Inter-Fuel Substitution, Technical Change, and Carbon Mitigation Potential in Pakistan: Perspectives of Environmental Analysis
Abstract
:1. Introduction
2. Literature Review
3. The Data
4. Model Framework and Data Estimations
4.1. Framework
4.2. Estimation Technique
5. Empirical Results and Discussion
5.1. Empirical Results
5.1.1. Stationarity Analysis, Ridge Trace and Ridge Regression
5.1.2. Output Elasticity and Elasticity of Substitution
5.1.3. Technological Progress
5.1.4. Scenario Analysis
5.2. Discussion
6. Conclusions and Policy Recommendations
- (1)
- All the output elasticities are showing positive and rising returns to scale. The output elasticities of capital (1.13–1.43), labor (1.14–1.54), electricity (0.90–1.31), natural gas (1.03–1.43), and petroleum (0.74–1.05) are all rising over 1986–2019. The output elasticity of labor () is the only factor with the highest influence, followed by capital, natural gas, electricity, and petroleum. The significant growth presents that country’s economy is progressively rising, and the proportion of technology is gently rising. Overall, the optimistic and growing trend of all inputs is a sign of enhancing the economy in the country.
- (2)
- As per the model’s substitution elasticity estimation, all the pair of energy and non-energy factors are estimated. The outcomes propose high substitutability between capital-petroleum, capital-electricity, labor-electricity, capital-natural gas, and natural gas-electricity, as well as petroleum-natural gas. This substitution clears that by raising the capital and energy production capacities; Pakistan has the potential to raise its energy security, economy, and environmental sustainability. The clean energy resources and production-controlled policies, including renewable energy vision-2025, vision-2035, CPEC, and INDC can lessen fuel import and significantly impact the economy. Moreover, the huge reserves of Pakistan’s coal and gas (28th and 29th in the world) are evidence of greater productivity and labor efficiency. This will benefit energy security, enhance the living standard, reduce costs, and increase employment. Moreover, the substitutability between capital and energy proposes that there is a growth in energy and technology, which will further lessen the subsidies for enhancing capital and labor. This will encourage investors to invest in lower energy-utilizing appliances, conserving energy, and supporting capital growth. Additionally, labor-electricity substitutability proved that the skills of labor and knowledge would grow energy conservation. Consequently, the outcomes of capital, electricity, labor, and natural gas are evident and there are further motivations for capital and labor in Pakistan.
- (3)
- Technical progress () is mainly input-driven and looks quite slow-changing between 3% and 7%. This presents that between inputs factors (see Figure 4) could become efficient contributors to the economic development of Pakistan. Thus, from the future viewpoint, current results provide an optimal trend in , which is also consistent with the studies of Pakistan and China. Therefore, enhancing the relative differences in of a particular input may control each factor.
- (4)
- Conclusively, there seem to be significant CO2E mitigation advantages of inter-fuel substitution in Pakistan in the range of 7.5 and 10.43 Mt under scenario 1 and 7.0 and 10.9 Mt under the 10% investment scenario 2. The results further present that employing huge domestic energy resources could benefit living standards and balance the economy. Thus, based on the results, a few important policies for Pakistan are as follows.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
ARDL | Autoregressive distributive lag |
CO2Es | Carbon dioxide emissions |
EC | Energy consumption |
EG | Economic growth |
ECM | Error correction model |
IEA | International Energy Agency |
k | Ridge parameter |
Mtoe | Million tons of oil equivalent |
R2 | Coefficient of determination |
RETs | Renewable energy technologies |
VAR | Vector auto regression |
VIF | Variance Inflation Factor |
State of technical knowledge | |
Input of the parameters | |
, | Technical determinants of parameters a and b |
It | Capital investment |
Kt | Capital stock of current year |
Kt−1 | Capital stock of previous year |
, | Marginal productivity of ‘ab’ factors |
Technical progress between ‘ab’ factors | |
, | Inputs of a and b |
δt | Capital depreciation |
, | Output elasticity of ‘ab’ factors |
Substitution elasticity between ‘ab’ factors |
References
- Schneider, F.; Kallis, G.; Martinez-Alier, J. Crisis or opportunity? Economic degrowth for social equity and ecological sustainability. Introduction to this special issue. J. Clean. Prod. 2010, 18, 511–518. [Google Scholar] [CrossRef]
- IEA. 2019. Available online: https://www.iea.org/articles/global-co2-emissions-in-2019 (accessed on 6 June 2022).
- Wu, Y.; Zhu, Q.; Zhu, B. Decoupling analysis of world economic growth and CO2 emissions: A study comparing developed and developing countries. J. Clean. Prod. 2018, 190, 94–103. [Google Scholar] [CrossRef]
- Machado, M.M.; de Sousa, M.C.S.; Hewings, G. Economies of scale and technological progress in electric power production: The case of Brazilian utilities. Energy Econ. 2016, 59, 290–299. [Google Scholar] [CrossRef]
- Gurrib, I.; Elshareif, E.E.; Kamalov, F. The Effect of Energy Cryptos on Efficient Portfolios of Key Energy Companies in the S&P Composite 1500 Energy Index. Int. J. Energy Econ. Policy 2019, 10, 179–193. [Google Scholar]
- Wesseh, P.K., Jr.; Lin, B. Modeling environmental policy with and without abatement substitution: A tradeoff between economics and environment? Appl. Energy 2016, 167, 34–43. [Google Scholar] [CrossRef]
- World Bank. 2019. Available online: https://www.bp.com/en/global/corporate/energy-economics/statisticalreview-of-world-energy.html (accessed on 10 June 2022).
- Pakistan Energy Yearbook, 2019. Ministry of Energy (Petroleum Division) Hydrocarbon Development Institute of Pakistan. Available online: https://hdip.com.pk/contents.php?cid=32 (accessed on 1 January 2022).
- Lin, B.; Raza, M.Y. Analysis of energy related CO2 emissions in Pakistan. J. Clean. Prod. 2019, 219, 981–993. [Google Scholar] [CrossRef]
- Pakistan Economic Survey (PES). 2018–2019. Ministry of Finance, Government of Pakistan: Islamabad, Pakistan. Available online: http://www.fnance.gov.pk/survey/chapters_19/Pakistan_ES_2018_19_pdf (accessed on 1 January 2022).
- Omri, A. An international literature survey on energy-economic growth nexus: Evidence from country-specific studies. Renew. Sustain. Energy Rev. 2014, 38, 951–959. [Google Scholar] [CrossRef] [Green Version]
- Wesseh, P.K., Jr.; Lin, B. Energy consumption, fuel substitution, technical change, and economic growth: Implications for CO2 mitigation in Egypt. Energy Policy 2018, 117, 340–347. [Google Scholar] [CrossRef]
- Raza, M.A.; Khatri, K.L.; Israr, A.; Haque, M.I.U.; Ahmed, M.; Rafique, K.; Saand, A.S. Energy demand and production forecasting in Pakistan. Energy Strategy Rev. 2022, 39, 100788. [Google Scholar] [CrossRef]
- Yildirim, E.; Saraç, Ş.; Aslan, A. Energy consumption and economic growth in the USA: Evidence from renewable energy. Renew. Sustain. Energy Rev. 2012, 16, 6770–6774. [Google Scholar] [CrossRef]
- Lin, B.; Atsagli, P. Energy consumption, inter-fuel substitution and economic growth in Nigeria. Energy 2017, 120, 675–685. [Google Scholar] [CrossRef]
- Raza, M.Y.; Lin, B.; Liu, X. Cleaner production of Pakistan’s chemical industry: Perspectives of energy conservation and emissions reduction. J. Clean. Prod. 2021, 278, 123888. [Google Scholar] [CrossRef]
- Ma, H.; Oxley, L.; Gibson, J.; Kim, B. China’s energy economy: Technical change, factor demand and interfactor/interfuel substitution. Energy Econ. 2008, 30, 2167–2183. [Google Scholar] [CrossRef] [Green Version]
- Menyah, K.; Wolde-Rufael, Y. CO2 emissions, nuclear energy, renewable energy and economic growth in the US. Energy Policy 2010, 38, 2911–2915. [Google Scholar] [CrossRef]
- Siddiqui, R. Energy and economic growth in Pakistan. Pak. Dev. Rev. 2004, 43, 175–200. [Google Scholar] [CrossRef] [Green Version]
- Zahid, A. Energy–GDP relationship: A causal analysis for the five countries of South Asia. Appl. Econ. Int. Dev. 2008, 1, 167–180. [Google Scholar]
- Shahbaz, M.; Lean, H.H.; Shabbir, M.S. Environmental Kuznets Curve hypothesis in Pakistan: Cointegration and Granger causality. Renew. Sust. Energ. Rev. 2012, 16, 2947–2953. [Google Scholar] [CrossRef] [Green Version]
- Komal, R.; Abbas, F. Linking fnancial development, economic growth and energy consumption in Pakistan. Renew. Sustain. Energy Rev. 2015, 44, 211–220. [Google Scholar] [CrossRef]
- Ahmed, M.; Riaz, K.; Khan, A.M.; Bibi, S. Energy consumption–economic growth nexus for Pakistan: Taming the untamed. Renew. Sustain. Energy Rev. 2015, 52, 890–896. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, B.; Wang, Z. Role of renewable energy and non-renewable energy consumption on EKC: Evidence from Pakistan. J. Clean. Prod. 2017, 156, 855–864. [Google Scholar]
- Raza, M.Y.; Shah, M.T.S. Analysis of coal-related energy consumption in Pakistan: An alternative energy resource to fuel economic development. Environ. Dev. Sustain. 2019, 22, 6149–6170. [Google Scholar] [CrossRef]
- Lin, B.; Wesseh, P.K., Jr. Energy consumption and economic growth in South Africa reexamined: A nonparametric testing approach. Renew. Sustain. Energy Rev. 2014, 40, 840–850. [Google Scholar] [CrossRef]
- Payne, J.E.; Taylor, J.P. Nuclear energy consumption and economic growth in the US: An empirical note. Energy Sources Part B Econ. Plan. Policy 2010, 5, 301–307. [Google Scholar] [CrossRef]
- Sari, R.; Ewing, B.T.; Soytas, U. The relationship between disaggregate energy consumption and industrial production in the United States: An ARDL approach. Energy Econ. 2008, 30, 2302–2313. [Google Scholar] [CrossRef]
- Payne, J.E. On the dynamics of energy consumption and output in the US. Appl. Energy 2009, 86, 575–577. [Google Scholar] [CrossRef]
- Altinay, G.; Karagol, E. Structural break, unit root, and the causality between energy consumption and GDP in Turkey. Energy Econ. 2004, 26, 985–994. [Google Scholar] [CrossRef]
- Jobert, T.; Karanfil, F. Sectoral energy consumption by source and economic growth in Turkey. Energy Policy 2007, 35, 5447–5456. [Google Scholar] [CrossRef]
- Halicioglu, F. Residential electricity demand dynamics in Turkey. Energy Econ. 2007, 29, 199–210. [Google Scholar] [CrossRef]
- Berndt, E.R.; Wood, D.O. Engineering and econometric interpretations of energy-capital complementarity. Am. Econ. Rev. 1979, 69, 342–354. [Google Scholar]
- Shankar, K.R.; Pacauri, R.K. A Study of Energy Use in India’s Manufacturing Industries; Report for the Agency for International Development under Cooperative Agreement No. AID/DSAN-CA-0179; Resources for the Future: Washington, DC, USA, 1983. [Google Scholar]
- Fuss, M.A. The demand for energy in Canadian manufacturing: An example of the estimation of production structures with many inputs. J. Econom. 1977, 5, 89–116. [Google Scholar] [CrossRef]
- Prywes, M. A nested CES approach to capital-energy substitution. Energy Econ. 1986, 8, 22–28. [Google Scholar] [CrossRef]
- Lin, B.; Wesseh, P.K., Jr. Estimates of inter-fuel substitution possibilities in Chinese chemical industry. Energy Econ. 2013, 40, 560–568. [Google Scholar] [CrossRef]
- Lin, B.; Xie, C. Energy substitution effect on transport industry of China-based on trans-log production function. Energy 2014, 67, 213–222. [Google Scholar] [CrossRef]
- Lin, B.; Atsagli, P.; Dogah, K.E. Ghanaian energy economy: Inter-production factors and energy substitution. Renew. Sustain. Energy Rev. 2016, 57, 1260–1269. [Google Scholar] [CrossRef]
- Stern, D.I. Interfuel substitution: A meta-analysis. J. Econ. Surv. 2012, 26, 307–331. [Google Scholar] [CrossRef] [Green Version]
- Smyth, R.; Narayan, P.K.; Shi, H. Substitution between energy and classical factor inputs in the Chinese steel sector. Appl. Energy 2011, 88, 361–367. [Google Scholar] [CrossRef]
- Lin, B.; Ahmad, I. Technical change, inter-factor and inter-fuel substitution possibilities in Pakistan: A trans-log production function approach. J. Clean. Prod. 2016, 126, 537–549. [Google Scholar] [CrossRef]
- SBP (State Bank of Pakistan). 2018. Available online: https://customstoday.com.pk/sbp-raises-policy-rate-to-6pc-on-depreciation-of-pkr/? (accessed on 15 August 2021).
- Lin, B.; Raza, M.Y. Energy substitution effect on transport sector of Pakistan: A trans-log production function approach. J. Clean. Prod. 2020, 251, 119606. [Google Scholar] [CrossRef]
- Christensen, L.R.; Jorgenson, D.W.; Lau, L.J. Transcendental logarithmic production frontiers. Rev. Econ. Stat. 1973, 55, 28–45. [Google Scholar] [CrossRef]
- Pavelescu, F.M. Some aspects of the translog production function estimation. Rom. J. Econ. 2011, 32, 41. [Google Scholar]
- Li, W.J.; Zuo, Q.L.; Bai, Y.F. Dynamic Estimation on Output Elasticity of Highway Capital Stock in China. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2017; Volume 100, p. 012158. [Google Scholar]
- Liu, W.; Liu, Y.; Lin, B. Empirical analysis on energy rebound effect from the perspective of technological progress—A case study of China’s transport sector. J. Clean. Prod. 2018, 205, 1082–1093. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 1970, 12, 55–67. [Google Scholar] [CrossRef]
- Lin, B.; Raza, M.Y. Fuels substitution possibilities and the technical progress in Pakistan’s agriculture sector. J. Clean. Prod. 2021, 314, 128021. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W. Ridge regression: Applications to nonorthogonal problems. Technometrics 1970, 12, 69–82. [Google Scholar] [CrossRef]
- Kmenta, J. Elements of Econometrics; Macmillan Press: New York, NY, USA, 1986. [Google Scholar]
- Wesseh, P.K., Jr.; Lin, B. Factor demand, technical change and inter-fuel substitution in Africa. Renew. Sustain. Energy Rev. 2016, 59, 979–991. [Google Scholar] [CrossRef]
- CPEC. Energy Projects under China-Pakistan Economic Corridor (CPEC) Authority. Available online: www.cpec.gov.pk/energy (accessed on 10 December 2021).
- Raza, M.Y.; Wang, X.; Lin, B. Economic progress with better technology, energy security, and ecological sustainability in Pakistan. Sustain. Energy Technol. Assess. 2021, 44, 100966. [Google Scholar] [CrossRef]
- Lin, B.; Long, H. Input substitution effect in China׳ s chemical industry: Evidences and policy implications. Renew. Sustain. Energy Rev. 2016, 53, 1617–1625. [Google Scholar] [CrossRef]
- Lin, B.; Raza, M.Y. Coal and economic development in Pakistan: A necessity of energy source. Energy 2020, 207, 118244. [Google Scholar] [CrossRef]
- Xiuhui, J.; Raza, M.Y. Delving into Pakistan’s industrial economy and carbon mitigation: An effort toward sustainable development goals. Energy Strategy Rev. 2022, 41, 100839. [Google Scholar] [CrossRef]
- Xie, C.; Hawkes, A.D. Estimation of inter-fuel substitution possibilities in China’s transport industry using ridge regression. Energy 2015, 88, 260–267. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Mangla, S.K.; Song, M.; Wen, J. Effects of technological changes on China’s carbon emissions. Technol. Forecast. Soc. Change 2020, 153, 119938. [Google Scholar] [CrossRef]
- Madsen, E.S.; Mikkelsen, L.L. The need for knowledge modification in technology change: A framework to consider changes in domain complexity, knowledge and productivity. Prod. Plan. Control 2018, 29, 91–105. [Google Scholar] [CrossRef] [Green Version]
- Yabe, N. An analysis of CO2 emissions of Japanese industries during the period between 1985 and 1995. Energy Policy 2004, 32, 595–610. [Google Scholar] [CrossRef]
- Pakistan Economic Survey (PES). 2016–2017. Ministry of Finance, Government of Pakistan: Islamabad, Pakistan. Available online: http://www.fnance.gov.pk/survey/chapters_17/Pakistan_ES_2016_17_pdf (accessed on 1 March 2021).
- Anwar, J. Analysis of energy security, environmental emission and fuel import costs under energy import reduction targets: A case of Pakistan. Renew. Sustain. Energy Rev. 2016, 65, 1065–1078. [Google Scholar] [CrossRef]
- Vision 2025, 2014. Pakistan 2025, One Nation-One Vision. Planning Commission, Ministry of Planning, Development & Reforms. Government of Pakistan: Islamabad, Pakistan. Available online: https://planipolis.iiep.unesco.org/en/2014/pakistan-2025-one-nation-one-vision-6295 (accessed on 1 November 2022).
- Vision 2035, 2014. Pakistan 2035, One Nation-One Vision. Planning Commission, Ministry of Planning, Development & Reforms. Government of Pakistan: Islamabad, Pakistan. Available online: https://www.sdpi.org/publications/files/Pakistan%20Energy%202035FINAL%2020th%20October%202014.pdf (accessed on 1 November 2022).
Variables | Augmented Dickey–Fuller | Phillips–Perron | VIF |
---|---|---|---|
Economic growth | 0.0996 ** | 0.0961 ** | 4,524,439 |
Electricity | 0.0012 * | 0.0012 * | 16,347,136 |
Natural gas | 0.0078 * | 0.0094 * | 5,885,751 |
Petroleum | 0.0135 * | 0.0169 | 3,538,448 |
Variables | Coefficient | Standard Error | t-Statistics | p-Value | VIF |
---|---|---|---|---|---|
lnK | 0.0413 | 0.0309 | 1.3384 | 0.0983 | 0.0793 |
lnL | 0.0583 | 0.0260 | 2.2447 | 0.0184 | 0.0299 |
lnEC | 0.0525 | 0.0274 | 1.9182 | 0.0351 | 0.0279 |
lnNG | 0.0540 | 0.0270 | 2.0010 | 0.0299 | 0.0508 |
lnPT | 0.0342 | 0.0293 | 1.1671 | 0.0106 | 0.0963 |
lnK.L | 0.0543 | 0.0269 | 2.0177 | 0.0290 | 0.0131 |
lnK.EC | 0.0516 | 0.0276 | 1.8691 | 0.0386 | 0.0164 |
lnK.NG | 0.0529 | 0.0273 | 1.9402 | 0.0337 | 0.0349 |
lnK.PT | 0.0306 | 0.0237 | 1.2905 | 0.1061 | 0.0600 |
lnL.EC | 0.0542 | 0.0269 | 2.0122 | 0.0293 | 0.0097 |
lnL.NG | 0.0559 | 0.0265 | 2.1076 | 0.0243 | 0.0287 |
lnL.PT | 0.0455 | 0.0294 | 1.5477 | 0.0691 | 0.0353 |
lnEC.NG | 0.0544 | 0.0269 | 2.0233 | 0.0287 | 0.0160 |
lnEC.PT | 0.0484 | 0.0285 | 1.6980 | 0.0529 | 0.0113 |
lnNG.PT | 0.0502 | 0.0280 | 1.7936 | 0.0444 | 0.0085 |
lnK.K | 0.0410 | 0.0310 | 1.3238 | 0.1006 | 0.0834 |
lnL.L | 0.0586 | 0.0259 | 2.2621 | 0.0178 | 0.0356 |
lnEC.EC | 0.0527 | 0.0273 | 1.9292 | 0.0344 | 0.0246 |
lnNG.NG | 0.0548 | 0.0268 | 2.0457 | 0.0274 | 0.0489 |
lnPT.PT | 0.0331 | 0.0231 | 1.4335 | 0.0775 | 0.0955 |
Model diagnostics | |||||
Ridge parameter K | 0.65 | ||||
R-square | 0.9961 | ||||
Durbin-Watson | 1.6386 | ||||
F-statistics | 232.526 |
Year | |||||
---|---|---|---|---|---|
1986 | 1.1368 | 1.1490 | 0.9074 | 1.0113 | 0.7433 |
1987 | 1.1491 | 1.1677 | 0.9271 | 1.0278 | 0.7588 |
1988 | 1.1579 | 1.1807 | 0.9468 | 1.0419 | 0.7721 |
1989 | 1.1713 | 1.1964 | 0.9633 | 1.0584 | 0.7849 |
1990 | 1.1861 | 1.2162 | 0.9841 | 1.0810 | 0.8020 |
1991 | 1.1984 | 1.2282 | 0.9987 | 1.0951 | 0.8107 |
1992 | 1.2136 | 1.2465 | 1.0188 | 1.1142 | 0.8269 |
1993 | 1.2260 | 1.2627 | 1.0376 | 1.1342 | 0.8423 |
1994 | 1.2308 | 1.2724 | 1.0461 | 1.1444 | 0.8505 |
1995 | 1.2401 | 1.2834 | 1.0596 | 1.1581 | 0.8609 |
1996 | 1.2545 | 1.3039 | 1.0800 | 1.1812 | 0.8790 |
1997 | 1.2531 | 1.3050 | 1.0791 | 1.1775 | 0.8772 |
1998 | 1.2641 | 1.3179 | 1.0914 | 1.1933 | 0.8869 |
1999 | 1.2581 | 1.3193 | 1.0890 | 1.1941 | 0.8882 |
2000 | 1.2712 | 1.3357 | 1.1050 | 1.2123 | 0.9011 |
2001 | 1.2783 | 1.3426 | 1.1130 | 1.2177 | 0.9049 |
2002 | 1.2814 | 1.3468 | 1.1171 | 1.2228 | 0.9066 |
2003 | 1.2940 | 1.3595 | 1.1287 | 1.2362 | 0.9146 |
2004 | 1.3118 | 1.3795 | 1.1501 | 1.2592 | 0.9304 |
2005 | 1.3342 | 1.4027 | 1.1746 | 1.2889 | 0.9500 |
2006 | 1.3585 | 1.4220 | 1.1965 | 1.3136 | 0.9630 |
2007 | 1.3712 | 1.4350 | 1.2108 | 1.3299 | 0.9723 |
2008 | 1.3808 | 1.4495 | 1.2237 | 1.3471 | 0.9853 |
2009 | 1.3785 | 1.4480 | 1.2172 | 1.3445 | 0.9804 |
2010 | 1.3800 | 1.4539 | 1.2234 | 1.3506 | 0.9847 |
2011 | 1.3769 | 1.4563 | 1.2260 | 1.3507 | 0.9872 |
2012 | 1.3832 | 1.4655 | 1.2325 | 1.3606 | 0.9940 |
2013 | 1.3870 | 1.4729 | 1.2376 | 1.3659 | 0.9995 |
2014 | 1.3908 | 1.4793 | 1.2468 | 1.3671 | 1.0050 |
2015 | 1.4041 | 1.4955 | 1.2611 | 1.3790 | 1.0175 |
2016 | 1.4130 | 1.5112 | 1.2783 | 1.3934 | 1.0338 |
2017 | 1.4294 | 1.5310 | 1.2994 | 1.4172 | 1.0519 |
2018 | 1.4436 | 1.5472 | 1.3199 | 1.4314 | 1.0665 |
2019 | 1.4380 | 1.5420 | 1.3140 | 1.4261 | 1.0593 |
Average | 1.3013 | 1.3625 | 1.1324 | 1.2419 | 0.9174 |
Year | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
1986 | 1.0318 | 1.4220 | 1.1858 | 1.4705 | 1.1938 | 1.1918 | 1.0643 | 0.8293 | 0.7435 | 1.0286 |
1987 | 1.0238 | 1.3882 | 1.1745 | 1.4450 | 1.1851 | 1.1832 | 1.0599 | 0.8285 | 0.7464 | 1.0225 |
1988 | 1.0187 | 1.3489 | 1.1623 | 1.4207 | 1.1697 | 1.1677 | 1.0538 | 0.8254 | 0.7489 | 1.0143 |
1989 | 1.0163 | 1.3327 | 1.1542 | 1.4090 | 1.1633 | 1.1614 | 1.0507 | 0.8246 | 0.7494 | 1.0125 |
1990 | 1.0108 | 1.3092 | 1.1378 | 1.3880 | 1.1560 | 1.1541 | 1.0458 | 0.8249 | 0.7497 | 1.0123 |
1991 | 1.0115 | 1.2975 | 1.1327 | 1.3870 | 1.1486 | 1.1468 | 1.0450 | 0.8215 | 0.7482 | 1.0103 |
1992 | 1.0085 | 1.2791 | 1.1241 | 1.3708 | 1.1412 | 1.1394 | 1.0403 | 0.8214 | 0.7499 | 1.0075 |
1993 | 1.0046 | 1.2592 | 1.1103 | 1.3528 | 1.1335 | 1.1317 | 1.0352 | 0.8215 | 0.7503 | 1.0070 |
1994 | 0.9994 | 1.2490 | 1.1015 | 1.3406 | 1.1327 | 1.1310 | 1.0334 | 0.8228 | 0.7508 | 1.0078 |
1995 | 0.9980 | 1.2370 | 1.0940 | 1.3311 | 1.1269 | 1.1251 | 1.0302 | 0.8222 | 0.7510 | 1.0068 |
1996 | 0.9921 | 1.2200 | 1.0803 | 1.3124 | 1.1225 | 1.1207 | 1.0258 | 0.8237 | 0.7517 | 1.0075 |
1997 | 0.9895 | 1.2193 | 1.0837 | 1.3143 | 1.1247 | 1.1230 | 1.0283 | 0.8226 | 0.7525 | 1.0050 |
1998 | 0.9880 | 1.2136 | 1.0761 | 1.3099 | 1.1226 | 1.1208 | 1.0273 | 0.8223 | 0.7509 | 1.0071 |
1999 | 0.9804 | 1.2082 | 1.0674 | 1.2978 | 1.1272 | 1.1255 | 1.0270 | 0.8255 | 0.7514 | 1.0103 |
2000 | 0.9778 | 1.1993 | 1.0598 | 1.2901 | 1.1242 | 1.1224 | 1.0251 | 0.8254 | 0.7510 | 1.0110 |
2001 | 0.9784 | 1.1958 | 1.0617 | 1.2927 | 1.1213 | 1.1195 | 1.0259 | 0.8228 | 0.7508 | 1.0079 |
2002 | 0.9774 | 1.1929 | 1.0589 | 1.2935 | 1.1205 | 1.1187 | 1.0270 | 0.8213 | 0.7493 | 1.0084 |
2003 | 0.9779 | 1.1919 | 1.0571 | 1.2955 | 1.1192 | 1.1175 | 1.0276 | 0.8200 | 0.7479 | 1.0090 |
2004 | 0.9767 | 1.1814 | 1.0498 | 1.2889 | 1.1136 | 1.1118 | 1.0253 | 0.8186 | 0.7470 | 1.0087 |
2005 | 0.9770 | 1.1730 | 1.0402 | 1.2817 | 1.1077 | 1.1060 | 1.0217 | 0.8184 | 0.7454 | 1.0111 |
2006 | 0.9827 | 1.1721 | 1.0388 | 1.2900 | 1.1013 | 1.0996 | 1.0217 | 0.8143 | 0.7418 | 1.0116 |
2007 | 0.9830 | 1.1670 | 1.0343 | 1.2894 | 1.0977 | 1.0960 | 1.0213 | 0.8125 | 0.7401 | 1.0121 |
2008 | 0.9790 | 1.1600 | 1.0258 | 1.2778 | 1.0970 | 1.0954 | 1.0185 | 0.8146 | 0.7403 | 1.0146 |
2009 | 0.9782 | 1.1671 | 1.0263 | 1.2839 | 1.1026 | 1.1009 | 1.0219 | 0.8150 | 0.7384 | 1.0184 |
2010 | 0.9744 | 1.1594 | 1.0214 | 1.2779 | 1.1013 | 1.0996 | 1.0217 | 0.8143 | 0.7383 | 1.0177 |
2011 | 0.9695 | 1.1511 | 1.0181 | 1.2691 | 1.1006 | 1.0990 | 1.0208 | 0.8147 | 0.7399 | 1.0155 |
2012 | 0.9672 | 1.1495 | 1.0142 | 1.2650 | 1.1020 | 1.1003 | 1.0204 | 0.8160 | 0.7396 | 1.0178 |
2013 | 0.9643 | 1.1469 | 1.0126 | 1.2599 | 1.1031 | 1.1014 | 1.0199 | 0.8172 | 0.7407 | 1.0174 |
2014 | 0.9624 | 1.1384 | 1.0153 | 1.2552 | 1.0992 | 1.0976 | 1.0190 | 0.8156 | 0.7437 | 1.0103 |
2015 | 0.9607 | 1.1348 | 1.0164 | 1.2504 | 1.0985 | 1.0968 | 1.0177 | 0.8163 | 0.7460 | 1.0073 |
2016 | 0.9557 | 1.1218 | 1.0108 | 1.2340 | 1.0945 | 1.0928 | 1.0130 | 0.8183 | 0.7497 | 1.0039 |
2017 | 0.9539 | 1.1134 | 1.0035 | 1.2244 | 1.0903 | 1.0886 | 1.0094 | 0.8192 | 0.7500 | 1.0045 |
2018 | 0.9531 | 1.1035 | 1.0034 | 1.2182 | 1.0839 | 1.0822 | 1.0067 | 0.8176 | 0.7526 | 0.9984 |
2019 | 0.9525 | 1.1044 | 1.0031 | 1.2227 | 1.0852 | 1.0835 | 1.0095 | 0.8157 | 0.7505 | 0.9993 |
Average | 0.9846 | 1.2090 | 1.0664 | 1.3091 | 1.1209 | 1.1192 | 1.0283 | 0.8201 | 0.7470 | 1.0107 |
Period | Petroleum Reduction (Mtoe) | CO2 Emissions Reduction (Mt) |
---|---|---|
Scenario 1 | ||
(Raising natural gas capital investment by 5%) | ||
2013 | 18.397695 | 7.550966 |
2016 | 16.321575 | 10.276881 |
2019 | 18.138939 | 10.435593 |
Scenario 2 | ||
(Raising natural gas capital investment by 10%) | ||
2013 | 19.273776 | 7.910535 |
2016 | 17.098793 | 10.766256 |
2019 | 19.002698 | 10.932526 |
Scenario 3 | ||
(Total factor productivity growth and CO2 emissions reduction as business as usual) | ||
2013 | 0.053567 | 0.000739 |
2016 | 0.053470 | 0.000772 |
2019 | 0.05306 | 0.000772 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raza, M.Y.; Tang, S. Inter-Fuel Substitution, Technical Change, and Carbon Mitigation Potential in Pakistan: Perspectives of Environmental Analysis. Energies 2022, 15, 8758. https://doi.org/10.3390/en15228758
Raza MY, Tang S. Inter-Fuel Substitution, Technical Change, and Carbon Mitigation Potential in Pakistan: Perspectives of Environmental Analysis. Energies. 2022; 15(22):8758. https://doi.org/10.3390/en15228758
Chicago/Turabian StyleRaza, Muhammad Yousaf, and Songlin Tang. 2022. "Inter-Fuel Substitution, Technical Change, and Carbon Mitigation Potential in Pakistan: Perspectives of Environmental Analysis" Energies 15, no. 22: 8758. https://doi.org/10.3390/en15228758
APA StyleRaza, M. Y., & Tang, S. (2022). Inter-Fuel Substitution, Technical Change, and Carbon Mitigation Potential in Pakistan: Perspectives of Environmental Analysis. Energies, 15(22), 8758. https://doi.org/10.3390/en15228758