Application of a Model Based on Rough Set Theory (RST) to Estimate the Energy Efficiency of Public Buildings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject of the Research
- where —is the approximate power requirement for heating the building, [kW];
- Ve —heated volume of the building calculated according to external dimensions, [m3];
- —correction factor depending on the outdoor design temperature, [−]; its value is respectively: 0.9 for −16 °C; 0.95 for −18 °C; 1.0 for −20 °C; 1.05 for −22 °C and 1.1 dla −24 °C [47].
2.2. Calculation Method for Energy Demand for Heating a Building
- C1—
- type of building (1—schools, 2—care and educational institutions, 3—public administration buildings, 4—buildings used for cultural purposes, 5—collective residence);
- C2—
- construction technology (1—traditional masonry, 2—large-block, 3—prefabricated system);
- C3—
- heating system (1—district heating substation, 2—gas boiler room, 3—oil boiler room, 4—solid fuel boiler room, 5—heat pumps);
- C4—
- the approximate power requirement for heating the building, [kW];
- C5—
- shape coefficient of buildings, [m−1];
- D—
- index of final energy demand for heating, [kWh·m−2·year−1].
3. Results and Discussion
- MBE index ± 5%,
- CV RMSE index 15%.
4. Conclusions
- Model calculations differ from actual data by an average of 12.5 kWh·m−2·year−1, with the confidence interval for the study group of sites ranging from 5.4 to 19.6 kWh·m−2·year−1;
- For the analyzed model, the values of the evaluation indicators proposed by ASHRAE are as follows: MBE = −1.1%, CV RMSE = 11.8% and R2 = 0.91. One can express confidence that the method presented in this article gives good results in estimating the unit energy demand rate for heating;
- The presented tool can be used to quickly analyze energy consumption in the case of incomplete data or lack of building documentation for existing public buildings, which are characterized by a wide variation in terms of volume and heated area;
- The presented method can be used to check the correctness/accuracy of engineering calculations for determining the design heat load of buildings and the energy performance of public buildings that have undergone thermal improvements.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Act of 29 August 2014 on the Energy Characteristics of Buildings. Journal of Laws 2021, Item 497. Available online: https://sip.lex.pl/akty-prawne/dzu-dziennik-ustaw/charakterystyka-energetyczna-budynkow-18122118 (accessed on 3 October 2022).
- Fumo, N. A review on the basics of building energy estimation. Renew. Sustain. Energy Rev. 2014, 31, 53–60. [Google Scholar] [CrossRef]
- Foucquier, A.; Robert, S.; Suard, F.; Stéphan, L.; Jay, A. State of the art in building modelling and Energy performances pre-diction: A review. Renew. Sustain. Energy Rev. 2013, 23, 272–288. [Google Scholar] [CrossRef] [Green Version]
- Costanzoa, V.; Fabbrib, K.; Piraccini, S. Stressing the passive behavior of a Passivhaus: An evidence-based scenario analysis for a Mediterranean case study. Build. Environ. 2018, 142, 265–277. [Google Scholar] [CrossRef]
- Woroniak, G.; Piotrowska-Woroniak, J. Effects of pollution reduction and energy consumption reduction in small churches in Drohiczyn community. Energy Build. 2014, 72, 51–61. [Google Scholar] [CrossRef]
- Szul, T. Application of a Thermal Performance-Based Model to Prediction Energy Consumption for Heating of Single-Family Residential Buildings. Energies 2022, 15, 362. [Google Scholar] [CrossRef]
- Piotrowska-Woroniak, J.; Cieśliński, K.; Woroniak, G.; Bielskus, J. The Impact of Thermo-Modernization and Forecast Regulation on the Reduction of Thermal Energy Consumption and Reduction of Pollutant Emissions into the Atmosphere on the Example of Prefabricated Buildings. Energies 2022, 15, 2758. [Google Scholar] [CrossRef]
- Sadowska, B.; Piotrowska-Woroniak, J.; Woroniak, G.; Sarosiek, W. Energy and Economic Efficiency of the Thermomodernization of an Educational Building and Reduction of Pollutant Emissions—A Case Study. Energies 2022, 15, 2886. [Google Scholar] [CrossRef]
- Singh, G.; Das, R. Energy saving potential of a combined solar and natural gas assisted vapor absorption building cooling system. J. Sol. Energy Eng. 2019, 141, 011016. [Google Scholar] [CrossRef]
- Curto, D.; Franzitta, V.; Guercio, A.; Martorana, P. FEM Analysis: A Review of the Most Common Thermal Bridges and Their Mitigation. Energies 2022, 15, 2318. [Google Scholar] [CrossRef]
- Bourdeau, M.; Zhai, X.-Q.; Nefzaoui, E.; Guo, X.; Chatellier, P. Modelling and forecasting building energy consumption: A review of data-driven techniques. Sustain. Sustain. Cities Soc. 2019, 48, 101533. [Google Scholar] [CrossRef]
- Seyedzadeh, S.; Rahimian, F.; Glesk, I.; Roper, M. Machine learning for estimation of building energy consumption and performance: A review. Vis. Eng. 2018, 6, 5. [Google Scholar] [CrossRef]
- Mat Daut, M.A.; Hassan, M.Y.; Abdullah, H.; Rahman, H.A.; Abdullah, M.P.; Hussin, F. Building electrical energy consumption forecasting analysis using conventional and artificial intelligence methods: A review. Renew. Sustain. Energy Rev. 2017, 70, 1108–1118. [Google Scholar] [CrossRef]
- Fan, C.; Xiao, F.; Wang, S. Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques. Appl. Energy 2014, 127, 1–10. [Google Scholar] [CrossRef]
- Ahmad, T.; Chen, H.; Guo, Y.; Wang, J. A comprehensive overview on the data driven and large scale based approaches for forecasting of building energy demand: A review. Energy Build. 2018, 165, 301–320. [Google Scholar] [CrossRef]
- Tardioli, G.; Kerrigan, R.; Oates, M.; O’Donnell, J.; Finn, D. Data Driven Approaches for Prediction of Building Energy Consumption at Urban Level. Energy Procedia 2015, 78, 3378–3383. [Google Scholar] [CrossRef] [Green Version]
- Yildiz, B.; Bilbao, J.I.; Sproul, A.B. A review and analysis of regression and machine learning models on commercial building electricity load forecasting. Renew. Sustain. Energy Rev. 2017, 73, 1104–1122. [Google Scholar] [CrossRef]
- Wang, J.; Srinivasan, R.S. A review of artificial intelligence based building energy use prediction: Contrasting the capabilities of single and ensemble prediction models. Renew. Sustain. Energy Rev. 2017, 75, 796–808. [Google Scholar] [CrossRef]
- Deb, C.; Lee, S.E. Determining key variables influencing energy consumption in office buildings through cluster analysis of pre-and post-retrofit building data. Energy Build. 2018, 159, 228–245. [Google Scholar] [CrossRef]
- Szul, T.; Tabor, S.; Pancerz, K. Application of the BORUTA Algorithm to Input Data Selection for a Model Based on Rough Set Theory (RST) to Prediction Energy Consumption for Building Heating. Energies 2021, 14, 2779. [Google Scholar] [CrossRef]
- Chang, C.; Zhu, N.; Yang, K.; Yang, F. Data and analytics for heating energy consumption of residential buildings: The case of a severe cold climate region of China. Energy Build. 2018, 172, 104–115. [Google Scholar] [CrossRef]
- Szul, T.; Nęcka, K.; Mathia, T.G. Neural Methods Comparison for Prediction of Heating Energy Based on Few Hundreds Enhanced Buildings in Four Season’s Climate. Energies 2020, 13, 5453. [Google Scholar] [CrossRef]
- Fayaz, M.; Kim, D. A Prediction Methodology of Energy Consumption Based on Deep Extreme Learning Machine and Comparative Analysis in Residential Buildings. Electronics 2018, 7, 222. [Google Scholar] [CrossRef]
- Castelli, M.; Trujillo, L.; Vanneschi, L.; Popovič, A. Prediction of energy performance of residential buildings: A genetic programming approach. Energy Build. 2015, 102, 67–74. [Google Scholar] [CrossRef]
- Szul, T.; Kokoszka, S. Application of Rough Set Theory (RST) to Forecast Energy Consumption in Buildings Undergoing Thermal Modernization. Energies 2020, 13, 1309. [Google Scholar] [CrossRef] [Green Version]
- Chou, J.S.; Bui, D.K. Modeling heating and cooling loads by artificial intelligence for energy-efficient building design. Energy Build. 2014, 82, 437–446. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Cao, M.T. Accurately predicting building energy performance using evolutionary multivariate adaptive regression splines. Appl. Soft Comput. 2014, 22, 178–188. [Google Scholar] [CrossRef]
- Szul, T.; Nęcka, K.; Lis, S. Application of the Takagi-Sugeno Fuzzy Modeling to Forecast Energy Efficiency in Real Buildings Undergoing Thermal Improvement. Energies 2021, 14, 1920. [Google Scholar] [CrossRef]
- Nauck, D.; Klawonn, F.; Kruse, R. Neuro-Fuzzy Systems; John Wiley & Sons: Hoboken, NJ, USA, 1997. [Google Scholar]
- Piotrowska-Woroniak, J. Determination of the Selected Wells Operational Power with Borehole Heat Exchangers Operating in Real Conditions, Based on Experimental Tests. Energies 2021, 14, 2512. [Google Scholar] [CrossRef]
- Żukowski, M.; Woroniak, G. Experimental testing of ceramic solar collectors. Sol. Energy 2017, 146, 532–542. [Google Scholar] [CrossRef]
- Żukowski, M.; Woroniak, G.; Piotrowska-Woroniak, J. Experimental research and numerical simulations of a ceramic panel used for solar energy conversion. Sol. Energy 2019, 194, 27–36. [Google Scholar] [CrossRef]
- Piotrowska-Woroniak, J. The Photovoltaic Installation Application in the Public Utility Building. Ecol. Chem. Eng. S 2017, 24, 517–538. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wen, J.; Li, Y.; Chen, J.; Ye, Y.; Fu, Y.; Livingood, W. A review of machine learning in building load prediction. Appl. Energy 2021, 285, 116452. [Google Scholar] [CrossRef]
- Chalal, M.L.; Benachir, M.; White, M.; Shrahily, R. Energy planning and forecasting approaches for supporting physical improvement strategies in the building sector: A review. Renew. Sustain. Energy Rev. 2016, 64, 761–776. [Google Scholar] [CrossRef] [Green Version]
- Minister of Infrastructure and Construction. Regulation of the Minister of Infrastructure and Construction on Technical Conditions to Be Met by Buildings and Their Location [Journal of Laws 7 June 2019, Item 1065]. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20190001065/O/D20191065.pdf (accessed on 12 October 2022). (In Polish)
- Kamler, W. Ciepłownictwo; Państwowe Wydawnictwa Naukowe: Warszawa, Polska, 1976; ISBN 83-01-00218-2. (In Polish) [Google Scholar]
- Krygier, K.; Klinke, T.; Sewrynik, J. Klimatyzacja, Wentylacja, Klimatyzacja; Wydawnictwa Szkolne i Pedagogiczne: Warszawa, Polska, 1991; ISBN 830-207-89-80. (In Polish) [Google Scholar]
- Ruiz, G.R.; Bandera, C.R. Validation of Calibrated Energy Models: Common Errors. Energies 2017, 10, 1587. [Google Scholar] [CrossRef] [Green Version]
- ASHRAE. American Society of Heating, Ventilating, and Air Conditioning Engineers (ASHRAE), Guideline 14-2014, Measurement of Energy and Demand Savings; Technical Report; American Society of Heating, Ventilating, and Air Conditioning Engineers: Atlanta, GA, USA, 2014; Available online: https://scholar.google.com/scholar_lookup?title=American+Society+of+Heating,+Ventilating,+and+Air+Conditioning+Engineers+(ASHRAE).+Guideline+14-2014,+Measurement+of+Energy+and+Demand+Savings&author=ASHRAE&publication_year=2014 (accessed on 12 October 2022).
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- ISO 12831-1:2017-08; European Standard: Heating Systems in Buildings. CEN: Brussels, Belgium, 2017.
- ANSI/ASHRAE Standard 169-2021; Climatic Data for Building Design Standards. American Society of Heating. Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2021.
- Institute of Meteorology and Water Management. Data from the Institute of Meteorology and Water Management. Available online: https://danepubliczne.imgw (accessed on 1 October 2022). (In Polish).
- Statistics Poland. 2022. Available online: https://bdl.stat.gov.pl/BDL/dane/podgrup/wymiary (accessed on 10 October 2022).
- Audyty Energetyczne Budynków Użyteczności Publicznej Wykonywane w Latach 2016–2019 Wykonywane w Narodowej Agencji Poszanowania Energii S.A. w Białymstoku (National Energy Conservation Agency in Bialystok), Poland. (In Polish)
- Szul, T. Assessment of the accuracy of the approximate method used to estimate the heating power demand for single-family houses. J. Res. Appl. Agric. Eng. 2018, 63, 126–129. Available online: https://tech-rol.eu/images/Archiwum_X/2019/05/2018_1_TSZ.pdf (accessed on 2 October 2022).
- Pawlak, Z. Rough Sets: Theoretical Aspects of Reasoning about Data; Kluwer Academic Press: Dordrecht, The Netherlands, 2012; Available online: http://bcpw.bg.pw.edu.pl/Content/2026/RoughSetsRep29.pdf (accessed on 18 October 2022).
- Nutech Solution-Science for Business. 2005. Available online: http://www.nutechsolutions.com.pl/ (accessed on 10 October 2022).
- Nguyen, D.V.; Yamada, K.; Unehara, M. Extended Tolerance Relation to Define a New Rough Set Model in Incomplete Information Systems. Adv. Fuzzy Syst. 2013, 372091, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Renigier-Biłozor, M. Zastosowanie teorii zbiorów przybliżonych do masowej wyceny nieruchomości na małych rynkach (Application of rough set theory for mass valuation of real estate in small markets). Acta Sci. Pol. Adm. Locorum 2008, 7, 35–51. Available online: https://scholar.google.com/scholar_lookup?title=Zastosowanie+teorii+zbior%C3%B3w+przybli%C5%BConych+do+masowej+wyceny+nieruchomo%C5%9Bci+na+ma%C5%82ych+rynkach+(Application+of+rough+set+theory+for+mass+valuation+of+real+estate+in+small+markets)&author=Renigier-Bi%C5%82ozor,+M.&publication_year=2008&journal=Acta+Sci.+Pol.+Adm.+Locorum&volume=7&pages=35%E2%80%9351 (accessed on 15 October 2022).
- Szul, T.; Nęcka, K.; Knaga, J. Application of Rough Set Theory to Establish the Amount of Waste in Households in Rural Areas. Ecol. Chem. Eng. S 2017, 24, 311–325. [Google Scholar] [CrossRef]
Models | Index | |||
---|---|---|---|---|
MAPE [%] | MBE [%] | CV RMSE [%] | R2 | |
BORUTA algorithm and RST [20] | 9 ÷ 11 | 2.4 ÷ 5 | 5.5 ÷ 6 | 0.8 ÷ 0.85 |
ANN [22] | 23 ÷ 29 | 4 ÷ 13 | 14 ÷ 24 | 0.6 ÷ 0.8 |
MARS [22] | 17 ÷ 35 | 4 ÷ 14 | 15 ÷ 37 | 0.3 ÷ 0.8 |
SRT [22] | 16 ÷ 27 | 5 ÷ 12 | 14 ÷ 28 | 0.4 ÷ 0.8 |
RST [25] | 14 ÷ 18 | −16 ÷ 2 | 18 ÷ 32 | − |
Takagi–Sugeno [28] | 12 ÷ 25 | −4 ÷ 12 | 7 ÷ 29 | 0.7 ÷ 0.9 |
Object | Parameters Describing Public Buildings | ||||||
---|---|---|---|---|---|---|---|
Type of Building | Construction Technology | Heating System | Heated Volume of Building Ve [m3] | Heated Surface of the Building Af [m2] | Shape Coefficient of Buildings A/Ve [m−1] | Annual Energy Consumption for Heating QH,f [MWh] | |
P1 | 5 | 2 | 1 | 10,430 | 3676 | 0.46 | 485.3 |
P2 | 1 | 3 | 1 | 14,473 | 4317 | 0.44 | 297.9 |
P3 | 1 | 1 | 2 | 1578 | 506 | 0.61 | 44.1 |
P4 | 1 | 1 | 1 | 15,161 | 4220 | 0.52 | 1118.3 |
P5 | 1 | 1 | 5 | 3131 | 775 | 0.62 | 33.4 |
P6 | 1 | 1 | 3 | 7542 | 2384 | 0.56 | 293.3 |
P7 | 4 | 1 | 2 | 938 | 304 | 0.87 | 10.1 |
P8 | 3 | 3 | 2 | 16,743 | 4220 | 0.33 | 130.9 |
P9 | 5 | 1 | 3 | 9638 | 3542 | 0.29 | 439.3 |
P10 | 1 | 1 | 2 | 3601 | 1059 | 0.63 | 116.5 |
P11 | 4 | 1 | 4 | 445 | 167 | 0.88 | 16.1 |
P12 | 1 | 1 | 4 | 4000 | 1000 | 0.54 | 245 |
P13 | 1 | 1 | 4 | 8081 | 2005 | 0.52 | 74.2 |
P14 | 4 | 1 | 4 | 905 | 306 | 0.61 | 34.9 |
P15 | 1 | 1 | 1 | 26,110 | 4364 | 0.17 | 349.2 |
P16 | 2 | 2 | 1 | 6337 | 2400 | 0.56 | 115.2 |
P17 | 1 | 3 | 1 | 18,093 | 3242 | 0.35 | 337.2 |
P18 | 1 | 1 | 5 | 8441 | 2129 | 0.51 | 70.3 |
P19 | 1 | 1 | 5 | 5927 | 1535 | 0.42 | 67.6 |
P20 | 3 | 1 | 3 | 2776 | 974 | 0.48 | 60.4 |
P21 | 1 | 3 | 4 | 21,288 | 6437 | 0.48 | 759.6 |
P22 | 1 | 1 | 1 | 2721 | 664 | 0.45 | 35.2 |
P23 | 3 | 2 | 1 | 3765 | 1202 | 0.44 | 123.9 |
P24 | 3 | 1 | 4 | 581 | 161 | 0.66 | 13.7 |
P25 | 4 | 1 | 2 | 2158 | 907 | 0.92 | 74.4 |
P26 | 3 | 1 | 4 | 3275 | 919 | 0.41 | 51.5 |
P27 | 1 | 1 | 4 | 1733 | 585 | 0.89 | 72.6 |
P28 | 4 | 1 | 4 | 1509 | 531 | 0.72 | 11.7 |
P29 | 2 | 2 | 1 | 5825 | 1937 | 0.71 | 230.6 |
P30 | 1 | 1 | 1 | 1063 | 319 | 0.75 | 49.2 |
P31 | 1 | 1 | 4 | 1816 | 516 | 0.73 | 111 |
P32 | 1 | 1 | 5 | 7061 | 2005 | 0.39 | 78.2 |
P33 | 1 | 1 | 5 | 7249 | 2129 | 0.52 | 68.2 |
P34 | 3 | 1 | 4 | 3275 | 919 | 0.41 | 52.4 |
P35 | 3 | 1 | 3 | 2376 | 675 | 0.93 | 43.2 |
P36 | 1 | 1 | 4 | 2023 | 770 | 0.37 | 110.9 |
P37 | 1 | 1 | 3 | 3024 | 975 | 0.74 | 117 |
P38 | 1 | 1 | 2 | 2880 | 1059 | 0.63 | 119.7 |
P39 | 1 | 3 | 3 | 14,057 | 4194 | 0.29 | 520.1 |
P40 | 3 | 1 | 1 | 2143 | 693 | 0.82 | 69.3 |
P41 | 1 | 2 | 2 | 12,364 | 2197 | 0.43 | 162.6 |
P42 | 1 | 1 | 4 | 16,876 | 4729 | 0.41 | 250.7 |
P43 | 3 | 1 | 1 | 1630 | 556 | 0.75 | 26.7 |
P44 | 1 | 1 | 2 | 6754 | 1731 | 0.54 | 290.9 |
P45 | 1 | 1 | 1 | 1561 | 404 | 0.65 | 57 |
P46 | 1 | 1 | 1 | 6486 | 3056 | 0.58 | 168.1 |
P47 | 1 | 1 | 3 | 2805 | 883 | 0.79 | 31.8 |
P48 | 4 | 1 | 4 | 1131 | 306 | 0.61 | 34.9 |
P49 | 5 | 1 | 2 | 27,879 | 7268 | 0.35 | 850.4 |
P50 | 3 | 2 | 3 | 3228 | 974 | 0.48 | 60.4 |
P51 | 3 | 2 | 1 | 22,768 | 6532 | 0.45 | 300.5 |
P52 | 3 | 2 | 1 | 4707 | 1202 | 0.44 | 123.9 |
P53 | 1 | 2 | 4 | 21,095 | 4729 | 0.41 | 250.7 |
P54 | 3 | 1 | 3 | 3633 | 781 | 0.49 | 97.7 |
P55 | 1 | 1 | 3 | 11,756 | 1790 | 0.33 | 363.4 |
P56 | 5 | 1 | 1 | 7556 | 2281 | 0.74 | 225.9 |
P57 | 3 | 1 | 1 | 2143 | 693 | 0.82 | 69.3 |
P58 | 1 | 1 | 3 | 3024 | 975 | 0.74 | 117 |
P59 | 1 | 3 | 4 | 2762 | 914 | 0.54 | 125.3 |
P60 | 1 | 1 | 1 | 7918 | 2048 | 0.52 | 129.1 |
P61 | 1 | 1 | 4 | 2271 | 516 | 0.73 | 111 |
P62 | 1 | 1 | 4 | 2529 | 770 | 0.57 | 110.9 |
P63 | 1 | 1 | 2 | 2500 | 677 | 0.58 | 58.9 |
P64 | 4 | 1 | 5 | 1137 | 407 | 0.72 | 11.9 |
P65 | 1 | 1 | 5 | 32,476 | 9644 | 0.22 | 356.9 |
P66 | 1 | 1 | 1 | 16,399 | 5395 | 0.42 | 1494.5 |
P67 | 2 | 3 | 4 | 12,699 | 3344 | 0.51 | 441.5 |
P68 | 1 | 2 | 4 | 12,184 | 2848 | 0.43 | 370.3 |
P69 | 1 | 1 | 5 | 1467 | 465 | 0.86 | 15.4 |
P70 | 5 | 1 | 1 | 7651 | 2670 | 0.39 | 275.1 |
P71 | 1 | 2 | 1 | 19,544 | 5545 | 0.28 | 476.9 |
P72 | 1 | 1 | 2 | 2903 | 907 | 0.54 | 66.3 |
P73 | 3 | 1 | 4 | 2689 | 765 | 0.49 | 29.1 |
P74 | 1 | 1 | 2 | 1339 | 475 | 0.43 | 50.9 |
P75 | 5 | 1 | 5 | 6018 | 2030 | 0.61 | 99.5 |
P76 | 1 | 1 | 1 | 6331 | 2064 | 0.48 | 229.2 |
P77 | 3 | 3 | 1 | 11,560 | 3456 | 0.38 | 134.8 |
P78 | 1 | 1 | 3 | 2191 | 695 | 0.6 | 77.9 |
P79 | 1 | 3 | 4 | 18,247 | 3527 | 0.38 | 328.1 |
P80 | 1 | 1 | 4 | 8086 | 2308 | 0.47 | 196.2 |
P81 | 1 | 1 | 1 | 28,807 | 8610 | 0.39 | 809.4 |
P82 | 1 | 2 | 2 | 3420 | 836 | 0.46 | 59.4 |
P83 | 1 | 1 | 4 | 4304 | 1414 | 0.54 | 189.5 |
P84 | 1 | 1 | 3 | 9638 | 3542 | 0.29 | 170.1 |
P85 | 1 | 1 | 1 | 989 | 277 | 0.77 | 42.2 |
Object Number | Condition Attributes | Decision Attribute | ||||
---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | D | |
1 | 5 | 2 | 1 | 157 | 0.45 | 132 |
2 | 1 | 3 | 1 | 206 | 0.44 | 69 |
30 | 1 | 1 | 3 | 55 | 0.74 | 120 |
68 | 1 | 1 | 5 | 30 | 0.85 | 33 |
Assessment Indicator | Results |
---|---|
R2 | 0.91 |
MBE (%) | −1.1 |
CV RMSE (%) | 11.8 |
MAPE (%) | 17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piotrowska-Woroniak, J.; Szul, T. Application of a Model Based on Rough Set Theory (RST) to Estimate the Energy Efficiency of Public Buildings. Energies 2022, 15, 8793. https://doi.org/10.3390/en15238793
Piotrowska-Woroniak J, Szul T. Application of a Model Based on Rough Set Theory (RST) to Estimate the Energy Efficiency of Public Buildings. Energies. 2022; 15(23):8793. https://doi.org/10.3390/en15238793
Chicago/Turabian StylePiotrowska-Woroniak, Joanna, and Tomasz Szul. 2022. "Application of a Model Based on Rough Set Theory (RST) to Estimate the Energy Efficiency of Public Buildings" Energies 15, no. 23: 8793. https://doi.org/10.3390/en15238793
APA StylePiotrowska-Woroniak, J., & Szul, T. (2022). Application of a Model Based on Rough Set Theory (RST) to Estimate the Energy Efficiency of Public Buildings. Energies, 15(23), 8793. https://doi.org/10.3390/en15238793