Hydrogen Internal Combustion Engine Vehicles: A Review
Abstract
:1. Introduction
2. Hydrogen Internal Combustion Vehicles Compared to Other, Similar Vehicles
3. The History of Hydrogen Combustion Vehicles
4. Dedicated Hydrogen and Bi-Fuel Vehicles
5. Hydrogen in Combination with Other Fuels (Dual-Fuel Applications)
6. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ogden, J.M. Prospects for Building A Hydrogen Energy Infrastructure. Annu. Rev. Energy Environ. 1999, 24, 227–279. [Google Scholar] [CrossRef]
- Bockris, J.O. A Hydrogen Economy. In Comprehensive Treatise of Electrochemistry; Plenum Press: New York, NY, USA, 1981; pp. 505–526. [Google Scholar]
- Surygała, J. Wodór Jako Paliwo; Wydawnictwa Naukowo-Techniczne PWN: Warszawa, Poland, 2008. [Google Scholar]
- Du, H.; Chen, Z.; Peng, B.; Southworth, F.; Ma, S.; Wang, Y. What drives CO2 emissions from the transport sector? A linkage analysis. Energy 2019, 175, 195–204. [Google Scholar] [CrossRef]
- Barreto, L.; Makihira, A.; Riahi, K. The hydrogen economy in the 21st century: A sustainable development scenario. Int. J. Hydrogen Energy 2003, 28, 267–284. [Google Scholar] [CrossRef] [Green Version]
- Faizal, M.; Chuah, L.S.; Lee, C.; Hameed, A.; Lee, J.; Shankar, M. Review of hydrogen fuel for internal combustion engines. J. Mech. Eng. Res. Dev. 2019, 42, 35–46. [Google Scholar]
- Czaplicka-Kolarz, K. Scenariusze Rozwoju Technologicznego Kompleksu Paliwowo-Energetycznego dla Bezpieczeństwa Energetycznego Kraju, Część 1—Stadium Gospodarki Paliwami I Energią dla Celów Opracowania Forsightingu Energetycznego dla Polski 2005–2030; Central Mining Institute: Katowice, Poland, 2007. [Google Scholar]
- Gillingham, K. Hydrogen Internal Combustion Engine Vehicles: A Prudent Intermediate Step or a Step in the Wrong Direc-tion? Stanford University: Stanford, CA, USA, 2007; pp. 1–28. [Google Scholar]
- Simi, A. Hydrogen Direct Injection Inreciprocating Engines Using Commercial Injectors. Ph.D. Thesis, Universita Di Pisa, Pisa, Italy, 2011. [Google Scholar]
- Fayaz, H.; Saidur, R.; Razali, N.; Anuar, F.S.; Saleman, A.R.; Islam, M.R. An overview of hydrogen as a vehicle fuel. Renew. Sustain. Energy Rev. 2012, 16, 5511–5528. [Google Scholar] [CrossRef]
- Qin, N.; Raissi, A.; Brooker, P. Analysis of Fuel Cell Vehicle Developments; U.S. Department of Transportation’s University Transportation Centers Program: Cocoa, FL, USA, 2014.
- Blagojević, I.; Mitić, S. Hydrogen as a vehicle fuel. In Proceedings of the International Congress Motor Vehicles & Motors 2018, Kragujevac, Serbia, 4–5 October 2018. [Google Scholar]
- Toroń, K. Hydrogen-powered vehicles in urban transport systems—Current state and development. Transp. Res. Proc. 2020, 45, 835–841. [Google Scholar] [CrossRef]
- Stępień, Z. A Comprehensive Overview of Hydrogen-Fueled Internal Combustion Engines: Achievements and Future Challenges. Energies 2021, 14, 6504. [Google Scholar] [CrossRef]
- Verhelst, S.; Wallner, T. Hydrogen-fueled internal combustion engines. Prog. Energy Combust. Sci. 2009, 35, 490–527. [Google Scholar] [CrossRef] [Green Version]
- Groger, O.; Gasteiger, H.A.; Suchsland, J.P. Review—Electromobility: Batteries or Fuel Cells? J. Electrochem. Soc. 2015, 162, A2605–A2622. [Google Scholar] [CrossRef]
- Hydrogen Wrokshop for Fleet Operations. Module4, Hydrogen Powertrains and Vehicles; The National Hydrogen Association: North Washington, CO, USA, 2005. [Google Scholar]
- Walter, L. Hydrogen Use In Internal Combustion Engines. In Hydrogen Fuel Cell Engines and Related Technologies; College of the Desert: Palm Desert, CA, USA, 2001; pp. 3-9–3-14. [Google Scholar]
- Gurbuz, H. The effect of H2 purity on the combustion, performance, emissions and energy costs in an SI engine. Therm. Sci. 2020, 24, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Baronas, J.; Achtelik, G. Joint Agency Staff Report on Assembly Bill 8: 2019 Annual Assessment of Time and Cost Needed to Attain 100 Hydrogen Refueling Stations in California; California Energy Commission: Sacramento, CA, USA, 2019. [Google Scholar]
- Luo, Z.; Hu, Y.; Xu, H.; Gao, D.; Li, W. Cost-Economic Analysis of Hydrogen for China’s Fuel Cell Transportation Field. Energies 2022, 13, 6522. [Google Scholar] [CrossRef]
- Clean Cities Alternative Fuel Price Report; U.S. Department of Energy: Washington, DC, USA, 2022.
- Heffel, J.W. NOx emission and performance data for a hydrogen fueled internal combustion engine at 1500 rpm using exhaust gas recirculation. Int. J. Hydrogen Energy 2003, 28, 901–908. [Google Scholar] [CrossRef]
- ISO 14687:2019; Standard. Hydrogen Fuel Quality—Product Specification. International Organization for Standardization: Geneva, Switzerland, 2019.
- Graside, M. Global Platinum Mining Industry—Statistics & Facts; Statista Inc.: New York, NY, USA, 2021. [Google Scholar]
- Kerkal, G.; Pawale, K.; Dhumal, A. Diesel Engine with Hydrogen in Dual Fuel Mode: A Review. Int. J. Eng. Technol. Manag. Appl. Sci. 2017, 5, 1306–1311. [Google Scholar]
- Ratiu, S. The history of the internal combustion engine. Ann. Fac. Eng. Hunedoara 2003, 1, 145–148. [Google Scholar]
- Henri, M. Les voitures automobiles d’Isaac de Rivaz. Ann. Valais. Bull. Trimest. Société D’histoire Valais. Romand 1969, 15, 407–433. [Google Scholar]
- Jervis-Smith, F.J. Cecil’s Gas Engine. Nature 1904, 70, 553. [Google Scholar] [CrossRef] [Green Version]
- Cecil, W. On the application of hydrogen gas to produce a moving power in machinery, with a description of an engine which is moved by the pressure of atmosphere upon a vacuum caused by explosions of hydrogen gas. Cambridge Philosophical Society. Trans. Camb. Philos. Soc. 1822, 1, 217. [Google Scholar]
- Das, L.M. Hydrogen engines: A view of the past and a look into the future. Int. J. Hydrogen Energy 1990, 15, 425–443. [Google Scholar] [CrossRef]
- Richard, M. Jean-Joseph Etienne Lenoir—(1822–1900)—Inventeur du moteur à explosion (1860). Rev. Société D’entraide Memb. Légion D’honneur 1990, 107, 16–18. [Google Scholar]
- Fairbanks, J.W. Engine Maturity, Efficiency, and Potential Improvements. In Proceedings of the Diesel Engine Emission Reduction Conference, Coronado, CA, USA, 30 August 2004. [Google Scholar]
- Eichlseder, H.; Klell, M. Wasserstoff in der Fahrzeugtechnik; GWV Facherlage GmbH: Wiesbaden, Germany, 2008. [Google Scholar]
- The Motor Museum in Miniature. Available online: https://www.themotormuseuminminiature.co.uk/inv-jeanjoseph-etienne-lenoir.php (accessed on 7 November 2022).
- Soloveichik, G. Ammonia for Energy Storage and Delivery. In Proceedings of the NH3 Fuel Conference 2016, Los Angeles, CA, USA, 19 September 2016. [Google Scholar]
- Hydrogen Fuel Cars 1807–1986. Available online: https://www.hydrogencarsnow.com/index.php/1807-1986/ (accessed on 10 October 2022).
- Braun, H. John Lorenzen & Rudolf Erren Hydrogen Pioneers; Phoenix Project Foundation: Phoenix, AZ, USA, 2020. [Google Scholar]
- Bose, D. The Hydrogen Alternative. Int. Lett. Chem. Phys. Astron. 2015, 49, 15–26. [Google Scholar] [CrossRef]
- Plotnikov, L.V.; Ulman, N.V. Computational and analytical evaluation of the efficiency of using hydrogen as a fuel in an internal combustion engine. IOP Conf. Ser. Earth Environ. Sci. 2021, 723, 052018. [Google Scholar] [CrossRef]
- Das, L.M. Hydrogen-fueled internal combustion engines. In Compendium of Hydrogen Energy; Elsevier: Amsterdam, The Netherlands, 2016; Volume 7, pp. 177–213. [Google Scholar]
- First Hydrogen Car. Available online: https://www.automostory.com/first-hydrogen-car.htm (accessed on 10 October 2022).
- Furuhama, S.; Fukuma, T.; Sakai, H. Conversion of tubro-diesel passenger car into hydrogen powered car. In Proceedings of the International Symposium on Hydrogen Systems, Beijing, China, 7–11 May 1985. [Google Scholar]
- Karim, G.A. Hydrogen as an engine fuel some pros and cons. J. KONES 2007, 14, 153–164. [Google Scholar]
- Verhelst, S.; Verstraeten, S.; Sierens, R. A comprehensive overview of hydrogen engine design features. J. Automot. Eng. 2007, 221, 911–920. [Google Scholar] [CrossRef]
- Stockhausen, W.F.; Natkin, R.J.; Kabat, D.M.; Reams, L.; Tang, X.; Hashemi, S.; Szwabowski, S.J.; Zanardell, V.P. Ford P2000 Hydrogen Engine Design and Vehicle Development Program. In Proceedings of the SAE 2002 World Congress, Detroit, MI, USA, 4–7 March 2002. [Google Scholar]
- Yip, H.L.; Srna, A.; Yuen, A.C.Y.; Kook, S.; Taylor, R.A.; Yeoh, G.H.; Medwell, P.R.; Chan, Q.N. A Review of Hydrogen Direct Injection for Internal Combustion Engines: Towards Carbon-Free Combustion. Appl. Sci. 2019, 9, 4842. [Google Scholar] [CrossRef] [Green Version]
- Welch, A.; Mumford, D.; Munshi, S.; Holbery, J.; Boyer, B.; Younkins, M.; Jung, H. Challenges in Developing Hydrogen Direct Injection Technology for Internal Combustion Engines; Powertrains, Fuels & Lubricants Meeting: Rosemont, IL, USA, 2008. [Google Scholar]
- Maher, A.R.; Sadig, A.-B. Effect of compression ratio, equivalence ratio and engine speed on the performance and emission characteristics of a spark ignition engine using hydrogen as a fuel. Renew. Energy 2004, 29, 2245–2260. [Google Scholar]
- Saniz, D.; Dieguez, P.M.; Sopena, C.; Urroz, J.C.; Gandia, L.M. Conversion of a commercial gasoline vehicle to run bi-fuel (hydrogen-gasoline). Int. J. Hydrogen Energy 2012, 37, 1781–1789. [Google Scholar] [CrossRef]
- Verhelst, S. Recent progress in the use of hydrogen as a fuel for internal combustion engines. Int. J. Hydrogen Energy 2014, 39, 1071–1085. [Google Scholar] [CrossRef] [Green Version]
- Enke, W.; Grauber, M.; Hecht, L.; Staar, B. The Bi-fuel V12 Engine of the New BMW Hydrogen 7. MTZ 2007, 68, 6–9. [Google Scholar] [CrossRef]
- Toyota Developing Hydrogen Engine Technologies through Motorsports. Available online: https://global.toyota/en/newsroom/corporate/35209996.html (accessed on 10 October 2022).
- Toyota and Yamaha are Developing a Hydrogen-Fueled V8 Engine. Available online: https://www.cnbc.com/2022/02/22/toyota-commissions-yamaha-motor-to-develop-hydrogen-fueled-engine.html (accessed on 10 October 2022).
- Kiesgen, G.; Kluting, M.; Bock, C.; Fischer, H. The new 12-cylinder hydrogen engine in the 7 series. The H2 ICE age has begun. In Proceedings of the 2006 SAE Word Congress, Detroit, MI, USA, 3–6 April 2006. [Google Scholar]
- Natkin, R.; Denlinger, A.; Younkins, M.; Weimer, A.; Hashemi, S.; Vaught, A.T. Ford 6.8L Hydrogen IC Engine for the E-450 Shuttle Van. In Proceedings of the Powertrain & Fluid Systems Conference & Exhibition, Rosemont, IL, USA, 29 October–1 November 2007.
- Furst, S.; Dub, M.; Gruber, M.; Lechner, W.; Muller, C. Safety of Hydrogen-fueled Motor Vehicles with IC Engines. In Proceedings of the International Conference on Hydrogen Safety, Munich, Germany, 8 September 2005. [Google Scholar]
- Wakayama, N.; Morimoto, K.; Kashiwagi, A.; Saito, T. Development of Hydrogen Rotary Engine Vehicle. In Proceedings of the World Hydrogen Energy Conference, Lyon, France, 13–16 June 2006. [Google Scholar]
- Mazda’s Hydrogen RX-8 RE. Available online: https://greencarjournal.com/dont-miss/mazdas-hydrogen-rx-8-re/ (accessed on 10 October 2022).
- Toyota and Yamaha Test V-8 that Runs on Hydrogen. Available online: https://www.motorauthority.com/news/1135112_toyota-and-yamaha-tests-v-8-that-runs-on-hydrogen (accessed on 10 October 2022).
- Verhelst, S.; Turner, J.W.G.; Sileghem, L.; Vancoillie, J. Methanol as a fuel for internal combustion engines. Prog. Energy Combust. Sci. 2019, 70, 43–88. [Google Scholar] [CrossRef] [Green Version]
- Pearson, R.J.; Turner, J.W.G.; Bell, A.; de Goede, S.; Wollard, C.; Davy, M.H. Iso-stoichiometric fuel blends: Characterisation of physicochemical properties for mixtures of gasoline, ethanol, methanol and water. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2015, 229, 111–139. [Google Scholar] [CrossRef]
- Di Blasio, G.; Bonura, G.; Frusteri, F.; Beatrice, C.; Cannilla, C.; Viscardi, M. Experimental Characterization of Diesel Combustion Using Glycerol Derived Ethers Mixtures. SAE Int. J. Fuels Lubr. 2013, 6, 940–950. [Google Scholar] [CrossRef]
- Di Blasio, G.; Beatrice, C.; Molina, M. Effect of Port Injected Ethanol on Combustion Characteristics in a Dual-Fuel Light Duty Diesel Engine. In Proceedings of the SAE International, Nottingham, UK, 10 August 2018. [Google Scholar]
- Garcia-Agreda, A.; Di Sarli, V.; Di Benedetto, A. Bifurcation analysis of the effect of hydrogen addition on the dynamic behavior of lean premixed pre-vaporized ethanol combustion. Int. J. Hydrogen Energy 2012, 37, 6922–6932. [Google Scholar] [CrossRef]
- Di Sarli, V.; Di Benedetto, A.; Long, E.J.; Hargrave, G.K. Time-Resolved Particle Image Velocimetry of dynamic interactions between hydrogen-enriched methane/air premixed flames and toroidal vortex structures. Int. J. Hydrogen Energy 2012, 37, 16201–16213. [Google Scholar] [CrossRef] [Green Version]
- Salzano, E.; Cammarota, F.; Di Benedetto, A.; Di Sarli, V. Explosion behavior of hydrogenemethane/air mixtures. J. Loss Prev. Process Ind. 2012, 25, 443–447. [Google Scholar] [CrossRef]
- Niu, R.; Yu, X.; Du, Y.; Xie, H.; Wu, H.; Sun, Y. Effect of hydrogen proportion on lean burn performance of a dual fuel SI engine using hydrogen direct-injection. Fuel 2016, 186, 792–799. [Google Scholar] [CrossRef]
- Shi, C.; Ji, C.; Wang, S.; Jinxin, Y.; Li, X.; Ge, Y. Effects of hydrogen direct-injection angle and charge concentration on gasoline-hydrogen blending lean combustion in a Wankel engine. Energy Convers. Manag. 2019, 187, 316–327. [Google Scholar] [CrossRef]
- Boretti, A. Advantages and Disadvantages of Diesel Single and Dual-Fuel Engines. Front. Mech. Eng. 2019, 5, 64. [Google Scholar] [CrossRef] [Green Version]
- Cernat, A.; Pana, C.; Negurescu, N.; Lazaroiu, G.; Nutu, C.; Fuiorescu, D. Hydrogen—An Alternative Fuel for Automotive Diesel Engines Used in Transportation. Sustainability 2020, 12, 9321. [Google Scholar] [CrossRef]
- Boretti, A. Advances in hydrogen compression ignition internal combustion engines. Int. J. Hydrogen Energy 2011, 36, 12601–12606. [Google Scholar] [CrossRef]
- Boretti, A. Advantages of the direct injection of both diesel and hydrogen in dual fuel H2 ICE. Int. J. Hydrogen Energy 2011, 36, 9312–9317. [Google Scholar] [CrossRef]
- Chitragar, P.R.; Shivaprasad, K.V.; Nayak, V.; Bedar, P.; Kumar, G.N. An experimental study on combustion and emission analysis of four cylinder 4-stroke gasoline engine using pure hydrogen and LPG at idle condition. Energy Procedia 2016, 90, 525–534. [Google Scholar] [CrossRef]
- Karagoz, Y.; Koten, H. Effect of different levels of hydrogen + LPG addition on emissions and performance of a compression ignition engine. J. Therm. Eng. 2019, 5, 58–69. [Google Scholar]
- Ceper, B.A. Use of Hydrogen-Methane Blends in Internal Combustion Engines. In Book Hydrogen Energy—Challenges and Perspectives; Minic, D., Ed.; IntechOpen: London, UK, 2012; pp. 175–200. [Google Scholar]
- Fan, B.; Pan, J.; Liu, Y.; Zhu, Y.; Pan, Z.; Chen, W.; Otchere, P. Effect of hydrogen injection strategies on mixture formation and combustion process in a hydrogen direct injection plus natural gas port injection rotary engine. Energy Convers. Manag. 2018, 160, 150–164. [Google Scholar] [CrossRef]
- Makaryan, I.A.; Sedov, I.V.; Salgansky, E.A.; Arutyunov, A.V.; Arutyunov, V.S. A Comprehensive Review on the Prospects of Using Hydrogen–Methane Blends: Challenges and Opportunities. Energies 2022, 15, 2265. [Google Scholar] [CrossRef]
- Meng, F.; Yu, X.; He, L.; Liu, Y.; Wang, Y. Study on combustion and emission characteristics of a n-butanol engine with hydrogen direct injection under lean burn conditions. Int. J. Hydrogen Energy 2018, 43, 7550–7561. [Google Scholar] [CrossRef]
- Elsemary, I.M.M.; Attia, A.A.A.; Elnagar, K.H.; Elsaleh, M.S. Spark timing effect on performance of gasoline engine fueled with mixture of hydrogenegasoline. Int. J. Hydrogen Energy 2017, 42, 30813–30820. [Google Scholar] [CrossRef]
- Zaccardi, J.-M.; Pilla, G. Hydrogen as a combustion enhancer for highly efficient ultra-lean spark-ignition engines. SAE Int. J. Adv. Curr. Pract. Mobility 2020, 2, 401–414. [Google Scholar]
- Su, T.; Ji, C.; Wang, S.; Shi, L.; Yang, J.; Cong, X. Improving idle performance of a hydrogen-gasoline rotary engine at stoichiometric condition. Int. J. Hydrogen Energy 2017, 42, 11893–11901. [Google Scholar] [CrossRef]
- Shivaprasad, K.V.; Raviteja, S.; Parashuram, C.; Kumar, G.N. Experimental Investigation of the Effect of Hydrogen Addition on Combustion Performance and Emissions Characteristics of a Spark Ignition High Speed Gasoline Engine. Procedia Technol. 2014, 14, 141–148. [Google Scholar] [CrossRef]
- Shi, W.; Yu, X.; Zhang, H.; Li, H. Effect of spark timing on combustion and emissions of a hydrogen direct injection stratified gasoline engine. Int. J. Hydrogen Energy 2016, 42, 5619–5626. [Google Scholar] [CrossRef]
- Ji, C.; Wang, S. Effect of hydrogen addition on combustion and emissions performance of a spark ignition gasoline engine at lean conditions. Int. J. Hydrogen Energy 2009, 34, 7823–7834. [Google Scholar] [CrossRef]
- Paparao, J.; Murugan, S. Oxy-hydrogen gas as an alternative fuel for heat and power generation applications—A review. Int. J. Hydrogen Energy 2021, 46, 37705–37735. [Google Scholar] [CrossRef]
- Arjun, T.B.; Atul, K.P.; Ajay, P.M.; Albin, W.P.; Bijinraj, P.B.; Arun, R.A. A review on analysis of HHO gas in IC engines. Mater. Today Proc. 2019, 11, 1117–1129. [Google Scholar] [CrossRef]
- Jakliński, P.; Czernigowski, J. An experimental investigation of the impact of added HHO gas on automotive emissions under idle conditions. Int. J. Hydrogen Energy 2020, 45, 13119–13128. [Google Scholar] [CrossRef]
- El-Kassaby, M.M.; Eldrainy, Y.A.; Khidr, M.E.; Khidr, K.I. Effect of hydroxy (HHO) gas addition on gasoline engine performance and emissions. Alex. Engin. J. 2016, 55, 243–251. [Google Scholar]
- Wang, S.; Ji, C.; Zhang, J.; Zhang, B. Improving the performance of a gasoline engine with the addition of hydrogen–oxygen mixtures. Int. J. Hydrogen Energy 2011, 36, 11164–11173. [Google Scholar] [CrossRef]
- Wang, S.; Ji, C.; Zhang, J.; Zhang, B.; Liu, X. Performance of a hydroxygen-blended gasoline engine at different hydrogen volume fractions in the hydroxygen. Int. J. Hydrogen Energy 2012, 37, 13209–13218. [Google Scholar] [CrossRef]
- Chinguwa, S.; Jen, T.-C.; Akinlabi, E.T. Conceptualization of the optimal design of a hydroxyl booster dry cell for enhancing efficiency of internal combustion engines. Procedia CIRP 2020, 91, 819–823. [Google Scholar] [CrossRef]
Gasoline Vehicles | Hydrogen Combustion Vehicles | Hydrogen Fuel Cell Vehicles | |
---|---|---|---|
Engine type | internal combustion engine | internal combustion engine | electric motor |
Efficiency of the propulsion system | ~30–35% | ~40–50% | ~45–55% |
Fuel consumption * | approx. 9 L (or 12.8 kg) of gasoline/100 km | approx. 1.4 kg of hydrogen/100 km | approx. 1.0 kg of hydrogen/100 km |
Cost of fuel ** | currently low (~0.1) | currently high (~0.9) | currently very high (1.0) |
Air pollution emissions | high CO2, CO, unburned hydrocarbons, and NOx emissions | minimal/very low CO2 and CO emissions, the same or up to 20% higher NOx emissions compared to gasoline vehicles | minimal/zero CO2 and NOx emissions |
State of technology | developed (widely used all over the world) | developed, and in diffusion stage (experimental vehicle series) | developed, and in diffusion stage (experimental vehicle series) |
Model | Year | Engine | Type (Fuel) | Hydrogen Tank | Range (km) | Units Made |
---|---|---|---|---|---|---|
Ford P2000 | 2001 | ICE 2.0 l straight-four engine Zetec (port injection) | Hydrogen | Compressed (87 dm3, 250 bar, 1.5 kg) | 100 | |
BMW Hydrogen 7 | 2003 | ICE 6.0 l V12 (12-cylinder engine with high-pressured DI) | Bi-fuel (hydrogen/gasoline) | Cryogenic (8 kg) | 200 (hydrogen) + 480 (gasoline) | about 100 |
Mazda RX-8 Hydrogen RE | 2003 | Twin-rotary Wankel rotary engine 1.3 l | Bi-fuel (hydrogen/gasoline) | Compressed (350 bar, 2.4 kg) | 100 (hydrogen) + 500 (gasoline) | over 30 |
Ford Shuttle Bus | 2004 | ICE 6.8 l V10 Triton | Hydrogen | Compressed (350 bar, 29.6 kg) * | 240–320 | |
ETEC Chevrolet Silverado | 2004 | ICE 6.0 l V8 | Hydrogen | Compressed (3 × 150 dm3, 350 bar, 10.5 kg) * | 230–260 | about 20 |
Toyota Quantum Prius | 2005 | ICE 1.4 l straight-four engine (electronic multi-point hydrogen injection) | Hydrogen | Compressed (1.6 kg) | 100–130 | over 30 |
Volkswagen Polo-converted | 2011 | ICE 1.4l straight-four engine (port injection) | Bi-fuel (hydrogen/gasoline) | Compressed (2 × 18 dm3, 200 bar) | ~400 (hydrogen) | 1 (experimental) |
Toyota Corolla (racing vehicle) | 2021 | ICE 1.6 l 3-cylinder turbo with intercooler | Hydrogen | Compressed | ||
Lexus RC F | 2022 | ICE 5.0 l V8 | Hydrogen | designed vehicle |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wróbel, K.; Wróbel, J.; Tokarz, W.; Lach, J.; Podsadni, K.; Czerwiński, A. Hydrogen Internal Combustion Engine Vehicles: A Review. Energies 2022, 15, 8937. https://doi.org/10.3390/en15238937
Wróbel K, Wróbel J, Tokarz W, Lach J, Podsadni K, Czerwiński A. Hydrogen Internal Combustion Engine Vehicles: A Review. Energies. 2022; 15(23):8937. https://doi.org/10.3390/en15238937
Chicago/Turabian StyleWróbel, Kamil, Justyna Wróbel, Wojciech Tokarz, Jakub Lach, Katarzyna Podsadni, and Andrzej Czerwiński. 2022. "Hydrogen Internal Combustion Engine Vehicles: A Review" Energies 15, no. 23: 8937. https://doi.org/10.3390/en15238937
APA StyleWróbel, K., Wróbel, J., Tokarz, W., Lach, J., Podsadni, K., & Czerwiński, A. (2022). Hydrogen Internal Combustion Engine Vehicles: A Review. Energies, 15(23), 8937. https://doi.org/10.3390/en15238937