluee dans un ecoulement convergent non-inertiel. C. R. Acad. Sci. Paris 1982, 294, 927. [Google Scholar]
- Mirzaie Yegane, M.; Schmidt, J.; Dugonjic-Bilic, F.; Gerlach, B.; Boukany, P.E.; Zitha, P.L.J. Flow Enhancement of Water-Soluble Polymers through Porous Media by Preshearing. Ind. Eng. Chem. Res. 2021, 60, 3463–3473. [Google Scholar] [CrossRef]
- Schmidt, J.; Mirzaie Yegane, M.; Dugonjic-Bilic, F.; Gerlach, B.; Zitha, P. Novel Method For Mitigating Injectivity Issues During Polymer Flooding at High Salinity Conditions. In Proceedings of the SPE Europec Featured at 81st EAGE Conference and Exhibition, London, UK, 3–6 June 2019. [Google Scholar]
- Salmo, I.C.; Sorbie, K.S.; Skauge, A. The Impact of Rheology on Viscous Oil Displacement by Polymers Analyzed by Pore-Scale Network Modelling. Polymers 2021, 13, 1259. [Google Scholar] [CrossRef]
- Stavland, A.; Jonsbraten, H.; Lohne, A.; Moen, A.; Giske, N.H. Polymer Flooding—Flow Properties in Porous Media versus Rheological Parameters. In Proceedings of the SPE EUROPEC/EAGE Annual Conference and Exhibition, Barcelona, Spain, 14–17 June 2010; p. 15. [Google Scholar]
- Kawale, D.; Bouwman, G.; Sachdev, S.; Zitha, P.L.J.; Kreutzer, M.T.; Rossen, W.R.; Boukany, P.E. Polymer conformation during flow in porous media. Soft Matter 2017, 13, 8745–8755. [Google Scholar] [CrossRef] [Green Version]
- Tahir, M.; Hincapie, R.E.; Ganzer, L. An Elongational and Shear Evaluation of Polymer Viscoelasticity during Flow in Porous Media. Appl. Sci. 2020, 10, 4152. [Google Scholar] [CrossRef]
- Browne, C.A.; Shih, A.; Datta, S.S. Pore-Scale Flow Characterization of Polymer Solutions in Microfluidic Porous Media. Small 2020, 16, 1903944. [Google Scholar] [CrossRef] [Green Version]
- Chauveteau, G.; Moan, M. The onset of dilatant behaviour in non-inertial flow of dilute polymer solutions through channels with varying cross-sections. J. Phys. Lett. 1981, 42, 201–204. [Google Scholar] [CrossRef] [Green Version]
- Flew, S.; Sellin, R.H.J. Non-Newtonian flow in porous media-a laboratory study of polyacrylamide solutions. J. Non-Newton. Fluid Mech. 1993, 47, 169–210. [Google Scholar] [CrossRef]
- Durst, F.; Haas, R.; Interthal, W. The nature of flows through porous media. J. Non-Newton. Fluid Mech. 1987, 22, 169–189. [Google Scholar] [CrossRef]
- Haas, R.; Durst, F. Viscoelastic flow of dilute polymer solutions in regularly packed beds. Rheol. Acta 1982, 21, 566–571. [Google Scholar] [CrossRef]
- Gennes, P.G.D. Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients. J. Chern. Phys. 1974, 60, 5030–5042. [Google Scholar] [CrossRef]
- Zimm, B.H. Dynamics of Polymer Molecules in Dilute Solution: Viscoelasticity, Flow Birefringence and Dielectric Loss. J. Chern. Phys. 1956, 24, 269–278. [Google Scholar] [CrossRef]
- Larson, R.G.; Magda, J.J. Coil-stretch transitions in mixed shear and extensional flows of dilute polymer solutions. Macromolecules 1989, 22, 3004–3010. [Google Scholar] [CrossRef]
- Perkins, T.T.; Smith, D.E.; Chu, S. Single Polymer Dynamics in an Elongational Flow. Science 1997, 276, 2016. [Google Scholar] [CrossRef] [Green Version]
- Shaqfeh, E.S.G. The dynamics of single-molecule DNA in flow. J. Non-Newton. Fluid Mech. 2005, 130, 1–28. [Google Scholar] [CrossRef]
- Sachdev, S.; Muralidharan, A.; Boukany, P.E. Molecular Processes Leading to “Necking” in Extensional Flow of Polymer Solutions: Using Microfluidics and Single DNA Imaging. Macromolecules 2016, 49, 9578–9585. [Google Scholar] [CrossRef] [Green Version]
- Odell, J.; Müller, A.; Keller, A. Non-Newtonian Behaviour of Hydrolysed Polyacrylamide in Strong Elongational Flows: A Transient Network Approach. Polymer 1988, 29, 1179–1190. [Google Scholar] [CrossRef]
- Wang, S.Q. Transient network theory for shear-thickening fluids and physically crosslinked networks. Macromolecules 1992, 25, 7003–7010. [Google Scholar] [CrossRef]
- Galindo-Rosales, F.; Campo-Deaño, L.; Pinho, F.; van Bokhorst, E.; Hamersma, P.; Oliveira, M.; Alves, M. Microfluidic systems for the analysis of viscoelastic fluid flow phenomena in porous media. Microfluid. Nanofluidics 2011, 12, 485–498. [Google Scholar] [CrossRef]
- Howe, A.M.; Clarke, A.; Giernalczyk, D. Flow of concentrated viscoelastic polymer solutions in porous media: Effect of MW and concentration on elastic turbulence onset in various geometries. Soft Matter 2015, 11, 6419–6431. [Google Scholar] [CrossRef] [PubMed]
- Machado, A.; Bodiguel, H.; Beaumont, J.; Clisson, G.; Colin, A. Extra dissipation and flow uniformization due to elastic instabilities of shear-thinning polymer solutions in model porous media. Biomicrofluidics 2016, 10, 043507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Browne, C.A.; Datta, S.S. Elastic turbulence generates anomalous flow resistance in porous media. Sci. Adv. 2021, 7, eabj2619. [Google Scholar] [CrossRef]
- Müller, A.; Sáez, A. The Rheology of Polymer Solutions in Porous Media; Springer: Berlin/Heidelberg, Germany, 1999; pp. 335–393. [Google Scholar]
- Sadowski, T.J. Non-Newtonian Flow through Porous Media. II. Experimental. Trans. Soc. Rheol. 1965, 9, 251–271. [Google Scholar] [CrossRef]
- Sorbie, K.S.; Clifford, P.J.; Jones, E.R.W. The rheology of pseudoplastic fluids in porous media using network modeling. J. Colloid Interface Sci. 1989, 130, 508–534. [Google Scholar] [CrossRef]
- Pearson, J.R.A.; Tardy, P.M.J. Models for flow of non-Newtonian and complex fluids through porous media. J. Non-Newton. Fluid Mech. 2002, 102, 447–473. [Google Scholar] [CrossRef]
- Lopez, X.; Valvatne, P.H.; Blunt, M.J. Predictive network modeling of single-phase non-Newtonian flow in porous media. J. Colloid Interface Sci. 2003, 264, 256–265. [Google Scholar] [CrossRef]
- Savins, J.G. Non-newtonian flow through porous media. Ind. Eng. Chem. 1969, 61, 18–47. [Google Scholar] [CrossRef]
- Sochi, T. Non-Newtonian flow in porous media. Polymer 2010, 51, 5007–5023. [Google Scholar] [CrossRef] [Green Version]
- Shenoy, A.V. Darcy-Forchheimer natural, forced and mixed convection heat transfer in non-Newtonian power-law fluid-saturated porous media. Transp. Porous Media 1993, 11, 219–241. [Google Scholar] [CrossRef]
- Schümmer, P. Mechanics of Non-Newtonian Fluids. Von W. R. Schowalter. Pergamon Press, Oxford–Frankfurt 1978. 1. Aufl., IX, 300 S., zahlr. Abb. u. Tab., geb., $35.00. Chem. Ing. Tech. 1979, 51, 766. [Google Scholar] [CrossRef]
- McCabe, W.L.; Smith, J.C.; Harriott, P. Unit Operations of Chemical Engineering, 7th ed.; McGraw-Hill Education: New York, NY, USA, 2004; 1168p. [Google Scholar]
- Scheidegger, A.E. Theoritical models of porous matter. Producers Monthly (August), 1953; pp. 17–23. [Google Scholar]
- Sadowski, T.J.; Bird, R.B. Non-Newtonian Flow through Porous Media. I. Theoretical. Trans. Soc. Rheol. 1965, 9, 243–250. [Google Scholar] [CrossRef]
- Duda, J.L.; Hong, S.A.; Klaus, E.E. Flow of polymer solutions in porous media: Inadequacy of the capillary model. Ind. Eng. Chem. Fundam. 1983, 22, 299–305. [Google Scholar] [CrossRef]
- Dullien, F.A.L. 1—Pore Structure. In Porous Media, 2nd ed.; Dullien, F.A.L., Ed.; Academic Press: San Diego, CA, USA, 1992; pp. 5–115. [Google Scholar]
- Sochi, T. Pore-Scale Modeling of Non-Newtonian Flow in Porous Media. arXiv 2010, arXiv:1011.0760. [Google Scholar]
- Xie, C.; Balhoff, M.T. Lattice Boltzmann Modeling of the Apparent Viscosity of Thinning–Elastic Fluids in Porous Media. Transp. Porous Media 2021, 137, 63–86. [Google Scholar] [CrossRef]
- Xie, C.; Lv, W.; Wang, M. Shear-thinning or shear-thickening fluid for better EOR?—A direct pore-scale study. J. Pet. Sci. Eng. 2018, 161, 683–691. [Google Scholar] [CrossRef]
- Xie, C.; Lei, W.; Wang, M. Lattice Boltzmann model for three-phase viscoelastic fluid flow. Phys. Rev. E 2018, 97, 023312. [Google Scholar] [CrossRef]
- Willhite, G.P.; Dominguez, J.G. Mechanisms of polymer retention in porous media. In Improved Oil Recovery by Surfactant and Polymer Flooding; Shah, D.O., Schechter, R.S., Eds.; Academic Press: Cambridge, MA, USA, 1977; pp. 511–554. [Google Scholar]
- Gogarty, W.B. Mobility Control With Polymer Solutions. Soc. Pet. Eng. J. 1967, 7, 161–173. [Google Scholar] [CrossRef]
- Szabo, M.T. Some Aspects of Polymer Retention in Porous Media Using a C14-Tagged Hydrolyzed Polyacrylamide. Soc. Pet. Eng. J. 1975, 15, 323–337. [Google Scholar] [CrossRef]
- Marker, J.M. Dependence of Polymer Retention on Flow Rate. J. Pet. Technol. 1973, 25, 1307–1308. [Google Scholar] [CrossRef]
- Huh, C.; Lange, E.A.; Cannella, W.J. Polymer Retention in Porous Media. In Proceedings of the SPE/DOE Enhanced Oil Recovery Symposium, Tulsa, OK, USA, 22–25 April 1990; p. 20. [Google Scholar]
- Stutzmann, T.; Siffert, B. Contribution to the Adsorption Mechanism of Acetamide and Polyacrylamide on to Clays. Clays Clay Miner. 1977, 25, 392–406. [Google Scholar] [CrossRef]
- Pefferkorn, E.; Nabzar, L.; Carroy, A. Adsorption of polyacrylamide to Na kaolinite: Correlation between clay structure and surface properties. J. Colloid Interface Sci. 1985, 106, 94–103. [Google Scholar] [CrossRef]
- Shah, S.; Heinle, S.A.; Glass, J.E. Water-Soluble Polymer Adsorption from Saline Solutions. In Proceedings of the SPE Oilfield and Geothermal Chemistry Symposium, Phoenix, AZ, USA, 9–11 April 1985; p. 10. [Google Scholar]
- Lee, J.-J.; Fuller, G.G. Adsorption and desorption of flexible polymer chains in flowing systems. J. Colloid Interface Sci. 1985, 103, 569–577. [Google Scholar] [CrossRef]
- Zitha, P.L.J.; Chauveteau, G.; Léger, L. Unsteady-State Flow of Flexible Polymers in Porous Media. J. Colloid Interface Sci. 2001, 234, 269–283. [Google Scholar] [CrossRef]
- Cohen, Y.; Christ, F.R. Polymer Retention and Adsorption in the Flow of Polymer Solutions Through Porous Media. SPE Reserv. Eng. 1986, 1, 113–118. [Google Scholar] [CrossRef]
- Dawson, R.; Lantz, R.B. Inaccessible Pore Volume in Polymer Flooding. Soc. Pet. Eng. J. 1972, 12, 448–452. [Google Scholar] [CrossRef]
- Liauh, W.C.; Duda, J.L.; Klaus, E.E. An Investigation of the Inaccessible Pore Volume Phenomena; Society of Petroleum Engineers: Huston, TX, USA, 1979; Volume 23. [Google Scholar]
- DiMarzio, E.A.; Guttman, C.M. Separation by Flow. Macromolecules 1970, 3, 131–146. [Google Scholar] [CrossRef]
- Chauveteau, G.; Kohler, N. Influence of Microgels in Polysaccharide Solutions on Their Flow Behavior Through Porous Media. Soc. Pet. Eng. J. 1984, 24, 361–368. [Google Scholar] [CrossRef]
- Kolodziej, E.J. Mechanism of Microgel Formation in Xanthan Biopolymer Solutions. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 27–30 September 1987; p. 16. [Google Scholar]
- van Domselaar, H.R.; Fortmuller, C. On the Transport Properties of a Rod-Type Polymer in Sand Packs. In Proceedings of the European Petroleum Conference, Cannes, France, 16–18 November 1992; p. 9. [Google Scholar]
- Lotsch, T.; Muller, T.; Pusch, G. The Effect of Inaccessible Pore Volume on Polymer Coreflood Experiments. In Proceedings of the SPE Oilfield and Geothermal Chemistry Symposium, Phoenix, AZ, USA, 9–11 April 1985; p. 10. [Google Scholar]
- Hughes, D.S.; Teeuw, D.; Cottrell, C.W.; Tollas, J.M. Appraisal of the Use of Polymer Injection to Suppress Aquifer Influx and to Improve Volumetric Sweep in a Viscous Oil Reservoir. SPE Reserv. Eng. 1990, 5, 33–40. [Google Scholar] [CrossRef]
- Osterloh, W.T.; Law, E.J. Polymer Transport and Rheological Properties for Polymer Flooding in the North Sea. In Proceedings of the SPE/DOE Improved Oil Recovery Symposium, Tulsa, OK, USA, 19–22 April 1998; p. 12. [Google Scholar]
- UTCHEM Technical Documentation. Volume II Documentation for UTCHEM 2017_3: A Three-Dimensional Chemical Flood Simulator; UTCHEM Technical Documentation: Austin, TX, USA, 2017. [Google Scholar]
- Seright, R.S. The Effects of Mechanical Degradation and Viscoelastic Behavior on Injectivity of Polyacrylamide Solutions. Soc. Pet. Eng. J. 1983, 23, 475–485. [Google Scholar] [CrossRef]
- Wei, B.; Romero-Zerón, L.; Rodrigue, D. Mechanical Properties and Flow Behavior of Polymers for Enhanced Oil Recovery. J. Macromol. Sci. Part B 2014, 53, 625–644. [Google Scholar] [CrossRef]
- Liang, K.; Han, P.; Chen, Q.; Su, X.; Feng, Y. Comparative Study on Enhancing Oil Recovery under High Temperature and High Salinity: Polysaccharides Versus Synthetic Polymer. ACS Omega 2019, 4, 10620–10628. [Google Scholar] [CrossRef]
- Lakatos, I.; Lakatos-Szabó, J.; Tóth, J. Factors Influencing Polyacrylamide Adsorption in Porous Media and Their Effect on Flow Behavior. In Surface Phenomena in Enhanced Oil Recovery; Shah, D.O., Ed.; Springer: Boston, MA, USA, 1981; pp. 821–842. [Google Scholar]
- Lecourtier, J.; Lee, L.T.; Chauveteau, G. Adsorption of polyacrylamides on siliceous minerals. Colloids Surf. 1990, 47, 219–231. [Google Scholar] [CrossRef]
- Szabo, M.T. An Evaluation of Water-Soluble Polymers for Secondary Oil Recovery—Parts 1 and 2. J. Pet. Technol. 1979, 31, 553–570. [Google Scholar] [CrossRef]
- Vermolen, E.C.M.; Van Haasterecht, M.J.T.; Masalmeh, S.K.; Faber, M.J.; Boersma, D.M.; Gruenenfelder, M.A. Pushing the envelope for polymer flooding towards high-temperature and high-salinity reservoirs with polyacrylamide based ter-polymers. In Proceedings of the SPE Middle East Oil and Gas Show and Conference, Manama, Bahrain, 25–28 September 2011; p. 9. [Google Scholar]
- Dong, H.; Fang, S.; Wang, D.; Wang, J.; Liu, Z.L.; Hou, W. Review of Practical Experience & Management by Polymer Flooding at Daqing. In Proceedings of the SPE Symposium on Improved Oil Recovery, Tulsa, OK, USA, 20–23 April 2008; p. 18. [Google Scholar]
- Zhang, X.; Pan, F.; Guan, W.; Li, D.; Li, X.; Guo, S. A Novel Method of Optimizing the Moelcular Weight of Polymer Flooding. In Proceedings of the SPE Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia, 19–21 July 2011; p. 4. [Google Scholar]
- 1Odell, J.A.; Muller, A.J.; Narh, K.A.; Keller, A. Degradation of polymer solutions in extensional flows. Macromolecules 1990, 23, 3092–3103. [Google Scholar] [CrossRef]
- Nguyen, T.Q.; Kausch, H.H. Effects of solvent viscosity on polystyrene degradation in transient elongational flow. Macromolecules 1990, 23, 5137–5145. [Google Scholar] [CrossRef]
- Buchholz, B.A.; Zahn, J.M.; Kenward, M.; Slater, G.W.; Barron, A.E. Flow-induced chain scission as a physical route to narrowly distributed, high molar mass polymers. Polymer 2004, 45, 1223–1234. [Google Scholar] [CrossRef]
- Kuijpers, M.W.A.; Iedema, P.D.; Kemmere, M.F.; Keurentjes, J.T.F. The mechanism of cavitation-induced polymer scission; experimental and computational verification. Polymer 2004, 45, 6461–6467. [Google Scholar] [CrossRef]
- Sivalingam, G.; Agarwal, N.; Madras, G. Distributed midpoint chain scission in ultrasonic degradation of polymers. AIChE J. 2004, 50, 2258–2265. [Google Scholar] [CrossRef] [Green Version]
- Dang, T.Q.C.; Chen, Z.; Nguyen, T.B.N.; Bae, W. Investigation of Isotherm Polymer Adsorption in Porous Media. Pet. Sci. Technol. 2014, 32, 1626–1640. [Google Scholar] [CrossRef]
- Rashidi, M.; Sandvik, S.; Blokhus, A.M.; Skauge, A. Static and Dynamic Adsorption of Salt Tolerant Polymers. In Proceedings of the IOR 2009-15th European Symposium on Improved Oil Recovery, Paris, France, 27–29 April 2009. [Google Scholar]
- Lipatov, I.S.; Sergeeva, L.M. Adsorption of Polymers; Wiley: Hoboken, NJ, USA, 1974. [Google Scholar]
- Gramain, P.; Myard, P. Adsorption studies of polyacrylamides in porous media. J. Colloid Interface Sci. 1981, 84, 114–126. [Google Scholar] [CrossRef]
- Zhang, G.; Seright, R. Effect of Concentration on HPAM Retention in Porous Media. SPE J. 2014, 19, 373–380. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Dixon, J.B.; White, G.N. Adsorption of Polyacrylamide on Smectite, Illite, and Kaolinite. Soil Sci. Soc. Am. J. 2006, 70, 297–304. [Google Scholar] [CrossRef]
- Zheng, C.G.; Gall, B.L.; Gao, H.W.; Miller, A.E.; Bryant, R.S. Effects of Polymer Adsorption and Flow Behavior on Two-Phase Flow in Porous Media. SPE Reserv. Eval. Eng. 2000, 3, 216–223. [Google Scholar] [CrossRef]
- Müller, A.J.; Odell, J.A.; Carrington, S. Degradation of semidilute polymer solutions in elongational flows. Polymer 1992, 33, 2598–2604. [Google Scholar] [CrossRef]
- Smith, F.W. The Behavior of Partially Hydrolyzed Polyacrylamide Solutions in Porous Media. J. Pet. Technol. 1970, 22, 148–156. [Google Scholar] [CrossRef]
- Vela, S.; Peaceman, D.W.; Sandvik, E.I. Evaluation of Polymer Flooding in a Layered Reservoir With Crossflow, Retention, and Degradation. Soc. Pet. Eng. J. 1976, 16, 82–96. [Google Scholar] [CrossRef]
- Seright, R.S. Impact of Permeability and Lithology on Gel Performance. In Proceedings of the SPE/DOE Enhanced Oil Recovery Symposium, Tulsa, OK, USA, 21–24 April 1992; p. 11. [Google Scholar]
- Seright, R.S.; Martin, F.D. Impact of Gelation pH, Rock Permeability, and Lithology on the Performance of a Monomer-Based Gel. SPE Reserv. Eng. 1993, 8, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Broseta, D.; Medjahed, F.; Lecourtier, J.; Robin, M. Polymer Adsorption/Retention in Porous Media: Effects of Core Wettability and Residual Oil. SPE Adv. Technol. Ser. 1995, 3, 103–112. [Google Scholar] [CrossRef]
- Kolodziej, E.J. Transport Mechanisms of Xanthan Biopolymer Solutions in Porous Media. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 2–5 October 1988; p. 16. [Google Scholar]
- Kottsova, A.K.; Mirzaie Yegane, M.; Tchistiakov, A.A.; Zitha, P.L.J. Effect of electrostatic interaction on the retention and remobilization of colloidal particles in porous media. Colloids Surf. A Physicochem. Eng. Asp. 2021, 617, 126371. [Google Scholar] [CrossRef]
- Sulpizi, M.; Gaigeot, M.-P.; Sprik, M. The Silica–Water Interface: How the Silanols Determine the Surface Acidity and Modulate the Water Properties. J. Chem. Theory Comput. 2012, 8, 1037–1047. [Google Scholar] [CrossRef] [PubMed]
- Tschapek, M. The Point of Zero Charge (pzc) of Kaolinite and SiO2 + Al2O3 Mixtures. Clay Miner. 1974, 10, 219–229. [Google Scholar] [CrossRef]
- Farooq, U.; Tweheyo, M.T.; Sjöblom, J.; Øye, G. Surface Characterization of Model, Outcrop, and Reservoir Samples in Low Salinity Aqueous Solutions. J. Dispers. Sci. Technol. 2011, 32, 519–531. [Google Scholar] [CrossRef]
- Peksa, A.E.; Wolf, K.-H.A.A.; Zitha, P.L.J. Bentheimer sandstone revisited for experimental purposes. Mar. Pet. Geol. 2015, 67, 701–719. [Google Scholar] [CrossRef]
- Gkay, D.H.; Rex, R.W. Formation damage in sandstones caused by clay dispersion and migration. In Clays and Clay Minerals; Bailey, S.W., Ed.; Pergamon: Oxford, UK, 1966; pp. 355–366. [Google Scholar]
- Simon, D.E.; McDaniel, B.W.; Coon, R.M. Evaluation of Fluid pH Effects on Low Permeability Sandstones. In Proceedings of the SPE Annual Fall Technical Conference and Exhibition, New Orleans, LA, USA, 3–6 October 1976; p. 12. [Google Scholar]
- Appel, C.; Ma, L.Q.; Dean Rhue, R.; Kennelley, E. Point of zero charge determination in soils and minerals via traditional methods and detection of electroacoustic mobility. Geoderma 2003, 113, 77–93. [Google Scholar] [CrossRef] [Green Version]
- Dupuis, D.; Lewandowski, F.Y.; Steiert, P.; Wolff, C. Shear thickening and time-dependent phenomena: The case of polyacrylamide solutions. J. Non-Newton. Fluid Mech. 1994, 54, 11–32. [Google Scholar] [CrossRef]
- Peng, S.; Wu, C. Light Scattering Study of the Formation and Structure of Partially Hydrolyzed Poly(acrylamide)/Calcium(II) Complexes. Macromolecules 1999, 32, 585–589. [Google Scholar] [CrossRef] [Green Version]
- Ohmine, I.; Tanaka, T. Salt effects on the phase transition of ionic gels. J. Chem. Phys. 1982, 77, 5725–5729. [Google Scholar] [CrossRef]
- Morris, E.R.; Rees, D.A.; Young, G.; Walkinshaw, M.D.; Darke, A. Order-disorder transition for a bacterial polysaccharide in solution. A role for polysaccharide conformation in recognition between Xanthomonas pathogen and its plant host. J. Mol. Biol. 1977, 110, 1–16. [Google Scholar] [CrossRef]
- Dentini, M.; Crescenzi, V.; Blasi, D. Conformational properties of xanthan derivatives in dilute aqueous solution. Int. J. Biol. Macromol. 1984, 6, 93–98. [Google Scholar] [CrossRef]
- Holzwarth, G. Conformation of the extracellular polysaccharide of Xanthomonas campestris. Biochemistry 1976, 15, 4333–4339. [Google Scholar] [CrossRef] [PubMed]
- Moradi-Araghi, A.; Doe, P.H. Hydrolysis and Precipitation of Polyacrylamides in Hard Brines at Elevated Temperatures. SPE Reserv. Eng. 1987, 2, 189–198. [Google Scholar] [CrossRef]
- Kierulf, C.; Sutherland, I.W. Thermal stability of xanthan preparations. Carbohydr. Polym. 1988, 9, 185–194. [Google Scholar] [CrossRef]
- Sabhapondit, A.; Borthakur, A.; Haque, I. Characterization of acrylamide polymers for enhanced oil recovery. J. Appl. Polym. Sci. 2003, 87, 1869–1878. [Google Scholar] [CrossRef]
- Zhong, C.; Luo, P.; Ye, Z.; Chen, H. Characterization and Solution Properties of a Novel Water-soluble Terpolymer for Enhanced Oil Recovery. Polym. Bull. 2009, 62, 79–89. [Google Scholar] [CrossRef]
- Wu, G.; Yu, L.; Jiang, X. Synthesis and properties of an acrylamide-based polymer for enhanced oil recovery: A preliminary study. Adv. Polym. Technol. 2018, 37, 2763–2773. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.Y.; Luo, W.L.; Jian, G.Q.; Wang, C.A.; Hou, Q.F.; Niu, J.L. Development and Performance of Water Soluble Salt-Resistant Polymers for Chemical Flooding. Adv. Mater. Res. 2012, 476-478, 227–235. [Google Scholar] [CrossRef]
- Sabhapondit, A.; Borthakur, A.; Haque, I. Water Soluble Acrylamidomethyl Propane Sulfonate (AMPS) Copolymer as an Enhanced Oil Recovery Chemical. Energy Fuels 2003, 17, 683–688. [Google Scholar] [CrossRef]
- Mothé, C.G.; Correia, D.Z.; de França, F.P.; Riga, A.T. Thermaland rheological study of polysaccharides for enhanced oil recovery. J. Therm. Anal. Calorim. 2006, 85, 31–36. [Google Scholar] [CrossRef]
- Ryles, R.G. Chemical Stability Limits of Water-Soluble Polymers Used in Oil Recovery Processes. SPE Reserv. Eng. 1988, 3, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Bridgewater, J.; Pace, S.; Gardner, G.; Schulz, D. Enhanced Oil Recovery with Hydrophobically Associating Polymers Containing n-vinyl-pyrrolidone Functionality. U.S. Patent 4709759, 1 December 1987. [Google Scholar]
- McCormick, C.L.; Nonaka, T.; Johnson, C.B. Water-soluble copolymers: 27. Synthesis and aqueous solution behaviour of associative acrylamideN-alkylacrylamide copolymers. Polymer 1988, 29, 731–739. [Google Scholar] [CrossRef]
- McCormick, C.L.; Middleton, J.C.; Cummins, D.F. Water-soluble copolymers. 37. Synthesis and characterization of responsive hydrophobically modified polyelectrolytes. Macromolecules 1992, 25, 1201–1206. [Google Scholar] [CrossRef]
- Hill, A.; Candau, F.; Selb, J. Properties of hydrophobically associating polyacrylamides: Influence of the method of synthesis. Macromolecules 1993, 26, 4521–4532. [Google Scholar] [CrossRef]
- Dowling, K.C.; Thomas, J.K. A novel micellar synthesis and photophysical characterization of water-soluble acrylamide-styrene block copolymers. Macromolecules 1990, 23, 1059–1064. [Google Scholar] [CrossRef]
- Candau, F.; Selb, J. Hydrophobically-modified polyacrylamides prepared by micellar polymerization1Part of this paper was presented at the conference on `Associating Polymer’, Fontevraud, France, November 1997.1. Adv. Colloid Interface Sci. 1999, 79, 149–172. [Google Scholar] [CrossRef]
- English, R.J.; Laurer, J.H.; Spontak, R.J.; Khan, S.A. Hydrophobically Modified Associative Polymer Solutions: Rheology and Microstructure in the Presence of Nonionic Surfactants. Ind. Eng. Chem. Res. 2002, 41, 6425–6435. [Google Scholar] [CrossRef]
- Feng, Y.; Billon, L.; Grassl, B.; Khoukh, A.; François, J. Hydrophobically associating polyacrylamides and their partially hydrolyzed derivatives prepared by post-modification. 1. Synthesis and characterization. Polymer 2002, 43, 2055–2064. [Google Scholar] [CrossRef]
- Volpert, E.; Selb, J.; Candau, F. Influence of the Hydrophobe Structure on Composition, Microstructure, and Rheology in Associating Polyacrylamides Prepared by Micellar Copolymerization. Macromolecules 1996, 29, 1452–1463. [Google Scholar] [CrossRef]
- Klucker, R.; Candau, F.; Schosseler, F. Transient Behavior of Associating Copolymers in a Shear Flow. Macromolecules 1995, 28, 6416–6422. [Google Scholar] [CrossRef]
- Lara-Ceniceros, A.C.; Rivera-Vallejo, C.; Jiménez-Regalado, E.J. Synthesis, characterization and rheological properties of three different associative polymers obtained by micellar polymerization. Polym. Bull. 2007, 58, 425–433. [Google Scholar] [CrossRef]
- Maia, A.M.S.; Costa, M.; Borsali, R.; Garcia, R.B. Rheological Behavior and Scattering Studies of Acrylamide-Based Copolymer Solutions. In Macromolecular Symposia; WILEY-VCH Verlag: Weinheim, Germany, 2005; Volume 229, pp. 217–227. [Google Scholar] [CrossRef]
- Xu, B.; Li, L.; Zhang, K.; Macdonald, P.M.; Winnik, M.A.; Jenkins, R.; Bassett, D.; Wolf, D.; Nuyken, O. Synthesis and Characterization of Comb Associative Polymers Based on Poly(ethylene oxide). Langmuir 1997, 13, 6896–6902. [Google Scholar] [CrossRef]
- Alami, E.; Almgren, M.; Brown, W. Interaction of Hydrophobically End-Capped Poly(ethylene oxide) with Nonionic Surfactants in Aqueous Solution. Fluorescence and Light Scattering Studies. Macromolecules 1996, 29, 5026–5035. [Google Scholar] [CrossRef]
- Yekta, A.; Duhamel, J.; Brochard, P.; Adiwidjaja, H.; Winnik, M.A. A fluorescent probe study of micelle-like cluster formation in aqueous solutions of hydrophobically modified poly(ethylene oxide). Macromolecules 1993, 26, 1829–1836. [Google Scholar] [CrossRef]
- Maechling-Strasser, C.; François, J.; Clouet, F.; Tripette, C. Hydrophobically end-capped poly (ethylene oxide) urethanes: 1. Characterization and experimental study of their association in aqueous solution. Polymer 1992, 33, 627–636. [Google Scholar] [CrossRef]
- Yang, X.; Liu, J.; Li, P.; Liu, C. Self-assembly properties of hydrophobically associating perfluorinated polyacrylamide in dilute and semi-dilute solutions. J. Polym. Res. 2015, 22, 103. [Google Scholar] [CrossRef]
- Huang, Z.; Lu, H.; He, Y. Amphoteric hydrophobic associative polymer: I synthesis, solution properties and effect on solution properties of surfactant. Colloid Polym. Sci. 2006, 285, 365–370. [Google Scholar] [CrossRef]
- Gou, S.; Luo, S.; Liu, T.; Zhao, P.; He, Y.; Pan, Q.; Guo, Q. A novel water-soluble hydrophobically associating polyacrylamide based on oleic imidazoline and sulfonate for enhanced oil recovery. New J. Chem. 2015, 39, 7805–7814. [Google Scholar] [CrossRef]
- Shashkina, Y.A.; Zaroslov, Y.D.; Smirnov, V.A.; Philippova, O.E.; Khokhlov, A.R.; Pryakhina, T.A.; Churochkina, N.A. Hydrophobic aggregation in aqueous solutions of hydrophobically modified polyacrylamide in the vicinity of overlap concentration. Polymer 2003, 44, 2289–2293. [Google Scholar] [CrossRef]
- Quan, H.; Li, Z.; Huang, Z. Self-assembly properties of a temperature- and salt-tolerant amphoteric hydrophobically associating polyacrylamide. RSC Adv. 2016, 6, 49281–49288. [Google Scholar] [CrossRef]
- Argillier, J.F.; Audibert, A.; Lecourtier, J.; Moan, M.; Rousseau, L. Solution and adsorption properties of hydrophobically associating water-soluble polyacrylamides. Colloids Surf. A Physicochem. Eng. Asp. 1996, 113, 247–257. [Google Scholar] [CrossRef]
- Grassl, B.; Francois, J.; Billon, L. Associating behaviour of polyacrylamide modified with a new hydrophobic zwitterionic monomer. Polym. Int. 2001, 50, 1162–1169. [Google Scholar] [CrossRef]
- Zhou, H.; Song, G.-Q.; Zhang, Y.-X.; Chen, J.; Jiang, M.; Hogen-Esch, T.E.; Dieing, R.; Ma, L.; Haeussling, L. Hydrophobically Modified Polyelectrolytes, 4. Synthesis and Solution Properties of Fluorocarbon-Containing Poly(acrylic acid). Macromol. Chem. Phys. 2001, 202, 3057–3064. [Google Scholar] [CrossRef]
- Zhong, C.; Huang, R.; Zhang, X.; Dai, H. Synthesis, characterization, and solution properties of an acrylamide-based terpolymer with butyl styrene. J. Appl. Polym. Sci. 2007, 103, 4027–4038. [Google Scholar] [CrossRef]
- Al-Sabagh, A.M.; Kandile, N.G.; El-Ghazawy, R.A.; Noor El-Din, M.R.; El-Sharaky, E.A. Solution properties of hydrophobically modified polyacrylamides and their potential use for polymer flooding application. Egypt. J. Pet. 2016, 25, 433–444. [Google Scholar] [CrossRef] [Green Version]
- Al-Sabagh, A.M.; Kandile, N.G.; El-Ghazawy, R.A.; Noor El-Din, M.R.; El-Sharaky, E.A. Novel Polymerizable Nonionic Surfactants (Surfmers) Corporate with Alkenylsuccinic Anhydride: Synthesis, Surface, and Thermodynamic Properties. J. Dispers. Sci. Technol. 2012, 33, 1458–1469. [Google Scholar] [CrossRef]
- Zhong, C.; Jiang, L.; Peng, X. Synthesis and solution behavior of comb-like terpolymers with poly(ethylene oxide) macromonomer. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 1241–1250. [Google Scholar] [CrossRef]
- Mirzaie Yegane, M.; Hashemi, F.; Vercauteren, F.; Meulendijks, N.; Gharbi, R.; Boukany, P.E.; Zitha, P. Rheological response of a modified polyacrylamide–silica nanoparticles hybrid at high salinity and temperature. Soft Matter 2020, 16, 10198–10210. [Google Scholar] [CrossRef]
- Hourdet, D.; Gadgil, J.; Podhajecka, K.; Badiger, M.V.; Brûlet, A.; Wadgaonkar, P.P. Thermoreversible Behavior of Associating Polymer Solutions: Thermothinning versus Thermothickening. Macromolecules 2005, 38, 8512–8521. [Google Scholar] [CrossRef]
- Bokias, G.; Hourdet, D.; Iliopoulos, I.; Staikos, G.; Audebert, R. Hydrophobic Interactions of Poly(N-isopropylacrylamide) with Hydrophobically Modified Poly(sodium acrylate) in Aqueous Solution. Macromolecules 1997, 30, 8293–8297. [Google Scholar] [CrossRef]
- Hourdet, D.; L’Alloret, F.; Audebert, R. Synthesis of thermoassociative copolymers. Polymer 1997, 38, 2535–2547. [Google Scholar] [CrossRef]
- Bastiat, G.; Grassl, B.; François, J. Study of sodium dodecyl sulfate/poly(propylene oxide) methacrylate mixed micelles for the synthesis of thermo-associative polymers by micellar polymerization. Polym. Int. 2002, 51, 958–965. [Google Scholar] [CrossRef]
- McCormick, C.L.; Johnson, C.B. Water-Soluble Polymers. XXXIV. Ampholyte Terpolymers of Sodium 3-Acrylamido-3-Methylbutanoatewith 2-Acrylamido-2-Methylpropane-Dimethylammonium Chloride and Acrylamide: Synthesis and Absorbency Behavior. J. Macromol. Sci. Part A-Chem. 1990, 27, 539–547. [Google Scholar] [CrossRef]
- Shedge, A.S.; Lele, A.K.; Wadgaonkar, P.P.; Hourdet, D.; Perrin, P.; Chassenieux, C.; Badiger, M.V. Hydrophobically Modified Poly(acrylic acid) Using 3-Pentadecylcyclohexylamine: Synthesis and Rheology. Macromol. Chem. Phys. 2005, 206, 464–472. [Google Scholar] [CrossRef]
- McCormick, C.L.; Salazar, L.C. Water-Soluble Copolymers.46. Hydrophilic Sulfobetaine Copolymers of Acrylamide and 3-(2-Acrylamido-2-Methylpropanedimethyl-Ammonio)-1-Propanesulphonate. Polymer 1992, 33, 4617–4624. [Google Scholar] [CrossRef]
- Xie, X.; Hogen-Esch, T.E. Copolymers of N,N-Dimethylacrylamide and 2-(N-ethylperfluorooctanesulfonamido)ethyl Acrylate in Aqueous Media and in Bulk. Synthesis and Properties. Macromolecules 1996, 29, 1734–1745. [Google Scholar] [CrossRef]
- Rashidi, M. Physico-Chemistry Characterization of Sulfonated Polyacrylamide Polymers for Use in Polymer Flooding; The University of Bergen: Bergen, Norway, 2010. [Google Scholar]
- Gaillard, N.; Giovannetti, B.; Leblanc, T.; Thomas, A.; Braun, O.; Favero, C. Selection of Customized Polymers to Enhance Oil Recovery from High Temperature Reservoirs. In Proceedings of the SPE Latin American and Caribbean Petroleum Engineering Conference, Quito, Ecuador, 18–20 November 2015; p. 15. [Google Scholar]
- Stahl, G.A.; Moradi-Araghi, A.; Doe, P.H. High Temperature and Hardness Stable Copolymers of Vinylpyrrolidone and Acrylamide. In Water-Soluble Polymers for Petroleum Recovery; Stahl, G.A., Schulz, D.N., Eds.; Springer: Boston, MA, USA, 1988; pp. 121–130. [Google Scholar]
- Peiffer, D.G. Hydrophobically associating polymers and their interactions with rod-like micelles. Polymer 1990, 31, 2353–2360. [Google Scholar] [CrossRef]
- Zhuang, D.-Q.; Ai-hua Da, J.C.; Zhang, Y.-X.; Dieing, R.; Ma, L.; Haeussling, L. Hydrophobically modified polyelectrolytes II: Synthesis and characterization of poly(acrylic acid-co-alkyl acrylate). Polym. Adv. Technol. 2001, 12, 616–625. [Google Scholar] [CrossRef]
- Abu-Sharkh, B.F.; Yahaya, G.O.; Ali, S.A.; Kazi, I.W. Solution and interfacial behavior of hydrophobically modified water-soluble block copolymers of acrylamide and N-phenethylacrylamide. J. Appl. Polym. Sci. 2001, 82, 467–476. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Z.; Han, Y.; Feng, Y.; Tang, C. A Novel Thermoviscosifying Water-Soluble Polymer for Enhancing Oil Recovery from High-Temperature and High-Salinity Oil Reservoirs. Adv. Mater. Res. 2011, 306–307, 654–657. [Google Scholar] [CrossRef]
- Bataweel, M.A.; Yadhalli Shivaprasad, A.; Nasr-El-Din, H.A. Low-Tension Polymer Flooding Using Amphoteric surfactant in High Salinity/High Hardness and High Temperature Conditions in Sandstone Cores. In Proceedings of the SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman, 16–18 April 2012; p. 23. [Google Scholar]
- Wu, Y.; Mahmoudkhani, A.; Watson, P.; Fenderson, T.R.; Nair, M. Development of New Polymers with Better Performance under Conditions of High Temperature and High Salinity. In Proceedings of the SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman, 16–18 April 2012; p. 11. [Google Scholar]
- Leblanc, T.; Braun, O.; Thomas, A.; Divers, T.; Gaillard, N.; Favero, C. Rheological Properties of Stimuli-Responsive Polymers in Solution to Improve the Salinity and Temperature Performances of Polymer-Based Chemical Enhanced Oil Recovery Technologies. In Proceedings of the SPE Asia Pacific Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia, 11–13 August 2015; p. 17. [Google Scholar]
- Tavakkoli, O.; Kamyab, H.; Shariati, M.; Mustafa Mohamed, A.; Junin, R. Effect of nanoparticles on the performance of polymer/surfactant flooding for enhanced oil recovery: A review. Fuel 2022, 312, 122867. [Google Scholar] [CrossRef]
- Ogolo, N.A.; Olafuyi, O.A.; Onyekonwu, M.O. Enhanced Oil Recovery Using Nanoparticles. In Proceedings of the SPE Saudi Arabia Section Technical Symposium and Exhibition, Al-Khobar, Saudi Arabia, 8–11 April 2012; p. 9. [Google Scholar]
- Miranda, C.R.; Lara, L.S.d.; Tonetto, B.C. Stability and Mobility of Functionalized Silica Nanoparticles for Enhanced Oil Recovery Applications. In Proceedings of the SPE International Oilfield Nanotechnology Conference and Exhibition, Noordwijk, The Netherlands, 12–14 June 2012; p. 11. [Google Scholar]
- Wang, L.; Wang, Z.; Yang, H.; Yang, G. The study of thermal stability of the SiO2 powders with high specific surface area. Mater. Chem. Phys. 1999, 57, 260–263. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, Y.; Chenwei, Z.; Dai, C.; Gao, M.; Li, Y.; Lv, W.; Jiang, J.; Wu, Y. Can More Nanoparticles Induce Larger Viscosities of Nanoparticle-Enhanced Wormlike Micellar System (NEWMS)? Materials 2017, 10, 1096. [Google Scholar] [CrossRef] [Green Version]
- Bera, A.; Belhaj, H. Application of nanotechnology by means of nanoparticles and nanodispersions in oil recovery—A comprehensive review. J. Nat. Gas Sci. Eng. 2016, 34, 1284–1309. [Google Scholar] [CrossRef]
- Hu, Z.; Nourafkan, E.; Gao, H.; Wen, D. Microemulsions stabilized by in-situ synthesized nanoparticles for enhanced oil recovery. Fuel 2017, 210, 272–281. [Google Scholar] [CrossRef]
- Zhu, D.; Wei, L.; Wang, B.; Feng, Y. Aqueous Hybrids of Silica Nanoparticles and Hydrophobically Associating Hydrolyzed Polyacrylamide Used for EOR in High-Temperature and High-Salinity Reservoirs. Energies 2014, 7, 3858–3871. [Google Scholar] [CrossRef] [Green Version]
- Wiśniewska, M.; Terpiłowski, K.; Chibowski, S.; Urban, T.; Zarko, V.I.; Gun’ko, V.M. Effect of polyacrylic acid (PAA) adsorption on stability of mixed alumina-silica oxide suspension. Powder Technol. 2013, 233, 190–200. [Google Scholar] [CrossRef]
- Hu, Z.; Haruna, M.; Gao, H.; Nourafkan, E.; Wen, D. Rheological Properties of Partially Hydrolyzed Polyacrylamide Seeded by Nanoparticles. Ind. Eng. Chem. Res. 2017, 56, 3456–3463. [Google Scholar] [CrossRef]
- Bhardwaj, P.; Singh, S.; Singh, V.; Aggarwal, S.; Mandal, U.K. Nanosize Polyacrylamide/SiO2 Composites by Inverse Microemulsion Polymerization. Int. J. Polym. Mater. Polym. Biomater. 2008, 57, 404–416. [Google Scholar] [CrossRef]
- Cao, J.; Song, T.; Zhu, Y.; Wang, X.; Wang, S.; Yu, J.; Ba, Y.; Zhang, J. Aqueous hybrids of amino-functionalized nanosilica and acrylamide-based polymer for enhanced oil recovery. RSC Adv. 2018, 8, 38056–38064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petit, L.; Bouteiller, L.; Brûlet, A.; Lafuma, F.; Hourdet, D. Responsive Hybrid Self-Assemblies in Aqueous Media. Langmuir 2007, 23, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Portehault, D.; Petit, L.; Pantoustier, N.; Ducouret, G.; Lafuma, F.; Hourdet, D. Hybrid thickeners in aqueous media. Colloids Surf. A Physicochem. Eng. Asp. 2006, 278, 26–32. [Google Scholar] [CrossRef]
- Hourdet, D.; Petit, L. Hybrid Hydrogels: Macromolecular Assemblies through Inorganic Cross-Linkers. Macromol. Symp. 2010, 291–292, 144–158. [Google Scholar] [CrossRef]
- Lin, W.-C.; Fan, W.; Marcellan, A.; Hourdet, D.; Creton, C. Large Strain and Fracture Properties of Poly(dimethylacrylamide)/Silica Hybrid Hydrogels. Macromolecules 2010, 43, 2554–2563. [Google Scholar] [CrossRef]
- Maghzi, A.; Kharrat, R.; Mohebbi, A.; Ghazanfari, M.H. The impact of silica nanoparticles on the performance of polymer solution in presence of salts in polymer flooding for heavy oil recovery. Fuel 2014, 123, 123–132. [Google Scholar] [CrossRef]
- Schottner, G. Hybrid Sol−Gel-Derived Polymers: Applications of Multifunctional Materials. Chem. Mater. 2001, 13, 3422–3435. [Google Scholar] [CrossRef]
- Gao, C.; Shi, J.; Zhao, F. Successful polymer flooding and surfactant-polymer flooding projects at Shengli Oilfield from 1992 to 2012. J. Pet. Explor. Prod. Technol. 2014, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Saleh, L.; Wei, M.; Bai, B. Data Analysis and Novel Screening Criteria for Polymer Flooding Based on a Comprehensive Database. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 12–16 April 2014; p. 18. [Google Scholar]
- Morel, D.C.; Vert, M.; Jouenne, S.; Gauchet, R.; Bouger, Y. First Polymer Injection in Deep Offshore Field Angola: Recent Advances in the Dalia/Camelia Field Case. Oil Gas Facil. 2012, 1, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Morel, D.C.; Jouenne, S.; Vert, M.; Nahas, E. Polymer Injection in Deep Offshore Field: The Dalia Angola Case. In Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 21–24 September 2008; p. 12. [Google Scholar]
- Song, K.; Tao, J.; Lyu, X.; Xu, Y.; Liu, S.; Wang, Z.; Liu, H.; Zhang, Y.; Fu, H.; Meng, E.; et al. Recent Advances in Polymer Flooding in China. Molecules 2022, 27, 6978. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, Y.; Li, B.; Han, P. Enhancing oil recovery from low-permeability reservoirs with a self-adaptive polymer: A proof-of-concept study. Fuel 2019, 251, 136–146. [Google Scholar] [CrossRef]
- Zhu, R.; Feng, Y.; Luo, P. Net Contribution of Hydrophobic Association to the Thickening Power of Hydrophobically Modified Polyelectrolytes Prepared by Micellar Polymerization. Macromolecules 2020, 53, 1326–1337. [Google Scholar] [CrossRef]
- Leonhardt, B.; Santa, M.; Steigerwald, A.; Kaeppler, T. Polymer Flooding with the Polysaccharide Schizophyllan—First Field Trial Results; European Association of Geoscientists & Engineers: Bunnik, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Prasad, D.; Ernst, B.; Incera, G.; Leonhardt, B.; Reimann, S.; Mahler, E.; Zarfl, M. Field Testing the Polysaccharide Schizophyllan—Single Well Test Design and Current Results; European Association of Geoscientists & Engineers: Bunnik, The Netherlands, 2017. [Google Scholar]
- Jouenne, S. Polymer flooding in high temperature, high salinity conditions: Selection of polymer type and polymer chemistry, thermal stability. J. Pet. Sci. Eng. 2020, 195, 107545. [Google Scholar] [CrossRef]
- Wassmuth, F.R.; Green, K.; Arnold, W.; Cameron, N. Polymer Flood Application to Improve Heavy Oil Recovery at East Bodo. J. Can. Pet. Technol. 2009, 48, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Delamaide, E. Review of Canadian Field Cases of Chemical Floods with Associative Polymer. In Proceedings of the SPE Improved Oil Recovery Conference, 31 August–4 September 2020. [Google Scholar]
- Delamaide, E.; Zaitoun, A.; Renard, G.; Tabary, R. Pelican Lake Field: First Successful Application of Polymer Flooding In a Heavy-Oil Reservoir. SPE Reserv. Eval. Eng. 2014, 17, 340–354. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, J.; Han, M.; Xiang, W.; Feng, G.; Jiang, W. Application of Hydrophobically Associating Water-soluble Polymer for Polymer Flooding in China Offshore Heavy Oilfield. In Proceedings of the International Petroleum Technology Conference, Dubai, United Arab Emirates, 17–19 December 2007; p. 5. [Google Scholar]
- Demin, W.; Zhang, Z.; Chun, L.; Cheng, J.; Du, X.; Li, Q. A Pilot for Polymer Flooding of Saertu Formation S II 10-16 in the North of Daqing Oil Field. In Proceedings of the SPE Asia Pacific Oil and Gas Conference, Adelaide, Australia, 28–31 October 2020; p. 11. [Google Scholar]
- Liu, B.; Sun, X.S.; Wang, K.; Xu, H.; Liu, Q.; Liu, X.; Song, S. Flooded by High Concentration Polymer Doubled Oil Recovery of Common Polymer on Field Test with 20% Closed to the Result of Lab Test in Daqing. In Proceedings of the International Oil Conference and Exhibition in Mexico, Veracruz, Mexico, 27–30 June 2007; p. 9. [Google Scholar]
- Kang, X.; Zhang, J.; Sun, F.; Zhang, F.; Feng, G.; Yang, J.; Zhang, X.; Xiang, W. A Review of Polymer EOR on Offshore Heavy Oil Field in Bohai Bay, China. In Proceedings of the SPE Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia, 19–20 July 2011. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, J.; Liu, Y.; Liu, G.; Xue, X.; Luo, P.; Ye, Z.; Zhang, X.; Liang, Y. Successful Scale Application of Associative Polymer Flooding for Offshore Heavy Oilfield in Bohai Bay of China. In Proceedings of the SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, 29–31 October 2019. [Google Scholar]
- He, J.; Song, Z.; Qiu, L.; Xie, F.; Tan, Z.; Yue, Q.; Li, X. High Temperature Polymer Flooding in Thick Reservoir in ShuangHe Oilfield. In Proceedings of the SPE International Oil and Gas Conference and Exhibition in China, Beijing, China, 2–6 November 1998; p. 11. [Google Scholar]
- de Melo, M.A.; Holleben, C.R.; Silva, I.G.; de Barros Correia, A.; Silva, G.A.; Rosa, A.J.; Lins, A.G., Jr.; de Lima, J.C. Evaluation of Polymer-Injection Projects in Brazil. In Proceedings of the SPE Latin American and Caribbean Petroleum Engineering Conference, Rio de Janeiro, Brazil, 20–23 June 2005; p. 17. [Google Scholar]
- de Melo, M.A.; da Silva, I.P.G.; de Godoy, G.M.R.; Sanmartim, A.N. Polymer Injection Projects in Brazil: Dimensioning, Field Application and Evaluation. In Proceedings of the SPE/DOE Improved Oil Recovery Symposium, Tulsa, OK, USA, 13–17 April 2002; p. 11. [Google Scholar]
- Al-saadi, F.S.; Al-amri, B.A.; Al Nofli, S.M.; Van Wunnik, J.N.M.; Jaspers, H.F.; Al Harthi, S.; Shuaili, K.; Cherukupalli, P.K.; Chakravarthi, R. Polymer Flooding in a Large Field in South Oman—Initial Results and Future Plans. In Proceedings of the SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman, 16–18 April 2012; p. 7. [Google Scholar]
- Koning, E.J.L.; Mentzer, E.; Heemskerk, J. Evaluation of a Pilot Polymer Flood in the Marmul Field, Oman. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 2–5 October1988; p. 9. [Google Scholar]
- Moe Soe Let, K.P.; Manichand, R.N.; Seright, R.S. Polymer Flooding a ~500-cp Oil. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 14–18 April 2012; p. 13. [Google Scholar]
- Kumar, P.; Raj, R.; Koduru, N.; Kumar, S.; Pandey, A. Field Implementation of Mangala Polymer Flood: Initial Challenges, Mitigation and Management. In Proceedings of the SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman, 21–23 March 2016; p. 20. [Google Scholar]
- Mehta, N.; Kapadia, G.; Selvam, V. Challenges in Full Field Polymer Injection Mangala in Field. In Proceedings of the SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman, 21–23 March 2016. [Google Scholar]
Parameter | Laboratory Experiments | Field Applications |
---|---|---|
Polymer type | HPAM Xanthan gum Associative polymer | HPAM Xanthan gum Associative polymer |
Polymer molecular weight (g/mol) | 1–25 × 106 | 12–25 × 106 |
Polymer concentration (ppm) | 30–10,000 | 300–4000 |
Permeability (mD) | 2.5–13,000 | >50 |
Porosity (%) | 10–47 | 4–37 |
Oil viscosity (cP) | 1.7–5500 | <5000 |
Lithology | Sandstone cores Carbonate cores Sand-packs Micromodels | Majority in sandstone reservoirs Very few in carbonate reservoirs |
Water salinity (ppm) | 250–186,000 | Majority < 50,000 |
Temperature (°C) | 20–120 | <99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirzaie Yegane, M.; Boukany, P.E.; Zitha, P. Fundamentals and Recent Progress in the Flow of Water-Soluble Polymers in Porous Media for Enhanced Oil Recovery. Energies 2022, 15, 8575. https://doi.org/10.3390/en15228575
Mirzaie Yegane M, Boukany PE, Zitha P. Fundamentals and Recent Progress in the Flow of Water-Soluble Polymers in Porous Media for Enhanced Oil Recovery. Energies. 2022; 15(22):8575. https://doi.org/10.3390/en15228575
Chicago/Turabian StyleMirzaie Yegane, Mohsen, Pouyan E. Boukany, and Pacelli Zitha. 2022. "Fundamentals and Recent Progress in the Flow of Water-Soluble Polymers in Porous Media for Enhanced Oil Recovery" Energies 15, no. 22: 8575. https://doi.org/10.3390/en15228575
APA StyleMirzaie Yegane, M., Boukany, P. E., & Zitha, P. (2022). Fundamentals and Recent Progress in the Flow of Water-Soluble Polymers in Porous Media for Enhanced Oil Recovery. Energies, 15(22), 8575. https://doi.org/10.3390/en15228575