Development and Validation of a Nuclear Power Plant Fault Diagnosis System Based on Deep Learning
Abstract
:1. Introduction
2. Introduction to PCTRAN
3. Deep Learning
3.1. LSTM Neural Network
3.2. Deep Neural Network
4. Results
4.1. Data Access
4.2. Data Pre-Processing
4.3. Model Training
4.4. Analysis of Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yong-Kuo, L.; Min-Jun, P.; Chun-Li, X.; Ya-Xin, D. Research and design of distributed fault diagnosis system in nuclear power plant. Prog. Nucl. Energy 2013, 68, 97–110. [Google Scholar] [CrossRef]
- Lee, S.L.; Seong, P.H. A Dynamic Neural Network Based Accident Diagnosis Advisory Systemfor Nuclear Power. Prog. Nucl. Energy 2005, 46, 268–281. [Google Scholar] [CrossRef]
- Yu, H. Application of Artificial Neural Network for NHR Fault Diagnosis. Nucl. Power Eng. 1999, 20, 434–439. [Google Scholar]
- Jichong, L.; Zhenping, C.; Jinsen, X.; Yu, T. Validation of Doppler temperature coefficients and assembly power distribution for the lattice code KYLIN V2.0. Front. Energy Res. 2021, 10, 898887. [Google Scholar] [CrossRef]
- Lei, J.; Yang, C.; Ren, C.; Li, W.; Liu, C.; Sun, A.; Li, Y.; Chen, Z.; Yu, T. Development and validation of a deep learning-based model for predicting burnup nuclide density. Int. J. Energy Res. 2022, 1–9. [Google Scholar] [CrossRef]
- Jaime, G.D.G. Integration of computerized operation support system on a nuclear power plant environment. Inst. Eng. Nucl. Prog. Rep. 2018, 3, 94. [Google Scholar]
- Sheng, Z.; Yin, Q. Equipment Condition Monitoring and Fault Diagnosis Technology and Application; Press of Chemical Industry: Beijing, China, 2003. [Google Scholar]
- Kim, K.; Aljundi, T.L.; Bartlett, E.B. Nuclear Power Plant Fault-Diagnosis Using Artificial Neural Networks; Dept. of Mechanical Engineering, Iowa State Univ. of Science and Technology: Ames, IA, USA, 1992. [Google Scholar]
- Wu, J.; Li, Q.; Chen, Q.; Peng, G.; Wang, J.; Fu, Q.; Yang, B. Evaluation, Analysis and Diagnosis for HVDC Transmission System Faults via Knowledge Graph under New Energy Systems Construction: A Critical Review. Energies 2022, 15, 8031. [Google Scholar] [CrossRef]
- Tran, Q.T.; Nguyen, S.D. Bearing Fault Diagnosis Based on Measured Data Online Processing, Domain Fusion, and ANFIS. Computation 2022, 10, 157. [Google Scholar] [CrossRef]
- Esakimuthu Pandarakone, S.; Mizuno, Y.; Nakamura, H. A comparative study between machine learning algorithm and artificial intelligence neural network in detecting minor bearing fault of induction motors. Energies 2019, 12, 2105. [Google Scholar] [CrossRef] [Green Version]
- Nsaif, Y.M.; Hossain Lipu, M.S.; Hussain, A.; Ayob, A.; Yusof, Y.; Zainuri, M.A. A New Voltage Based Fault Detection Technique for Distribution Network Connected to Photovoltaic Sources Using Variational Mode Decomposition Integrated Ensemble Bagged Trees Approach. Energies 2022, 15, 7762. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Z.; Zhang, X.; Du, M.; Zhang, H.; Liu, B. Power System Fault Diagnosis Method Based on Deep Reinforcement Learning. Energies 2022, 15, 7639. [Google Scholar] [CrossRef]
- Katreddi, S.; Kasani, S.; Thiruvengadam, A. A Review of Applications of Artificial Intelligence in Heavy Duty Trucks. Energies 2022, 15, 7457. [Google Scholar] [CrossRef]
- Liu, Y.-K.; Xie, F.; Xie, C.-L.; Peng, M.-J.; Wu, G.-H.; Xia, H. Prediction of time series of NPP operating parameters using dynamic model based on BP neural network. Ann. Nucl. Energy 2015, 85, 566–575. [Google Scholar] [CrossRef]
- Saha, A.; Fyza, N.; Hossain, A.; Sarkar, M.R. Simulation of tube rupture in steam generator and transient analysis of VVER-1200 using PCTRAN. Energy Procedia 2019, 160, 162–169. [Google Scholar] [CrossRef]
- Horikoshi, N.; Maeda, M.; Iwasa, H.; Momoi, M.; Oikawa, Y.; Ueda, Y.; Kashiwazaki, Y.; Onji, M.; Harigane, M.; Yabe, H.; et al. The usefulness of brief telephonic intervention after a nuclear crisis: Long-term community-based support for Fukushima evacuees. Disaster Med. Public Health Prep. 2022, 16, 123–131. [Google Scholar] [CrossRef]
- Lei, J.; Ren, C.; Li, W.; Fu, L.; Li, Z.; Ni, Z.; Li, Y.; Liu, C.; Zhang, H.; Chen, Z.; et al. Prediction of crucial nuclear power plant parameters using long short-term memory neural networks. Int. J. Energy Res. 2022. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [Green Version]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef] [Green Version]
- Boring, R.L.; Thomas, K.D.; Ulrich, T.A.; Lew, R.T. Computerized operator support systems to aid decision making in nuclear power plants. Procedia Manuf. 2015, 3, 5261–5268. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Adv. Neural Inf. Process. Syst. 2015, 28, 802–810. [Google Scholar]
- Lei, J.; Zhou, J.; Zhao, Y.; Chen, Z.; Zhao, P.; Xie, C.; Ni, Z.; Yu, T.; Xie, J. Prediction of burn-up nucleus density based on machine learning. Int. J. Energy Res. 2021, 45, 14052–14061. [Google Scholar] [CrossRef]
- Lei, J.; Zhou, J.; Zhao, Y.; Chen, Z.; Zhao, P.; Xie, C.; Ni, Z.; Yu, T.; Xie, J. Research on the preliminary prediction of nuclear core design based on machine learning. Nucl. Technol. 2022, 208, 1223–1232. [Google Scholar] [CrossRef]
- Quinlan, J.R. C4. 5: Programs for Machine Learning; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Gal, Y.; Ghahramani, Z. A theoretically grounded application of dropout in recurrent neural networks. Adv. Neural Inf. Process. Syst. 2016, 29, 1019–1027. [Google Scholar]
Parameters | Parameter Description | Value |
---|---|---|
time_step | Time step | 1–10 |
num | Number of hidden layers | 5 |
num_units | Number of hidden neurons | 32, 32, 16, 8, 4 |
activation | Activation function | Sigmoid, Relu, tanh |
optimizer | Optimizer | adam, RMSProp, Adagrad, Adadelta |
epoch | Number of iterations | 100–500 |
batch | Batch Size | 16, 32, 64, 128 |
dropout | Dropout | 0.1–0.5 |
Operation Status | Tag |
---|---|
Loss of Coolant Accident | 0 |
Steam Generator Tube Rupture | 1 |
Steam Line Break Inside Containment | 2 |
Normal Operation | 3 |
Parameters | Parameter Description | Value |
---|---|---|
time_step | Time step | 1–10 |
num | Number of hidden layers | 5 |
num_units | Number of hidden neurons | 32, 32, 16, 8, 4 |
activation | Activation function | Relu |
optimizer | Optimizer | adam |
epoch | Number of iterations | 100 |
batch | Batch Size | 16 |
dropout | Dropout | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Lei, J.; Xie, J.; Zhou, J. Development and Validation of a Nuclear Power Plant Fault Diagnosis System Based on Deep Learning. Energies 2022, 15, 8629. https://doi.org/10.3390/en15228629
Liu B, Lei J, Xie J, Zhou J. Development and Validation of a Nuclear Power Plant Fault Diagnosis System Based on Deep Learning. Energies. 2022; 15(22):8629. https://doi.org/10.3390/en15228629
Chicago/Turabian StyleLiu, Bing, Jichong Lei, Jinsen Xie, and Jianliang Zhou. 2022. "Development and Validation of a Nuclear Power Plant Fault Diagnosis System Based on Deep Learning" Energies 15, no. 22: 8629. https://doi.org/10.3390/en15228629
APA StyleLiu, B., Lei, J., Xie, J., & Zhou, J. (2022). Development and Validation of a Nuclear Power Plant Fault Diagnosis System Based on Deep Learning. Energies, 15(22), 8629. https://doi.org/10.3390/en15228629