Simulation and Optimization of Lignocellulosic Biomass Wet- and Dry-Torrefaction Process for Energy, Fuels and Materials Production: A Review
Abstract
:1. Introduction
2. Torrefaction Processes Classification
2.1. Dry Torrefaction
2.2. Wet Torrefaction
2.3. Steam Torrefaction
2.4. Microwave-Assisted Torrefaction
3. Torrefaction Reactors
4. The Torrefaction Conditions Effect on the Lignocellulosic Biomass Characteristics
4.1. The Torrefaction Conditions Effect on the Lignocellulosic Feedstock Composition: Cellulose, Hemicelluloses, and Lignin
4.2. Torrefaction Conditions Effect on the Lignocellulosic Biomass Proximate and Ultimate Analysis Results
4.3. The Torrefaction Conditions Effect on the Higher Heating Value, Energy Yield and Density, and Mass Yield of the Lignocellulosic Feedstock
5. Simulation and Optimization of the Lignocellulosic Biomass Torrefaction Process
5.1. Simulation of the Lignocellulosic Biomass Dry Torrefaction Process
5.1.1. Artificial Neural Network Approaches
5.1.2. Kinetic and Thermodynamic/Thermochemical Approaches
5.1.3. Torrefaction Severity Factor- and Torrefaction Severity Index-Based Models
5.1.4. Commercial Simulation Software
5.1.5. Other Simulation Approaches
5.2. Simulation of the Lignocellulosic Biomass Wet Torrefaction Process
5.3. Optimization of the Lignocellulosic Biomass Wet and Dry Torrefaction Process
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thengane, S.K.; Kung, K.S.; Gomez-Barea, A.; Ghoniem, A.F. Advances in biomass torrefaction: Parameters, models, reactors, applications, deployment, and market. Prog. Energy Combust. Sci. 2022, 93, 101040. [Google Scholar] [CrossRef]
- Kota, K.B.; Shenbagaraj, S.; Sharma, P.K.; Sharma, A.K.; Ghodke, P.K.; Chen, W.-H. Biomass torrefaction: An overview of process and technology assessment based on global readiness level. Fuel 2022, 324, 124663. [Google Scholar] [CrossRef]
- Piersa, P.; Unyay, H.; Szufa, S.; Lewandowska, W.; Modrzewski, R.; Slezak, R.; Ledakowicz, S. An Extensive Review and Comparison of Modern Biomass Torrefaction Reactors vs. Biomass Pyrolysis—Part 1. Energies 2022, 15, 2227. [Google Scholar] [CrossRef]
- Fu, J.; Liu, J.; Xu, W.; Chen, Z.; Evrendilek, F.; Sun, S. Torrefaction, temperature, and heating rate dependencies of pyrolysis of coffee grounds: Its performances, bio-oils, and emissions. Bioresour. Technol. 2022, 345, 126346. [Google Scholar] [CrossRef] [PubMed]
- Safin, R.R.; Safina, A.V.; Baigildeeva, E.I.; Kainov, P.A.; Saerova, K.V. Impact of wood raw materials movement parameters on the annealing reactor torrefaction efficiency. Int. Multidiscip. Sci. GeoConference SGEM 2020, 20, 77–82. [Google Scholar] [CrossRef]
- Yu, S.; Kim, H.; Park, J.; Lee, Y.; Park, Y.; Ryu, C. Relationship between torrefaction severity, product properties, and pyrolysis characteristics of various biomass. Int. J. Energy Res. 2022, 46, 8145–8157. [Google Scholar] [CrossRef]
- Potnuri, R.; Suriapparao, D.V.; Rao, C.S.; Sridevi, V.; Kumar, A. Effect of dry torrefaction pretreatment of the microwave-assisted catalytic pyrolysis of biomass using the machine learning approach. Renew. Energy 2022, 197, 798–809. [Google Scholar] [CrossRef]
- Yang, T.; Jie, Y.; Li, B.; Kai, X.; Li, R. The Effect of Different Pretreatments on Biomass Liquefaction. In Proceedings of the ICOPE 2015—International Conference on Power Engineering, Yokohama, Japan, 30 November–4 December 2015. [Google Scholar]
- Chen, W.-H.; Chen, C.-J.; Hung, C.-I. Taguchi approach for co-gasification optimization of torrefied biomass and coal. Bioresour. Technol. 2013, 144, 615–622. [Google Scholar] [CrossRef]
- Di Giuliano, A.; Gallucci, M.; Malsegna, B.; Lucantonio, S.; Gallucci, K. Pretreated residual biomasses in fluidized beds for chemical looping gasification: Analysis of devolatilization data by statistical tools. Bioresour. Technol. Rep. 2022, 17, 100926. [Google Scholar] [CrossRef]
- Nunes, L.J.R. Biomass gasification as an industrial process with effective proof-of-concept: A comprehensive review on technologies, processes and future developments. Results Eng. 2022, 14, 100408. [Google Scholar] [CrossRef]
- Sarker, T.R.; Nanda, S.; Meda, V.; Dalai, A.K. Process optimization and investigating the effects of torrefaction and pelletization on steam gasification of canola residue. Fuel 2022, 323, 124239. [Google Scholar] [CrossRef]
- Van der Stelt, M.J.C.; Gerhauser, H.; Kiel, J.H.A.; Ptasinski, K.J. Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass Bioenergy 2011, 35, 3748–3762. [Google Scholar] [CrossRef]
- Chew, J.J.; Doshi, V. Recent advances in biomass pretreatment –Torrefaction fundamentals and technology. Renew. Sustain. Energy Rev. 2011, 15, 4212–4222. [Google Scholar] [CrossRef]
- Gan, Y.Y.; Ong, H.C.; Show, P.L.; Ling, T.C.; Chen, W.H.; Yu, K.L. Torrefaction of microalgal biochar as potential coal fuel and application as bio-adsorbent. Energy Convers. Manag. 2018, 165, 152–162. [Google Scholar] [CrossRef]
- Pilon, G.; Lavoie, J.M. Characterization of switchgrass char produced in torrefaction and pyrolysis conditions. BioResources 2011, 6, 16. [Google Scholar]
- Misni, S.S.; Kasmuri, N.H.; Subari, F.; Abdullah, Z.; Hanipah, S.H. Bio-coal optimization study of dry leaves via low-temperature mechanism. Malays. J. Anal. Sci. 2021, 25, 1056–1067. [Google Scholar]
- Sharma, H.B.; Sarmah, A.K.; Dubey, B. Hydrothermal carbonization of renewable waste biomass for solid biofuel production: A discussion on process mechanism, the influence of process parameters, environmental performance and fuel properties of hydrochar. Renew. Sustain. Energy Rev. 2020, 123, 109761. [Google Scholar] [CrossRef]
- Sun, Y.; He, Z.; Tu, R.; Wu, Y.; Jiang, E.; Xu, X. The mechanism of wet/dry torrefaction pretreatment on the pyrolysis performance of tobacco stalk. Bioresour. Technol. 2019, 286, 121390. [Google Scholar] [CrossRef]
- Chen, W.H.; Kuo, P.C. A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy 2010, 35, 2580–2586. [Google Scholar] [CrossRef]
- Chen, W.H.; Lu, K.M.; Tsai, C.M. An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction. Applied Energy 2012, 100, 318–325. [Google Scholar] [CrossRef]
- Zheng, A.; Zhao, Z.; Chang, S.; Huang, Z.; Wang, X.; He, F.; Li, H. Effect of torrefaction on structure and fast pyrolysis behavior of corncobs. Bioresour. Technol. 2013, 128, 370–377. [Google Scholar] [CrossRef]
- Khazraie Shoulaifar, T.; DeMartini, N.; Willför, S.; Pranovich, A.; Smeds, A.I.; Virtanen, T.A.P.; Maunu, S.L.; Verhoeff, F.; Kiel, J.H.; Hupa, M. Impact of torrefaction on the chemical structure of birch wood. Energy Fuels 2014, 28, 3863–3872. [Google Scholar] [CrossRef]
- Ong, H.C.; Yu, K.L.; Chen, W.-H.; Pillejera, M.K.; Bi, X.; Tran, K.-Q.; Petrissans, A.; Petrissans, M. Variation of lignocellulosic biomass structure from torrefaction: A critical review. Renew. Sust. Energ. Rev. 2021, 152, 111698. [Google Scholar] [CrossRef]
- Wang, P.; Howard, B.H. Impact of thermal pretreatment temperatures on woody biomass chemical composition, physical properties and microstructure. Energies 2018, 11, 25. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Zhang, Y.; Liu, W.; Zhu, N.; Chen, J.; Sun, Z. Comparison of torrefied and lyophilized Dendrobii Officinalis Caulis (Tiepishihu) by Fourier transform infrared spectroscopy and two-dimensional correlation spectroscopy. J. Mol. Struct. 2020, 1204, 127554. [Google Scholar] [CrossRef]
- Huang, C.; Li, R.; Tang, W.; Zheng, Y.; Meng, X. Improve Enzymatic Hydrolysis of Lignocellulosic Biomass by Modifying Lignin Structure via Sulfite Pretreatment and Using Lignin Blockers. Fermentation 2022, 8, 558. [Google Scholar] [CrossRef]
- Chen, W.H.; Kuo, P.C. Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis. Energy 2011, 36, 6451–6460. [Google Scholar] [CrossRef]
- Bates, R.B.; Ghoniem, A.F. Biomass torrefaction: Modeling of volatile and solid product evolution kinetics. Bioresour. Technol. 2012, 124, 460–469. [Google Scholar] [CrossRef]
- Bach, Q.V.; Chen, W.H.; Chu, Y.S.; Skreiberg, Ø. Predictions of biochar yield and elemental composition during torrefaction of forest residues. Bioresour. Technol. 2016, 215, 239–246. [Google Scholar] [CrossRef]
- Alam, M.; Rammohan, D.; Peela, N.R. Catalytic co-pyrolysis of wet-torrefied bamboo sawdust and plastic over the zeolite H-ZSM-5: Synergistic effects and kinetics. Renew. Energy 2021, 178, 608–619. [Google Scholar] [CrossRef]
- Chen, W.H.; Fong Eng, C.; Lin, Y.Y.; Bach, Q.V.; Ashokkumar, V.; Show, P.L. Two-step thermodegradation kinetics of cellulose, hemicelluloses, and lignin under isothermal torrefaction analyzed by particle swarm optimization. Energy Convers. Manag. 2021, 238, 114116. [Google Scholar] [CrossRef]
- Gan, Y.Y.; Chen, W.H.; Ong, H.C.; Lin, Y.Y.; Sheen, H.K.; Chang, J.S.; Ling, T.C. Effect of wet torrefaction on pyrolysis kinetics and conversion of microalgae carbohydrates, proteins, and lipids. Energy Convers. Manag. 2021, 227, 113609. [Google Scholar] [CrossRef]
- Silveira, E.A.; Macedo, L.; Rousset, P.; Commandré, J.-M.; Galvão, L.G.O.; Chaves, B.S. The effect of potassium carbonate wood impregnation on torrefaction kinetics. In Proceedings of the 29th European Biomass Conference and Exhibition, Online, 26–29 April 2021; pp. 1010–1014. [Google Scholar]
- Yen, S.-W.; Chen, W.-H.; Chang, J.-S.; Eng, C.-F.; Naqvi, S.R.; Show, P.L. Torrefaction thermogravimetric analysis and kinetics of sorghum distilled residue for sustainable fuel production. Sustainability 2021, 13, 4246. [Google Scholar] [CrossRef]
- Gajera, B.; Tyagi, U.; Sarma, A.K.; Jha, M.K. Impact of torrefaction on thermal behavior of wheat straw and groundnut stalk biomass: Kinetic and thermodynamic study. Fuel Commun. 2022, 12, 100073. [Google Scholar] [CrossRef]
- Lee, B.-H.; Trinh, V.T.; Kim, S.-M.; Jeon, C.-H. Pyrolysis of kenaf (Hibiscus cannabinus L.) biomass: Influence of ashless treatment on kinetics and thermal behavior. J. Therm. Anal. Calorim. 2022, 147, 7399–7410. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, C.; Ji, G.; Li, A. Development and application of a detailed kinetic model to evaluate the torrefaction process of rice-based biomass. Biomass Conv. Bioref. 2022. [Google Scholar] [CrossRef]
- González-Arias, J.; Sánchez, M.E.; Cara-Jiménez, J. Profitability analysis of thermochemical processes for biomass-waste valorization: A comparison of dry vs wet treatments. Sci. Total Environ. 2022, 811, 152240. [Google Scholar] [CrossRef]
- Isemin, R.; Mikhalev, A.; Milovanov, O.; Klimov, D.; Kokh-Tatarenko, V.; Brulé, M.; Tabet, F.; Nebyvaev, A.; Kuzmin, S.; Konyakhin, V. Comparison of Characteristics of Poultry Litter Pellets Obtained by the Processes of Dry and Wet Torrefaction. Energies 2022, 15, 2153. [Google Scholar] [CrossRef]
- Khempila, J.; Kongto, P.; Meena, P. Comparative study of solid biofuels derived from sugarcane leaves with two different thermochemical conversion methods: Wet and dry torrefaction. Bioenergy Res. 2022, 15, 1265–1280. [Google Scholar] [CrossRef]
- Diker, İ.; Ozkan, G.M. An investigation on implementing wet torrefaction to dewatered poultry sludge. Biomass Conv. Bioref. 2022. [Google Scholar] [CrossRef]
- Kudo, S.; Okada, J.; Ikeda, S.; Yoshida, T.; Asano, S.; Hayashi, J.-I. Improvement of Pelletability of Woody Biomass by Torrefaction under Pressurized Steam. Energy Fuels 2019, 33, 11253–11262. [Google Scholar] [CrossRef]
- Negi, S.; Jaswal, G.; Dass, K.; Mazumder, K.; Elumalai, S.; Roy, J.K. Torrefaction: A sustainable method for transforming of agri-wastes to high energy density solids (biocoal). Rev. Environ. Sci. Bio/Technol. 2020, 19, 463–488. [Google Scholar] [CrossRef]
- Yu, Y.; Wu, J.; Ren, X.; Lau, A.; Rezaei, H.; Takada, M.; Bi, X.; Sokhansanj, S. Steam explosion of lignocellulosic biomass for multiple advanced bioenergy processes: A review. Renew. Sust. Energ. Rev. 2022, 154, 111871. [Google Scholar] [CrossRef]
- Arpia, A.A.; Chen, W.-H.; Lam, S.S.; Rousset, P.; de Luna, M.D.G. Sustainable biofuel and bioenergy production from biomass waste residues using microwave-assisted heating: A comprehensive review. J. Chem. Eng. 2021, 403, 126233. [Google Scholar] [CrossRef]
- Zhang, C.; Ho, S.-H.; Chen, W.-H.; Eng, C.F.; Wang, C.-T. Simultaneous implementation of sludge dewatering and solid biofuel production by microwave torrefaction. Environ. Res. 2021, 195, 110775. [Google Scholar] [CrossRef]
- Chen, W.-H.; Arpia, A.A.; Chang, J.-S.; Kwon, E.E.; Park, Y.-K.; Culaba, A.B. Catalytic microwave torrefaction of microalga Chlorella vulgaris FSP-E with magnesium oxide optimized via taguchi approach: A thermo-energetic analysis. Chemosphere 2022, 290, 133374. [Google Scholar] [CrossRef]
- Yek, P.N.Y.; Kong, S.H.; Law, M.C.; Xia, C.; Keey Liew, R.; Sung Sie, T.; Lim, J.W.; Lam, S.S. Microwave Torrefaction of Empty Fruit Bunch Pellet: Simulation and Validation of Electric Field and Temperature Distribution. J. Bioresour. Bioprod. 2022, 7, 270–277. [Google Scholar] [CrossRef]
- Kichatov, B.V.; Korshunov, A.M.; Kiverin, A.D.; Yakovenko, I.S. Oxidative Torrefaction of Wood Biomass in a Layer of Mineral Filler. Eng. Phys. Thermophys. 2021, 94, 738–744. [Google Scholar] [CrossRef]
- Zhao, Z.; Feng, S.; Zhao, Y.; Wang, Z.; Ma, J.; Xu, L.; Yang, J.; Shen, B. Investigation on the fuel quality and hydrophobicity of upgraded rice husk derived from various inert and oxidative torrefaction conditions. Renew. Energy 2022, 189, 1234–1248. [Google Scholar] [CrossRef]
- Kadam, R.; Pawar, A.; Panwar, N.L. Environmental Effects Experimental investigation on non-oxidative biomass torrefaction system. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 2020, 1–13. [Google Scholar] [CrossRef]
- Manatura, K. Inert torrefaction of sugarcane bagasse to improve its fuel properties. Case Stud. Therm. Eng. 2020, 19, 100623. [Google Scholar] [CrossRef]
- Nazos, A.; Grammelis, P.; Sakellis, E.; Sidiras, D. Acid-catalyzed wet torrefaction for enhancing the heating value of barley straw. Energies 2020, 13, 1693. [Google Scholar] [CrossRef]
- Gan, Y.Y.; Ong, H.C.; Chen, W.H.; Sheen, H.K.; Chang, J.S.; Chong, C.T.; Ling, T.C. Microwave-assisted wet torrefaction of microalgae under various acids for coproduction of biochar and sugar. J. Clean. Prod. 2020, 253, 119944. [Google Scholar] [CrossRef]
- Yu, K.L.; Chen, W.-H.; Sheen, H.-K.; Chang, J.-S.; Lin, C.-S.; Ong, H.C.; Show, P.L.; Ling, T.C. Bioethanol production from acid pretreated microalgal hydrolysate using microwave-assisted heating wet torrefaction. Fuel 2020, 279, 118435. [Google Scholar] [CrossRef]
- Yu, K.L.; Chen, W.-H.; Sheen, H.-K.; Chang, J.-S.; Lin, C.-S.; Ong, H.C.; Show, P.L.; Ng, E.-P.; Ling, T.C. Production of microalgal biochar and reducing sugar using wet torrefaction with microwave-assisted heating and acid hydrolysis pretreatment. Renew. Energy 2020, 156, 349–360. [Google Scholar] [CrossRef]
- Ku Ismail, K.S.; Matano, Y.; Sakihama, Y.; Inokuma, K.; Nambu, Y.; Hasunuma, T.; Kondo, A. Pretreatment of extruded Napier grass by hydrothermal process with dilute sulfuric acid and fermentation using a cellulose-hydrolyzing and xylose-assimilating yeast for ethanol production. Bioresour. Technol. 2022, 343, 126071. [Google Scholar] [CrossRef]
- Li, M.-F.; Shen, Y.; Sun, J.-K.; Bian, J.; Chen, C.-Z.; Sun, R.-C. Wet Torrefaction of Bamboo in Hydrochloric Acid Solution by Microwave Heating. ACS Sustain. Chem. Eng. 2015, 3, 2022–2029. [Google Scholar] [CrossRef]
- Lynam, J.G.; Coronella, C.J.; Yan, W.; Reza, M.T.; Vasquez, V.R. Acetic acid and lithium chloride effects on hydrothermal carbonization of lignocellulosic biomass. Bioresour. Technol. 2011, 102, 6192–6199. [Google Scholar] [CrossRef]
- Hu, J.; Jiang, B.; Wang, J.; Qiao, Y.; Zuo, T.; Sun, Y.; Jiang, X. Physicochemical characteristics and pyrolysis performance of corn stalk torrefied in aqueous ammonia by microwave heating. Bioresour. Technol. 2019, 274, 83–88. [Google Scholar] [CrossRef]
- Li, C.; Zhu, L.; Ma, Z.; Yang, Y.; Cai, W.; Ye, J.; Qian, J.; Liu, X.; Zuo, Z. Optimization of the nitrogen and oxygen element distribution in microalgae by ammonia torrefaction pretreatment and subsequent fast pyrolysis process for the production of N-containing chemicals. Bioresour. Technol. 2020, 321, 124461. [Google Scholar] [CrossRef]
- Akbari, M.; Oyedun, A.O.; Gemechu, E.; Kumar, A. Comparative life cycle energy and greenhouse gas footprints of dry and wet torrefaction processes of various biomass feedstocks. J. Environ. Chem. Eng. 2021, 9, 105415. [Google Scholar] [CrossRef]
- Carneiro-Junior, J.A.d.M.; de Oliveira, G.F.; Alves, C.T.; Andrade, H.M.C.; Beisl Vieira de Melo, S.A.; Torres, E.A. Valorization of Prosopis juliflora Woody Biomass in Northeast Brazilian through Dry Torrefaction. Energies 2021, 14, 3465. [Google Scholar] [CrossRef]
- He, Z.; Sun, Y.; Cheng, S.; Jia, Z.; Tu, R.; Wu, Y.; Shen, X.; Zhang, F.; Jiang, E.; Xu, X. The enhanced rich H2 from co-gasification of torrefied biomass and low rank coal: The comparison of dry/wet torrefaction, synergetic effect and prediction. Fuel 2021, 287, 119473. [Google Scholar] [CrossRef]
- Jaideep, R.; Lo, W.H.; Lim, G.P.; Chua, C.X.; Gan, S.; Lee, L.Y.; Thangalazhy-Gopakumar, S. Enhancement of fuel properties of yard waste through dry torrefaction. Mater. Sci. Energy Technol. 2021, 4, 156–165. [Google Scholar] [CrossRef]
- Leng, L.; Yang, L.; Chen, J.; Hu, Y.; Li, H.; Li, H.; Jiang, S.; Peng, H.; Yuan, X.; Huang, H. Valorization of the aqueous phase produced from wet and dry thermochemical processing biomass: A review. J. Clean. Prod. 2021, 294, 126238. [Google Scholar] [CrossRef]
- Ullah, H.; Lun, L.; Riaz, L.; Naseem, F.; Shahab, A.; Rashid, A. Physicochemical characteristics and thermal degradation behavior of dry and wet torrefied orange peel obtained by dry/wet torrefaction. Biomass Conv. Bioref. 2021. [Google Scholar] [CrossRef]
- Alam, M.; Rammohan, D.; Bhavanam, A.; Peela, N.R. Wet torrefaction of bamboo saw dust and its co-pyrolysis with plastic. Fuel 2021, 285, 119188. [Google Scholar] [CrossRef]
- He, Q.; Raheem, A.; Ding, L.; Xu, J.; Cheng, C.; Yu, G. Combining wet torrefaction and pyrolysis for woody biochar upgradation and structural modification. Energy Convers. Manag. 2021, 243, 114383. [Google Scholar] [CrossRef]
- Isemin, R.; Marias, F.; Muratova, N.; Kuzmin, S.; Klimov, D.; Mikhalev, A.; Milovanov, O.; Brulé, M.; Tabet, F. Wet Torrefaction of Poultry Litter in a Pilot Unit: A Numerical Assessment of the Process Parameters. Processes 2021, 9, 1835. [Google Scholar] [CrossRef]
- Phuang, Y.W.; Ng, W.Z.; Khaw, S.S.; Yap, Y.Y.; Gan, S.; Lee, L.Y.; Thangalazhy-Gopakumar, S. Wet torrefaction pre-treatment of yard waste to improve the fuel properties. Mater. Sci. Energy Technol. 2021, 4, 211–223. [Google Scholar] [CrossRef]
- Soh, M.; Khaerudini, D.S.; Chew, J.J.; Sunarso, J. Wet torrefaction of empty fruit bunches (EFB) and oil palm trunks (OPT): Effects of process parameters on their physicochemical and structural properties. South Afr. J. Chem. Eng. 2021, 35, 126–136. [Google Scholar] [CrossRef]
- Xue, Y.; Zhou, S.; Leng, E.; Cui, C.; Zhou, Z.; Peng, Y. Comprehensive utilization of agricultural wastes by combined wet torrefaction and pyrolysis. J. Anal. Appl. Pyrolysis 2021, 160, 105358. [Google Scholar] [CrossRef]
- Liu, C.; Duan, X.; Chen, Q.; Chao, C.; Lu, Z.; Lai, Q.; Megharaj, M. Investigations on pyrolysis of microalgae Diplosphaera sp. MM1 by TG-FTIR and Py-GC/MS: Products and kinetics. Bioresour Technol. 2019, 294, 122126. [Google Scholar] [CrossRef] [PubMed]
- Bridgeman, T.G.; Jones, J.M.; Shield, I.; Williams, P.T. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 2008, 87, 44–56. [Google Scholar] [CrossRef]
- Peng, X.; Ma, X.; Lin, Y.; Guo, Z.; Hu, S.; Ning, X.; Cao, Y.; Zhang, Y. Co-pyrolysis between microalgae and textile dyeing sludge by TG–FTIR: Kinetics and products. Energy Convers. Manag. 2015, 100, 391–402. [Google Scholar] [CrossRef]
- Shuping, Z.; Yulong, W.; Mingde, Y.; Chun, L.; Junmao, T. Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer. Bioresour Technol. 2010, 101, 359–365. [Google Scholar] [CrossRef]
- Chen, W.H.; Lu, K.M.; Liu, S.H.; Tsai, C.M.; Lee, W.J.; Lin, T.C. Biomass torrefaction characteristics in inert and oxidative atmospheres at various superficial velocities. Bioresour. Technol. 2013, 146, 152–160. [Google Scholar] [CrossRef]
- Nyakuma, B.B.; Wong, S.L.; Faizal, H.M.; Hambali, H.U.; Oladokun, O.; Abdullah, T.A.T. Carbon dioxide torrefaction of oil palm empty fruit bunches pellets: Characterisation and optimisation by response surface methodology. Biomass Convers. Biorefinery 2020, 12, 5881–5900. [Google Scholar] [CrossRef]
- Thanapal, S.S.; Chen, W.; Annamalai, K.; Carlin, N.; Ansley, R.J.; Ranjan, D. Carbon Dioxide Torrefaction of Woody Biomass. Energy Fuels 2014, 28, 28,1147–57. [Google Scholar] [CrossRef]
- Wang, C.; Peng, J.; Li, H.; Bi, X.T.; Legros, R.; Lim, C.J.; Sokhansanj, S. Oxidative torrefaction of biomass residues and densification of torrefied sawdust to pellets. Bioresour Technol. 2013, 127, 318–325. [Google Scholar] [CrossRef]
- Mei, Y.; Liu, R.; Yang, Q.; Yang, H.; Shao, J.; Draper, C.; Zhang, S.; Chen, H. Torrefaction of cedar- wood in a pilot scale rotary kiln and the influence of industrial flue gas. Bioresour. Technol. 2015, 177, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Uemura, Y.; Omar, W.; Othman, N.A.; Yusup, S.; Tsutsui, T. Torrefaction of Oil Palm EFB in the Presence of Oxygen. Fuel 2013, 103, 156–160. [Google Scholar] [CrossRef]
- Yang, W.; Wu, S.; Wang, H.; Ma, P.; Shimanouchi, T.; Kimura, Y.; Zhou, J. Effect of wet and dry torrefaction process on fuel properties of solid fuels derived from bamboo and Japanese cedar. BioResources 2017, 12, 8629–8640. [Google Scholar] [CrossRef]
- Romanowska-Duda, Z.; Szufa, S.; Grzesik, M.; Piotrowski, K.; Janas, R. The Promotive Effect of Cyanobacteria and Chlorella sp. Foliar Biofertilization on Growth and Metabolic Activities of Willow (Salix viminalis L.) Plants as Feedstock Production, Solid Biofuel and Biochar as C Carrier for Fertilizers via Torrefaction Process. Energies 2021, 14, 5262. [Google Scholar]
- Kuo, P.C.; Wu, W.; Chen, W.H. Gasification performances of raw and torrefied biomass in a downdraft fixed bed gasifier using thermodynamic analysis. Fuel 2014, 117, 1231–1241. [Google Scholar] [CrossRef]
- Basu, P.; Dhungana, A.; Rao, S.; Acharya, B. Effect of oxygen presence in torrefied. J. Energy Inst. 2013, 86, 171–176. [Google Scholar] [CrossRef]
- Acharya, B.; Dutta, A.; Minaret, J. Review on comparative study of dry and wet torrefaction. Sustain. Energy Technol. Asses. 2015, 12, 26–37. [Google Scholar] [CrossRef]
- Yan, W.; Hastings, J.T.; Acharjee, T.C.; Coronella, C.J.; Vásquez, V.R. Mass and energy balances of wet torrefaction of lignocellulosic biomass. Energy Fuels 2010, 24, 4738–4742. [Google Scholar] [CrossRef]
- Kobayashi, N.; Okada, N.; Hirakawa, A.; Sato, T.; Kobayashi, J.; Hatano, S.; Mori, S. Characteristics of solid residues obtained from hot-compressed-water treatment of woody biomass. Ind. Eng. Chem. Res. 2008, 48, 373–379. [Google Scholar] [CrossRef]
- Weil, J.R.; Sarikaya, A.; Rau, S.L.; Goetz, J.; Ladisch, C.M.; Brewer, M.; Hendrickson, R.; Ladisch, M.R. Pretreatment of corn fiber by pressure cooking in water. Appl. Biochem. Biotechnol. 1998, 73, 1–17. [Google Scholar] [CrossRef]
- Funke, A.; Ziegler, F. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels. Bioprod. Biorefin. 2010, 4, 160–177. [Google Scholar] [CrossRef]
- Xiao, L.P.; Shi, Z.J.; Xu, F.; Sun, R.C. Hydrothermal carbonization of lignocellulosic biomass. Bioresour. Technol. 2012, 118, 619–623. [Google Scholar] [CrossRef] [PubMed]
- Mumme, J.; Eckervogt, L.; Pielert, J.; Diakite, M.; Rupp, F.; Kern, J. Hydrothermal carbonization of anaerobically digested maize silage. Bioresour. Technol. 2011, 102, 9255–9560. [Google Scholar] [CrossRef]
- Lucian, M.; Fiori, L. Hydrothermal carbonization of waste biomass: Process design, modeling, energy efficiency and cost analysis. Energies 2017, 10, 211. [Google Scholar] [CrossRef] [Green Version]
- Gallifuoco, A.; Papa, A.A.; Spera, A.; Taglieri, L.; Carlo, A.D. Dynamics of liquid-phase platform chemicals during the hydrothermal carbonization of lignocellulosic biomass. Bioresour. Technol. Rep. 2022, 19, 101177. [Google Scholar] [CrossRef]
- Libra, J.A.; Ro, K.S.; Kammann, C.; Funke, A.; Berge, N.D.; Neubauer, Y.; Titirici, M.M.; Fühner, C.; Bens, O.; Kern, J.; et al. Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2011, 2, 89–124. [Google Scholar] [CrossRef] [Green Version]
- Hoekman, S.K.; Broch, A.; Robbins, C. Hydrothermal carbonization (HTC) of lignocellulosic biomass. Energy Fuels 2011, 25, 1802–1810. [Google Scholar] [CrossRef]
- Tripathi, A.D.; Mishra, P.K.; Darani, K.K.; Agarwal, A.; Paul, V. Hydrothermal treatment of lignocellulose waste for the production of polyhydroxyalkanoates copolymer with potential application in food packaging. Trends Food Sci. Technol. 2022, 123, 233–250. [Google Scholar] [CrossRef]
- Steinbrecher, T.; Bonk, F.; Scherzinger, M.; Lüdtke, O.; Kaltschmitt, M. Fractionation of Lignocellulosic Fibrous Straw Digestate by Combined Hydrothermal and Enzymatic Treatment. Energies 2022, 15, 6111. [Google Scholar] [CrossRef]
- Jung, J.Y.; Park, H.-M.; Yang, J.-K. Optimization of ethanol extraction of antioxidative phenolic compounds from torrefied oak wood (Quercus serrata) using response surface methodology. Wood Sci. Technol. 2016, 50, 1037–1055. [Google Scholar] [CrossRef]
- Amidon, T.E.; Wood, C.D.; Shupe, A.M.; Wang, Y.; Graves, M.; Liu, S. Biorefinery conversion of woody biomass to chemicals, energy and materials. J. Biobased Mater. Bioenergy 2008, 2, 100–120. [Google Scholar] [CrossRef] [Green Version]
- Hsu, W.E.; Schwalds, W.; Schwald, J.; Shields, J.A. Chemical and physical changes required for producing dimensionally stable wood-based composites, Part 1: Steam pretreatment. Wood Sci. Technol. 1988, 22, 281–289. [Google Scholar] [CrossRef]
- Schwald, W.; Brownell, H.H.; Saddler, J.N. Enzymatic hydrolysis of steam treated aspen wood: Influence of partial hemicellulose and lignin removal prior to pretreatment. J. Wood Chem. Technol. 2011, 8, 543–560. [Google Scholar] [CrossRef]
- Agbor, V.; Cicek, N.; Sparling, R.; Berlin, A.; Levin, D. Biomass pretreatment: Fundamentals toward application. Biotechnol. Adv. 2011, 29, 675–685. [Google Scholar] [CrossRef]
- Hill, C. Wood Modification: Chemical, Thermal and Other Processes; Wiley: Chichester, UK, 2006. [Google Scholar]
- Bobleter, D.; Bonn, G.; Prutsch, W. Steam explosion-hydro thermolysis organosolv a comparison. In Steam Explosion Techniques: Fundamentals and Industrial Applications; Focher, B., Marzetti, A., Crescenzi, V., Eds.; Gordon and Breach Science Publishers: Amsterdam, The Netherlands, 1991; pp. 59–82. [Google Scholar]
- Bobleter, O.; Bonn, G. The hydrothermolysis of cellobiose and its reaction-product D-glucose. Carbohydr. Res. 1983, 1241, 85–193. [Google Scholar] [CrossRef]
- Harris, E.E. Wood hydrolysis. In Wood Chemistry, 2nd ed.; Wise, L.E., Jahn, E.C., Eds.; Reinhold Publishing Corporation: New York, NY, USA, 1952. [Google Scholar]
- Wang, L.; Riva, L.; Skreiberg, Ø.; Khalil, R.; Bartocci, P.; Yang, Q.; Yang, H.; Wang, X.; Chen, D.; Rudolfsson, M.; et al. Effect of Torrefaction on Properties of Pellets Produced from Woody Biomass. Energy Fuels 2020, 34, 15343–15354. [Google Scholar] [CrossRef]
- Suchsland, O.; Woodson, G.E.; McMillin, C.W. Effect of cooking conditions on fiber bonding in dry formed binder less hardboard. For. Prod. J. 1987, 37, 66–69. [Google Scholar]
- Chen, W.H.; Ye, S.C.; Sheen, H.K. Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating. Bioresour. Technol. 2012, 118, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.T.; Tsai, C.J.; Chen, C.S.; Chen, H.W. The characteristics of torrefied microalgae. Appl. Energy 2012, 100, 52–57. [Google Scholar] [CrossRef]
- Chen, W.H.; Tu, Y.J.; Sheen, H.K. Impact of dilute acid pretreatment on the structure of bagasse for bioethanol production. Int. J. Energy Res. 2010, 34, 265–274. [Google Scholar] [CrossRef]
- Chen, W.H.; Tu, Y.J.; Sheen, H.K. Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating. Appl. Energy 2011, 88, 2726–2734. [Google Scholar] [CrossRef]
- Zheng, Y.; Yu, Y.; Lin, W.; Jin, Υ.; Yong, Q.; Huang, C. Enhancing the enzymatic digestibility of bamboo residues by biphasic phenoxyethanol-acid pretreatment. Bioresour. Technol. 2021, 325, 124691. [Google Scholar] [CrossRef]
- Lin, W.; Xing, S.; Jin, Y.; Lu, X.; Huang, C.; Yong, Q. Insight into understanding the performance of deep eutectic solvent pretreatment on improving enzymatic digestibility of bamboo residues. Bioresour. Technol. 2020, 306, 123163. [Google Scholar] [CrossRef] [PubMed]
- Shi, N.; Liu, Q.; Cen, H.; Ju, R.; He, X.; Ma, L. Formation of humins during degradation of carbohydrates and furfural derivatives in various solvents. Biomass Convers. Biorefinery 2020, 10, 277–287. [Google Scholar] [CrossRef]
- Yan, W.; Acharjee, T.C.; Coronella, C.J.; Vásquez, V.R. Thermal pretreatment of lignocellulosic biomass. Environ. Prog. Sustain. 2009, 28, 435–440. [Google Scholar] [CrossRef]
- Bach, Q.V.; Tran, K.Q.; Skreiberg, Ø.; Trinh, T.T. Effects of wet torrefaction on pyrolysis of woody biomass fuels. Energy 2015, 88, 443–456. [Google Scholar] [CrossRef]
- Bach, Q.V.; Chen, W.H.; Lin, S.C.; Sheen, H.K.; Chang, J.S. Wet torrefaction of microalga Chlorella vulgaris ESP-31 with microwave-assisted heating. Energy Convers. Manag. 2017, 141, 163–170. [Google Scholar] [CrossRef]
- Balat, M.; Balat, H.; Öz, C. Progress in bioethanol processing. PECS 2008, 34, 551–573. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, M.; Ren, Y.; Jiang, E.; Jiang, Y.; Li, W. Biomass torrefaction: A promising pretreatment technology for biomass utilization. IOP Conf. Ser. Earth Environ. Sci. 2018, 113, 012201. [Google Scholar] [CrossRef]
- Lam, P.S.; Sokhansanj, S.; Bi, X.; Lim, C.J.; Melin, S. Energy input and quality of pellets made from steam-exploded Douglas fir (Pseudotsuga menziesii). Energy Fuels 2011, 25, 1521–1528. [Google Scholar] [CrossRef]
- Tooyserkani, Z.; Sokhansanj, S.; Bi, X.; Lim, C.J.; Saddler, J.; Lau, A.; Melin, S.; Lam, P.S.; Kumar, L. Effect of Steam Treatment on Pellet Strength and the Energy Input in Pelleting of Softwood Particles. ASABE 2012, 55, 2265–2272. [Google Scholar] [CrossRef]
- Roy, B.; Kleine-Möllhoff, P.; Dalibard, A. Superheated Steam Torrefaction of Biomass Residues with Valorisation of Platform Chemicals Part—2: Economic Assessment and Commercialisation Opportunities. Sustainability 2022, 14, 2338. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, X.; Qi, Z.; Wang, H.; Yang, R.; Lin, W.; Li, J.; Zhou, W.; Ronsse, F. Superheated steam as carrier gas and the sole heat source to enhance biomass torrefaction. Bioresour. Technol. 2021, 331, 124955. [Google Scholar] [CrossRef] [PubMed]
- Lam, P.S.; Sokhansanj, S.; Bi, X.T.; Lim, C.J.; Larsson, S.H. Drying characteristics and equilibrium moisture content of steam-treated Douglas fir (Pseudotsuga menziesii L.). Bioresour. Technol. 2012, 116, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Lam, P.S.; Lam, P.Y.; Sokhansanj, S.; Bi, X.T.; Lim, C.J. Mechanical and compositional characteristics of steam-treated Douglas fir (Pseudotsuga menziesii L.) during pelletization. Biomass Bioenergy 2013, 56, 116–126. [Google Scholar] [CrossRef]
- Hanaffi, A.M.; Fuad, M.; Hasan, F.; Ani, F.N. Microwave torrefaction for viable fuel production: A review on theory, affecting factors, potential and challenges. Fuel 2019, 253, 512–526. [Google Scholar] [CrossRef]
- Kang, K.; Nanda, S.; Lam, S.S.; Zhang, T.; Huo, L.; Zhao, L. Enhanced fuel characteristics and physical chemistry of microwave hydrochar for sustainable fuel pellet production via co-densification. Environ. Res. 2020, 186, 109480. [Google Scholar] [CrossRef]
- Satpathy, S.K.; Tabil, L.G.; Meda, V.; Naik, S.N.; Prasad, R. Torrefaction of wheat and barley straw after microwave heating. Fuel 2014, 124, 269–278. [Google Scholar] [CrossRef]
- Amer, M.; Nour, M.; Ahmed, M.; Ookawara, S.; Nada, S.; Elwardany, A. The effect of microwave drying pretreatment on dry torrefaction of agricultural biomasses. Bioresour. Technol. 2019, 286, 121400. [Google Scholar] [CrossRef]
- Yek, P.N.Y.; Osman, M.S.; Wong, C.C.; Wong, C.S.; Kong, S.H.; Sung Sie, T.; Foong, S.Y.; Lam, S.S.; Keey Liew, R. Microwave wet torrefaction: A catalytic process to convert waste palm shell into porous biochar. Mater. Sci. Energy Technol. 2020, 3, 742–747. [Google Scholar] [CrossRef]
- Natarajan, P.; Suriapparao, D.V.; Vinu, R. Microwave torrefaction of Prosopis juliflora: Experimental and modeling study. Fuel Process. Technol. 2018, 172, 86–96. [Google Scholar] [CrossRef]
- Ren, S.; Lei, H.; Wang, L.; Bu, Q.; Wei, Y.; Liang, J.; Liu, Y.; Julson, J.; Chen, S.; Wu, J.; et al. Microwave Torrefaction of Douglas Fir Sawdust Pellets. Energy Fuels 2012, 26, 5936–5943. [Google Scholar] [CrossRef]
- Chen, W.H.; Lin, B.J.; Lin, Y.Y.; Chu, Y.-S.; Ubando, A.T.; Show, P.L.; Ong, H.C.; Chang, J.S.; Ho, S.-H.; Culaba, A.B.; et al. Progress in biomass torrefaction: Principles, applications and challenges. Prog. Energy Combust. Sci. 2021, 82, 100887. [Google Scholar] [CrossRef]
- Tumuluru, J.S.; Ghiasi, B.; Soelberg, N.R.; Sokhansanj, S. Biomass Torrefaction Process, Product Properties, Reactor Types, and Moving Bed Reactor Design Concepts. Front. Energy Res. 2021, 9, 728140. [Google Scholar] [CrossRef]
- Okekunle, P.O. Modelling and simulation of intra-particle heat transfer during biomass torrefaction in a fixed-bed reactor. Biofuels 2022, 13, 95–104. [Google Scholar] [CrossRef]
- Starfelt, F.; Tomas Aparicio, E.; Li, H.; Dotzauer, E. Integration of torrefaction in CHP plants—A case study. Energy Convers. Manag. 2015, 90, 427–435. [Google Scholar] [CrossRef]
- Kumar, L.; Koukoulas, A.A.; Mani, S.; Satyavolu, J. Integrating torrefaction in the wood pellet industry: A critical review. Energy Fuels 2017, 31, 37–54. [Google Scholar] [CrossRef]
- Bach, Q.V.; Nguyen, D.D.; Lee, C.-J. Effect of Torrefaction on Steam Gasification of Biomass in Dual Fluidized Bed Reactor—A Process Simulation Study. Bioenergy Res. 2019, 12, 1042–1051. [Google Scholar] [CrossRef]
- Bandara, J.; Narayana, M. Development of controller for disturbances rejection of torrefaction reactor with high thermal inertia. In Proceedings of the 7th International Multidisciplinary Moratuwa Engineering Research Conference, Virtual, 27–29 July 2021; pp. 292–296. [Google Scholar] [CrossRef]
- Direktor, L.B.; Zaichenko, V.M.; Sinelshchikov, V.A. Numerical simulation of power-engineering complex with torrefaction reactor. High Temp. 2017, 55, 124–130. [Google Scholar] [CrossRef]
- Patuzzi, F.; Gasparella, A.; Baratieri, M. Thermochemical and fluid dynamic model of a bench-scale torrefaction reactor. Waste Biomass Valor. 2014, 5, 165–173. [Google Scholar] [CrossRef]
- Ratte, J.; Fardet, E.; Mateos, D.; Héry, J.-S. Mathematical modelling of a continuous biomass torrefaction reactor: TORSPYD™ column. Biomass Bioenergy 2011, 35, 3481–3495. [Google Scholar] [CrossRef]
- Saadon, S.Z.A.H.; Osman, N.B.; Damodaran, M.; Liew, S.E. Torrefaction of Napier Grass and Oil Palm Petiole Waste Using Drop-Type Fixed-Bed Pyrolysis Reactor. Materials 2022, 15, 2890. [Google Scholar] [CrossRef] [PubMed]
- Sarker, T.R.; Nanda, S.; Dalai, A.K.; Meda, V. A Review of Torrefaction Technology for Upgrading Lignocellulosic Biomass to Solid Biofuels. Bioenergy Res. 2021, 14, 645–669. [Google Scholar] [CrossRef]
- Tanoue, K.-I.; Hikasa, K.; Hamaoka, Y.; Yoshinaga, A.; Nishimura, T.; Uemura, Y.; Hideno, A. Heat and mass transfer during lignocellulosic biomass torrefaction: Contributions from the major components-cellulose, hemicellulose, and lignin. Processes 2020, 8, 959. [Google Scholar] [CrossRef]
- Wang, G.; Luo, Y.H.; Deng, J.; Kuang, J.H.; Zhang, Y.L. Pretreatment of biomass by torrefaction. Chinese Sci Bull 2011, 56, 1442–1448. [Google Scholar] [CrossRef] [Green Version]
- Phanphanich, M.; Mani, S. Impact of Torrefaction on the Grindability and Fuel Characteristics of Forest Biomass. Bioresour. Technol. 2011, 102, 1246–1253. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Jiang, X.; Shen, X.; Hu, J.; Tang, W.; Wu, X.; Ragauskas, A.; Jameel, H.; Meng, X.; Yong, Q. Lignin-enzyme interaction: A roadblock for efficient enzymatic hydrolysis of lignocellulosics. Renew. Sustain. Energy Rev. 2022, 154, 111822. [Google Scholar] [CrossRef]
- Ribeiro, J.M.C.; Godina, R.; Matias, J.C.d.O.; Nunes, L.J.R. Future Perspectives of Biomass Torrefaction: Review of the Current State-Of-The-Art and Research Development. Sustainability 2018, 10, 2323. [Google Scholar] [CrossRef] [Green Version]
- Torres, R.; Valdez, B.; Beleño, M.T.; Coronado, M.A.; Stoytcheva, M.; García, C.; Rojano, B.A.; Montero, G. Char production with high-energy value and standardized properties from two types of biomass. Biomass Convers. Biorefin. 2021. [Google Scholar] [CrossRef]
- Ivanovski, M.; Goricanec, D.; Krope, J.; Urbancl, D. Torrefaction pretreatment of lignocellulosic biomass for sustainable solid biofuel production. Energy 2022, 240, 122483. [Google Scholar] [CrossRef]
- Oyebode, W.A.; Ogunsuyi, H.O. Impact of torrefaction process temperature on the energy content and chemical composition of stool tree (Alstonia congenisis Engl) woody biomass. Curr. Res. Green Sustain. Chem. 2021, 4, 100115. [Google Scholar] [CrossRef]
- Zheng, A.; Zhao, Z.; Chang, S.; Huang, Z.; Zhao, K.; Wei, G.; He, F.; Li, H. Comparison of the effect of wet and dry torrefaction on chemical structure and pyrolysis behavior of corncob. Bioresour. Technol. 2015, 176, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chen, T.; Xiong, Y.; Dong, Q. Effects of wet torrefaction on the physicochemical properties and pyrolysis product properties of rice husk. Energy Convers. Manag. 2017, 141, 403–409. [Google Scholar] [CrossRef]
- Poudel, J.; Ohm, T.-I.; Lee, S.-H.; Oh, S.C. A study on torrefaction of sewage sludge to enhance solid fuel qualities. Waste Management 2015, 40, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Yang, R.; Wang, X.; Qu, B.; Zhang, M.; Ji, G.; Li, A. Effect of in-situ torrefaction and densification on the properties of pellets from rice husk and rice straw. Chemosphere 2022, 289, 133009. [Google Scholar] [CrossRef]
- Mukherjee, A.; Okolie, J.A.; Niu, C.; Dalai, A.K. Experimental and Modeling Studies of Torrefaction of Spent Coffee Grounds and Coffee Husk: Effects on Surface Chemistry and Carbon Dioxide Capture Performance. ACS Omega 2022, 7, 638–653. [Google Scholar] [CrossRef]
- Sidiras, D.K.; Nazos, A.G.; Giakoumakis, G.E.; Politi, D.V. Simulating the Effect of Torrefaction on the Heating Value of Barley Straw. Energies 2020, 13, 736. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Rokni, E.; Yang, R.; Ren, X.; Sun, R.; Levendis, Y.A. Torrefaction of corn straw in oxygen and carbon dioxide containing gases: Mass/energy yields and evolution of gaseous species. Fuel 2021, 285, 119044. [Google Scholar] [CrossRef]
- Sukiran, M.A.; Wan Daud, W.M.A.; Abnisa, F.; Nasrin, A.B.; Astimar, A.A.; Loh, S.K. Individual torrefaction parameter enhances characteristics of torrefied empty fruit bunches. Biomass Convers. Biorefinery 2021, 11, 461–472. [Google Scholar] [CrossRef]
- Kongto, P.; Palamanit, A.; Chaiprapat, S.; Tippayawong, N. Enhancing the fuel properties of rubberwood biomass by moving bed torrefaction process for further applications. Renew. Energy 2021, 170, 703–713. [Google Scholar] [CrossRef]
- Sibiya, N.T.; Oboirien, B.; Lanzini, A.; Gandiglio, M.; Ferrero, D.; Papurello, D.; Bada, S.O. Effect of different pre-treatment methods on gasification properties of grass biomass. Renew. Energy 2021, 170, 875–883. [Google Scholar] [CrossRef]
- Park, J.-H.; Choi, Y.-C.; Lee, Y.-J.; Kim, H.-T. Characteristics of Miscanthus Fuel by Wet Torrefaction on Fuel Upgrading and Gas Emission Behavior. Energies 2020, 13, 2669. [Google Scholar] [CrossRef]
- Gan, M.J.; Lim, W.S.; Ng, H.X.; Ong, M.H.; Gan, S.; Lee, L.Y.; Thangalazhy-Gopakumar, S. Enhancement of Palm Kernel Shell Fuel Properties via Wet Torrefaction: Response Surface, Optimization, and Combustion Studies. Energy Fuels 2019, 33, 11009–11020. [Google Scholar] [CrossRef]
- Chowdhury, Z.Z.; Pal, K.; Johan, R.B.; Dabdawb, W.A.Y.; Ali, M.E.; Rafique, R.F. Comparative evaluation of physiochemical properties of a solid fuel derived from adansonia digitata trunk using torrefaction. BioResources 2017, 12, 3816–3833. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wu, J.; Chen, Y.; Pattiya, A.; Yang, H.; Chen, H. Comparative study of wet and dry torrefaction of corn stalk and the effect on biomass pyrolysis polygeneration. Bioresour. Technol. 2018, 258, 88–97. [Google Scholar] [CrossRef]
- Bach, Q.V.; Tran, K.Q. Dry and wet torrefaction of woody biomass—A comparative study on combustion kinetics. Energy Proc. 2015, 75, 150–155. [Google Scholar] [CrossRef] [Green Version]
- González-Arias, J.; Gómez, X.; González-Castaño, M.; Sánchez, M.E.; Rosas, J.G.; Cara-Jiménez, J. Insights into the product quality and energy requirements for solid biofuel production: A comparison of hydrothermal carbonization, pyrolysis and torrefaction of olive tree pruning. Energy 2022, 238, 122022. [Google Scholar] [CrossRef]
- Kanwal, S.; Munir, S.; Chaudhry, N.; Sana, H. Physicochemical characterization of Thar coal and torrefied corn cob. Energy Explor. Exploit. 2019, 37, 1286–1305. [Google Scholar] [CrossRef]
- Bai, X.; Wang, G.; Sun, Y.; Yu, Y.; Liu, J.; Wang, D.; Wang, Z. Effects of combined pretreatment with rod-milled and torrefaction on physicochemical and fuel characteristics of wheat straw. Bioresour. Technol. 2018, 267, 38–45. [Google Scholar] [CrossRef]
- Chen, D.; Gao, A.; Cen, K.; Zhang, J.; Cao, X.; Ma, Z. Investigation of biomass torrefaction based on three major components: Hemicellulose, cellulose, and lignin. Energy Convers. Manag. 2018, 169, 228–237. [Google Scholar] [CrossRef]
- Tumuluru, J.S.; Sokhansanj, S.; Hess, J.R.; Wright, C.T.; Boardman, R.D. A review on biomass torrefaction process and product properties for energy applications. Ind. Biotechnol. 2011, 7, 384–401. [Google Scholar] [CrossRef] [Green Version]
- Jian, J.; Lu, Z.; Yao, S.; Li, X.; Song, W. Comparative Study on Pyrolysis of Wet and Dry Torrefied Beech Wood and Wheat Straw. Energy Fuels 2019, 33, 3267–3274. [Google Scholar] [CrossRef]
- Viegas, C.; Nobre, C.; Correia, R.; Gouveia, L.; Gonçalves, M. Optimization of biochar production by co-torrefaction of microalgae and lignocellulosic biomass using response surface methodology. Energies 2021, 14, 7330. [Google Scholar] [CrossRef]
- Sidiras, D.; Batzias, F.; Ranjan, R.; Tsapatsis, M. Simulation and optimization of batch autohydrolysis of wheat straw to monosaccharides and oligosaccharides. Bioresour. Technol. 2011, 102, 10486–10492. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Huang, Z.; Wang, Z.; Ma, C.; Chen, S. A novel onsite wheat straw pretreatment method: Enclosed torrefaction. Bioresour. Technol. 2019, 281, 48–55. [Google Scholar] [CrossRef]
- Syu, F.-S.; Chiueh, P.-T. Process simulation of rice straw torrefaction. Sustain. Environ. Res. 2012, 22, 177–183. [Google Scholar]
- Chang, S.H. Rice Husk and Its Pretreatments for Bio-oil Production via Fast Pyrolysis: A Review. Bioenergy Res. 2020, 13, 23–42. [Google Scholar] [CrossRef]
- Mandefro, D.; Jabasingh, S.A. A study on the torrefaction of rice husk as an attempt to enhance its energy content. J. Sci. Ind. Res. 2021, 80, 87–90. [Google Scholar]
- Tsai, W.-T.; Jiang, T.-J.; Tang, M.-S.; Chang, C.-H.; Kuo, T.-H. Enhancement of thermochemical properties on rice husk under a wide range of torrefaction conditions. Biomass Convers. Biorefin. 2021, 1–10. [Google Scholar] [CrossRef]
- Wang, M.; Wei, J.; Zhang, T.; Ding, K.; Xu, D.; Li, B.; Wang, J.; Zhang, H.; Zhang, S. Effects of dry/wet torrefaction pretreatments on the combustion reaction characteristics of rice husk, Nongye Gongcheng Xuebao. Trans. Chin. Soc. Agric. Eng. 2022, 38, 236–243. [Google Scholar] [CrossRef]
- Lam, P.S.; Sokhansanj, S.; Bi, X.T.; Lim, C.J. Colorimetry applied to steam-treated biomass and pellets made from western douglas fir (Pseudotsuga menziesii L.). Trans. ASABE 2012, 55, 673–678. [Google Scholar] [CrossRef]
- Anukam, A.; Mamphweli, S.; Okoh, O.; Reddy, P. Influence of torrefaction on the conversion efficiency of the gasification process of sugarcane bagasse. Bioengineering 2017, 4, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matali, S.; Rahman, N.A.; Idris, S.S.; Yaacob, N.; Alias, A.B. Lignocellulosic biomass solid fuel properties enhancement via torrefaction. Procedia Eng. 2018, 148, 671–678. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.H.; Bi, X.T.; Sokhansanj, S.; Lim, C.J. Torrefaction and densification of different species of softwood residues. Fuel 2013, 111, 411–421. [Google Scholar] [CrossRef]
- Vashishtha, M.; Patidar, K. Property Enhancement of Mustard Stalk Biomass by Torrefaction: Characterization and Optimization of Process Parameters Using Response Surface Methodology. Mater. Sci. Energy Technol. 2021, 4, 432–441. [Google Scholar] [CrossRef]
- Park, S.; Jeong, H.-R.; Shin, Y.-A.; Kim, S.-J.; Ju, Y.-M.; Oh, K.-C.; Cho, L.-H.; Kim, D. Performance optimisation of fuel pellets comprising pepper stem and coffee grounds through mixing ratios and torrefaction. Energies 2021, 14, 4667. [Google Scholar] [CrossRef]
- Ozonoh, M.; Oboirien, B.O.; Daramola, M.O. Optimization of process variables during torrefaction of coal/biomass/waste tyre blends: Application of artificial neural network & response surface methodology. Biomass Bioenerg. 2020, 143, 105808. [Google Scholar]
- Mukhtar, H.; Feroze, N.; Muhammad, H.; Munir, S.; Javed, F.; Kazmi, M. Torrefaction process optimization of agriwaste for energy densification. Energy Sources Part A Recover. Util. Environ. Eff. 2020, 42, 2526–2544. [Google Scholar] [CrossRef]
- Aguado, R.; Cuevas, M.; Pérez-Villarejo, L.; Martínez-Cartas, M.L.; Sánchez, S. Upgrading almond-tree pruning as a biofuel via wet torrefaction. Renew. Energy 2020, 145, 2091–2100. [Google Scholar] [CrossRef]
- Swiechowski, K.; Stegenta-Dabrowska, S.; Liszewski, M.; Babelewski, P.; Koziel, J.A.; Białowiec, A. Oxytree pruned biomass torrefaction: Process kinetics. Materials 2019, 12, 3334. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.-H.; Aniza, R.; Arpia, A.A.; Lo, H.-J.; Hoang, A.T.; Goodarzi, V.; Gao, J. A comparative analysis of biomass torrefaction severity index prediction from machine learning. Appl. Energy 2022, 324, 119689. [Google Scholar] [CrossRef]
- García Nieto, P.J.; García-Gonzalo, E.; Sánchez Lasheras, F.; Paredes-Sánchez, J.P.; Riesgo Fernández, P. Forecast of the higher heating value in biomass torrefaction by means of machine learning techniques. J. Comput. Appl. Math. 2019, 357, 284–301. [Google Scholar] [CrossRef]
- García Nieto, P.J.; García-Gonzalo, E.; Paredes-Sánchez, J.P.; Bernardo Sánchez, A.; Menéndez Fernández, M. Predictive modelling of the higher heating value in biomass torrefaction for the energy treatment process using machine-learning techniques. Neural Comput. Appl. 2019, 31, 8823–8836. [Google Scholar] [CrossRef]
- Di Blasi, C.; Lanzetta, M. Intrinsic kinetics of isothermal xylan degradation in inert atmosphere. J. Anal. Appl. Pyrolysis 1997, 40–41, 287–303. [Google Scholar] [CrossRef]
- Prins, M.J.; Ptasinski, K.J.; Janssen, F.J. Torrefaction of wood: Part 1. Weight loss kinetics. J. Anal. Appl. Pyrolysis 2006, 77, 28–34. [Google Scholar] [CrossRef]
- Onsree, T.; Tippayawong, N. Analysis of reaction kinetics for torrefaction of pelletized agricultural biomass with dry flue gas. Energy Rep. 2020, 6, 61–65. [Google Scholar] [CrossRef]
- Ikegwu, U.M.; Ozonoh, M.; Daramola, M.O. Kinetic Study of the Isothermal Degradation of Pine Sawdust during Torrefaction Process. ACS Omega 2021, 6, 10759–10769. [Google Scholar] [CrossRef]
- Soria-Verdugo, A.; Cano-Pleite, E.; Panahi, A.; Ghoniem, A.F. Kinetics mechanism of inert and oxidative torrefaction of biomass. Energy Convers. Manag. 2022, 267, 115892. [Google Scholar] [CrossRef]
- Joshi, Y.; De Vries, H.; Woudstra, T.; De Jong, W. Torrefaction: Unit operation modelling and process simulation. Appl. Therm. Eng. 2015, 74, 83–88. [Google Scholar] [CrossRef]
- Soponpongpipat, N.; Sae-Ueng, U. The effect of biomass bulk arrangements on the decomposition pathways in the torrefaction process. Renew. Energy 2015, 81, 679–684. [Google Scholar] [CrossRef]
- Sasongko, D.; Nugraha, N.B.; Rasrendra, C.B.; Indarto, A. Simulation of temperature and reaction time prediction of the torrefaction process: Case of hard-wood biomass. Int. J. Ambient Energy 2018, 39, 108–116. [Google Scholar] [CrossRef]
- Chai, M.; Xie, L.; Yu, X.; Zhang, X.; Yang, Y.; Rahman, M.M.; Blanco, P.H.; Liu, R.; Bridgwater, A.V.; Cai, J. Poplar wood torrefaction: Kinetics, thermochemistry and implications. Renew. Sustain. Energy Rev. 2021, 143, 110962. [Google Scholar] [CrossRef]
- Chen, W.-H.; Cheng, C.-L.; Show, P.-L.; Ong, H.C. Torrefaction performance prediction approached by torrefaction severity factor. Fuel 2019, 251, 126–135. [Google Scholar] [CrossRef]
- Silveira, E.A.; Macedo, L.; Commandré, J.-M.; Candelier, K.; Rousset, P. Potassium impregnation assessment of mild biomass pyrolysis by catalytic torrefaction severity factor. In Proceedings of the 29th European Biomass Conference and Exhibition, Online, 26–29 April 2021; pp. 1015–1019. [Google Scholar]
- Zhang, C.; Ho, S.H.; Chen, W.H.; Xie, Y.; Liu, Z.; Chang, J.S. Torrefaction performance and energy usage of biomass wastes and their correlations with torrefaction severity index. Appl. Energy 2018, 220, 598–604. [Google Scholar] [CrossRef]
- Manouchehrinejad, M.; Mani, S. Process simulation of an integrated biomass torrefaction and pelletization (iBTP) plant to produce solid biofuels. Energy Convers. Manag. X 2019, 1, 100008. [Google Scholar] [CrossRef]
- Awang, A.H.; Abdulrazik, A.; Noor, A.M.; Nafsun, A.I. Modelling and optimization of torrefied pellet fuel production. Pertanika J. Sci. Technol. 2019, 27, 2139–2152. [Google Scholar]
- Jamin, N.A.; Samad, N.A.F.A.; Saleh, S. Anhydrous weight loss kinetics model development for torrefied green waste. IOP Conf. Ser. Mater. Sci. Eng. 2019, 702, 012008. [Google Scholar] [CrossRef]
- Brachi, P.; Chirone, R.; Miccio, F.; Miccio, M.; Ruoppolo, G. Entrained-flow gasification of torrefied tomato peels: Combining torrefaction experiments with chemical equilibrium modeling for gasification. Fuel 2018, 220, 744–753. [Google Scholar] [CrossRef]
- Mobini, M.; Meyer, J.-C.; Trippe, F.; Sowlati, T.; Fröhling, M.; Schultmann, F. Assessing the integration of torrefaction into wood pellet production. J. Clean. Prod. 2014, 78, 216–225. [Google Scholar] [CrossRef]
- Lee, S.M.; Lee, J.-W. Optimization of biomass torrefaction conditions by the Gain and Loss method and regression model analysis. Bioresour. Technol. 2014, 172, 438–443. [Google Scholar] [CrossRef]
- Duan, H.; Zhang, Z.; Rahman, M.M.; Guo, X.; Zhang, X.; Cai, J. Insight into torrefaction of woody biomass: Kinetic modeling using pattern search method. Energy 2020, 201, 117648. [Google Scholar] [CrossRef]
- Brighenti, M.; Grigiante, M.; Antolini, D.; Di Maggio, R. An innovative kinetic model dedicated to mild degradation (torrefaction) of biomasses. Appl. Energy 2017, 206, 475–486. [Google Scholar] [CrossRef]
- Oh, K.C.; Kim, J.; Park, S.Y.; Kim, S.J.; Cho, L.H.; Lee, C.G.; Roh, J.; Kim, D.H. Development and validation of torrefaction optimization model applied element content prediction of biomass. Energy 2021, 214, 119027. [Google Scholar] [CrossRef]
- Nhuchhen, D.; Afzal, M. HHV predicting correlations for torrefied biomass using proximate and ultimate analyses. Bioengineering 2017, 4, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Huang, M.; Hu, Z.; Zhang, W.; Li, Y.; Yang, Y.; Zhou, Y.; Zhou, S.; Ma, Z. Prediction and modeling of the basic properties of biomass after torrefaction pretreatment. J. Anal. Appl. Pyrolysis 2021, 159, 105287. [Google Scholar] [CrossRef]
- Chen, W.-H.; Lo, H.-J.; Aniza, R.; Lin, B.-J.; Park, Y.-K.; Kwon, E.E.; Sheen, H.-K.; Alan, L.; Grafilo, D.R. Forecast of glucose production from biomass wet torrefaction using statistical approach along with multivariate adaptive regression splines, neural network and decision tree. Appl. Energy 2022, 324, 119775. [Google Scholar] [CrossRef]
- Mäkelä, M.; Yoshikawa, K. Simulating hydrothermal treatment of sludge within a pulp and paper mill. Appl. Energy 2016, 173, 177–183. [Google Scholar] [CrossRef]
- Yek, P.N.Y.; Cheng, Y.W.; Liew, R.K.; Wan Mahari, W.A.; Ong, H.C.; Chen, W.-H.; Peng, W.; Park, Y.-K.; Sonne, C.; Kong, S.H.; et al. Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review. Renew. Sustain. Energy Rev. 2021, 151, 111645. [Google Scholar] [CrossRef]
- Sun, Y.; Tong, S.; Li, X.; Wang, F.; Hu, Z.; Dacres, O.D.; Edreis, E.M.A.; Worasuwannarak, N.; Sun, M.; Liu, H.; et al. Gas-pressurized torrefaction of biomass wastes: The optimization of pressurization condition and the pyrolysis of torrefied biomass. Bioresour. Technol. 2021, 319, 124216. [Google Scholar] [CrossRef]
Biomass | Raw/ Torrefied | Temperature (°C) | Time (min) | Cellulose | Hemicelluloses | Lignin | References |
---|---|---|---|---|---|---|---|
Bamboo | Raw | - | - | 34.1 | 27.7 | 24 | [150] |
Bark of Douglas fir | Raw | - | - | 25.4 | 8.1 | 51 | |
Cherry wood samples | Raw | - | 30 | 42.8 | 24.3 | 32.9 | [25] |
Torrefied | 350 | 30 | 6.8 | 0.0 | 93.2 | ||
Coconut fiber | Raw | - | - | 47.10 | 12.50 | 31.35 | [79] |
Cotton stalk | Raw | - | - | 34.81 | 17.46 | 18.92 | [155] |
Torrefied | 257.8 | 60 | 31.62 | 2.44 | 54.49 | ||
Cryptomeria japonica | Raw | - | - | 43.60 | 16.01 | 32.20 | [79] |
Douglas fir | Raw | - | - | 42.5 | 17.9 | 22 | [150] |
Eucalyptus | Raw | - | - | 48.36 | 15.35 | 21.26 | [79] |
Groundnut stalks | Raw | - | - | 36.28 | 32.4 | 20.12 | [36] |
Torrefied | 250 | 120 | 39.5 | 26.5 | 20.6 | ||
Hops (Humulus lupulus) | Raw | - | - | 42.2 | - | 26.2 | [156] |
Torrefied | 250 | 47.0 | - | 35.1 | |||
Miscanthus (Miscanthus × giganteus) | Raw | - | - | 41.4 | 19.7 | 22.6 | |
Torrefied | 250 | 90 | 44.1 | 8.4 | 41.6 | ||
Mixed waste wood | Raw | - | 90 | 37.2 | 23.8 | 27.0 | |
Torrefied | 250 | 42.8 | 16.7 | 32.9 | |||
Oak waste wood | Raw | - | - | 38.3 | 25.5 | 22.0 | |
Torrefied | 250 | 90 | 43.7 | 7.7 | 31.4 | ||
Oil palm fiber | Raw | - | - | 26.78 | 34.00 | 16.08 | [79] |
Sugarcane bagasse | Raw | - | - | 23.08 | 18.81 | 11.35 | [53] |
Torrefied | 250 | 60 | 22.46 | 7.21 | 57.32 | ||
Sugarcane leaves | Raw | - | - | 41.41 | 36.68 | 6.39 | [41] |
Torrefied | 275 | - | 46.06 | 4.01 | 36.53 | ||
Tobacco rod | Raw | - | - | 31.28 | 13.65 | 22.37 | [65] |
Torrefied | 240 | 30 | 1.28 | 0.00 | 77.22 | ||
Vine pruning | Raw | - | - | 37.60 | 19.23 | 15.77 | [155] |
Torrefied | 275 | 20 | 35.04 | 3.01 | 56.82 | ||
Wheat straw | Raw | - | - | 37.40 | 22.88 | 29.30 | [36] |
Torrefied | 250 | 120 | 41.55 | 16.40 | 29.95 | ||
Wood dust biomass sourced | Raw | - | - | 34.50 | 26.50 | 30.0 | [157] |
Torrefied | 250 | 45 | 40.0 | 3.5 | 52.0 |
Biomass | Raw/Torrefied | Temperature (°C) | Time (min) | Cellulose | Hemicelluloses | Lignin | References |
---|---|---|---|---|---|---|---|
Corn stalk | Raw | - | - | 29.08 | 25.99 | 15.04 | [61] |
Torrefied (Microwave) | 180 | 30 | 37.33 | 18.82 | 19.61 | ||
Torrefied (Microwave, NH3) | 180 | - | 30 | 40.59 | 19.86 | ||
Corncobs | Raw | - | - | 34.490 | 35.36 | - | [158] |
Torrefied | 185 | 5 | 54.11 | 20.05 | - | ||
Tobacco rod | Raw | - | - | 31.28 | 13.65 | 22.37 | [65] |
Torrefied | 240 | 30 | 1.28 | 0.0 | 77.22 |
Biomass | Raw/ Torrefied | Temperature (°C) | Time (min) | Proximate Analysis (wt.%) | Ultimate Analysis (wt.%) | Reference | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Moisture | Volatile Matter | Fixed Carbon | Ash | C | H | O | N | |||||
Rice straw | Raw | 76.56 | 14.02 | 9.48 | 39.61 | 5.83 | 43.80 | 1.21 | [161] | |||
Torrefied | 300 | - | - | 52.00 | 32.70 | 15.31 | 49.90 | 4.61 | 28.43 | 1.77 | ||
Rice husk | Raw | - | - | - | 70.41 | 15.79 | 13.80 | 38.62 | 5.67 | 41.38 | 0.48 | [161] |
Torrefied | 300 | - | - | 51.42 | 28.91 | 19.68 | 46.43 | 4.60 | 28.91 | 0.58 | ||
Coffee husk | Raw | - | - | 2.7 | 77.7 | 17.9 | 1.7 | 48.5 | 5.9 | 40.6 | 2.8 | [162] |
Torrefied | 300 | 60 | 1.4 | 63.5 | 31.8 | 3.3 | 61.2 | 4.8 | 15.3 | 3.5 | ||
Spent coffee grounds | Raw | - | - | 3.3 | 81.2 | 14.6 | 0.9 | 50 | 6.7 | 39 | 2.3 | [162] |
Torrefied | 300 | 60 | 1.2 | 67.8 | 29 | 2 | 69.5 | 6 | 19 | 3.2 | ||
Wheat straw | Raw | - | - | 7.33 | 65.43 | 16.20 | 11.04 | 49.3 | 5.18 | 44.66 | 0.80 | [36] |
Torrefied | 500 °C/ min | - | 2.50 | 58.57 | 23.90 | 14.90 | 53.90 | 4.90 | 40.82 | 0.67 | ||
Groundnut stalks | Raw | - | - | 3.78 | 74.83 | 16.70 | 4.69 | 34.52 | 9.80 | 51.50 | 1.16 | [36] |
Torrefied | 500 °C/ min | - | 2.0 | 70.86 | 19.68 | 21.59 | 41.20 | 8.70 | 47.70 | 1.19 | ||
Rice husk | Raw | - | - | 7.44 | 56.13 | 20.45 | 15.98 | 42.39 | 5.77 | 50.10 | 1.17 | [51] |
Torrefied | 300 | - | 4.63 | 14.13 | 38.09 | 43.15 | 70.84 | 3.07 | 24.49 | 1.55 | ||
Miscanthus | Raw | - | - | 9.2 | 83.9 | 3.9 | 2.9 | 46.2 | 3.9 | 45 | 0.8 | [156] |
Torrefied | 300 | - | 4.8 | 56 | 25.4 | 6 | 50.6 | 4.2 | 34.5 | 4.2 | ||
Hops (Humulus lupulus) | Raw | - | - | 11.8 | 82.9 | 1.9 | 3.3 | 42.3 | 4.8 | 36.8 | 2.4 | [156] |
Torrefied | 300 | - | 9.8 | 66.7 | 14.4 | 8.9 | 46.3 | 4.1 | 22.6 | 2.8 | ||
Mixed waste wood | Raw | - | - | 8.9 | 78.4 | 9.5 | 3.1 | 46.5 | 5.5 | 44.3 | 0.4 | [156] |
Torrefied | 300 | - | 4.7 | 65.3 | 23.1 | 6.8 | 57.8 | 2.2 | 32.3 | 0.6 | ||
Oak waste wood | Raw | - | - | 7.9 | 80.4 | 11.1 | 0.6 | 46.9 | 5.9 | 46.1 | 0.3 | [156] |
Torrefied | 300 | - | 5.5 | 62.4 | 27.3 | 4.9 | 60.8 | 3.2 | 32.5 | 0.5 | ||
Sugarcane bagasse | Raw | - | - | - | 83.46 | 14.26 | 2.17 | 46.37 | 6.29 | 46.79 | 0.55 | [53] |
Torrefied | 275 | 60 | - | 51.85 | 44.04 | 3.95 | 58.25 | 2.81 | 38.68 | 0.31 | ||
Wood pellet | Raw | - | - | 5.42 | 84.72 | 15.07 | 0.22 | 47.48 | 6.47 | 45.94 | 0.09 | [113] |
Torrefied | 275 | 60 | - | 73.21 | 26.38 | 0.41 | 53.97 | 5.87 | 40.01 | 0.12 | ||
Barley straw | Raw | - | - | 6 | 74.3 | - | 8.4 | 45.5 | 5.5 | 47.9 | 0.99 | [163] |
Torrefied | 300 | 37.5 | 3.5 | 62.5 | - | 16.1 | 57.5 | 4.1 | 36.4 | 1.6 | ||
Corn straw | Raw | - | - | 6.18 | 71.21 | 16.12 | 6.49 | 45.84 | 5.11 | 34.89 | 1.28 | [164] |
Torrefied | 325 | - | 3.02 | 53.23 | 34.73 | 9.02 | 53.84 | 4.12 | 27.57 | 2.36 | ||
Empty fruit bunches | Raw | - | - | 4.55 | 77.42 | 13.84 | 4.19 | 42.82 | 6.07 | 50.57 | 0.54 | [165] |
Torrefied | 300 | - | 2.21 | 49.85 | 38.05 | 9.89 | 58.89 | 5.12 | 34.83 | 1.16 | ||
Rubberwood sawdust (RWS) | Raw | - | - | 4.60 | 81.80 | 16.60 | 1.61 | 48.67 | 6.03 | 43.48 | 0.09 | [166] |
Torrefied | 300 | 40 | 0.73 | 43.75 | 52.42 | 3.83 | 69.41 | 4.85 | 21.49 | 0.36 | ||
Cotton stalk | Raw | - | - | 6.15 | 75.35 | 21.57 | 5.08 | 47.91 | 5.66 | 45.57 | 0.75 | [155] |
Torrefied | 257.8 | 60 | - | 58.27 | 34.28 | 6.45 | 61.23 | 4.69 | 33.16 | 0.85 | ||
Vine pruning | Raw | - | - | 6.84 | 72.12 | 23.68 | 4.2 | 49.28 | 5.53 | 44.21 | 0.84 | [155] |
Torrefied | 275 | 20 | - | 59.96 | 34.91 | 5.13 | 62.20 | 4.09 | 32.63 | 0.98 | ||
Wheat straw | Raw | - | - | 4.1 | 76.4 | 17.3 | 6.3 | 47.3 | 6.8 | 37.7 | 0.8 | [76] |
Torrefied | 290 | - | 0.8 | 51.8 | 38 | 19.2 | 56.4 | 5.6 | 27.6 | 1.0 | ||
Willow | Raw | - | - | 2.8 | 87.6 | 10.7 | 1.7 | 49.9 | 6.5 | 39.9 | 0.2 | [76] |
Torrefied | 290 | - | 0.0 | 77.2 | 20.5 | 2.3 | 54.7 | 6 | 36.4 | 0.1 |
Biomass | Raw/ Torrefied | Temperature (°C) | Catalyst | Time (min) | Proximate Analysis (wt.%) | Ultimate Analysis (wt.%) | Reference | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Moisture | Volatile Matter | Fixed Carbon | Ash | C | H | O | N | ||||||
Bamboo Saw dust | Raw | - | - | - | 10.1 | 74.9 | 9.2 | 5.8 | 46.73 | 6.18 | 47.66 | 0 | [69] |
Torrefied | 140 | Acid | 30 | 4.5 | 66 | 30 | 0.3 | 51.4 | 6.5 | 42.04 | 0.02 | ||
Orange peel | Raw | - | - | - | - | 74.85 | 12.47 | 2.8 | 45.1 | 8.78 | 42.3 | 0.46 | [68] |
Torrefied | 280 | No | 30 | - | 58.28 | 34.46 | 7.26 | 58.32 | 6.62 | 30.46 | 0.24 | ||
Barley straw | Raw | - | - | - | 6.00 | 74.30 | 17.3 | 8.40 | 45.53 | 5.50 | 47.86 | 0.99 | [54] |
Torrefied | 200 | Acid | 25 | 5.10 | 72.30 | 27.2 | 5.5 | 52.51 | 5.79 | 40.71 | 0.85 | ||
Grass | Raw | - | - | - | 72.33 | 12.2 | 9.3 | 45.6 | 6.4 | 46.4 | 1.6 | [167] | |
Torrefied | 200 | No | 60 | - | 63.5 | 27.5 | 6.26 | 56.1 | 5.9 | 36.6 | 1.4 | ||
Miscanthus | Raw | - | - | 8.18 | 65.43 | 14.22 | 12.17 | 43.3 | 5.86 | 37.54 | 1.12 | [168] | |
Torrefied | 200 | acid | - | 5.76 | 68.14 | 21.39 | 4.71 | 53.75 | 5.62 | 33.82 | 0.21 | ||
Palm kernel shell | Raw | - | - | - | 4.5 | 68.5 | 22.5 | 4.6 | 47.9 | 6.1 | 40.7 | 0.52 | [169] |
Torrefied | 220 | No | 30 | 1.3 | 67.6 | 29.2 | 2.0 | 55.9 | 5.6 | 36.1 | 0.40 | ||
Spruce | Raw | -- | - | - | - | 86.50 | 13.27 | 0.23 | 50.31 | 6.24 | 43.38 | 0.07 | [121] |
Torrefied | 225 | No | 30 | - | 74.74 | 25.12 | 0.14 | 56.99 | 5.87 | 37.07 | 0.07 | ||
Birch | Raw | - | - | - | - | 89.46 | 10.26 | 0.28 | 48.94 | 6.35 | 44.60 | 0.11 | [121] |
Torrefied | 225 | No | 30 | - | 73.78 | 26.09 | 0.13 | 56.92 | 5.86 | 37.13 | 0.09 | ||
Adansonia digitate (Baobab) | Raw | - | - | - | 11.93 | 61.23 | 23.61 | 3.23 | 43.16 | 5.78 | 50.47 | 0.54 | [170] |
Torrefied | 250 | No | 120 | 2.17 | 53.98 | 36.76 | 7.09 | 46.03 | 4.11 | 49.45 | 0.39 | ||
Corn stalk | Raw | - | - | - | - | 87.19 | 2.59 | 2.59 | 44.49 | 6.25 | 46.37 | 0.30 | [171] |
Torrefied | 220 | No | 30 | - | 79.56 | 19.99 | 0.45 | 53.25 | 5.99 | 39.95 | 0.36 | ||
Microalgae (Chlorella vulgaris ESP-31) | Raw | - | - | - | - | 74.59 | 16.39 | 9.02 | 53.01 | 8.67 | 35.05 | 3.26 | [122] |
Torrefied | 170 | No | 30 | - | 67.70 | 25.76 | 6.54 | 59.03 | 7.82 | 24.53 | 8.62 | ||
Spruce | Raw | - | - | - | - | 86.50 | 13.27 | 0.23 | 50.31 | 6.24 | 43.38 | 0.07 | [172] |
Torrefied | 222 | No | 5 | - | 81.51 | 18.39 | 0.10 | 55.75 | 6.05 | 38.14 | 0.06 | ||
Olive tree pruning | Raw | - | - | - | 6.2 | 79.91 | 17.31 | 2.78 | 48.15 | 5.74 | 45.67 | 0.39 | [173] |
Torrefied | 280 | No | 360 | 2.91 | 42.33 | 55.48 | 2.18 | 74.86 | 4.88 | 19.04 | 1.18 |
Biomass | Raw/ Torrefied | Temperature (°C) | Time (min) | HHV (MJ/kg) | Energy Yield (%) | Mass Yield (%) | Energy Density | Reference |
---|---|---|---|---|---|---|---|---|
River tamarind | Raw | - | - | 17.9 | 1 | [189] | ||
Torrefied | 300 | 25 | 21 | 44.3 | 34.2 | 1.3 | ||
Sawdust | Raw | 18.9 | 1 | [82] | ||||
Torrefied | 290 | 7 | 21.8 | 73.8 | - | 1.15 | ||
Spruce | Raw | 18.3 | 1 | [190] | ||||
Torrefied | 280 | 52 | 21.5 | 84 | 76 | 1.17 | ||
Mustard stalk | Raw | - | - | 16.9 | [191] | |||
Torrefied | 300 | 20 | 21.3 | 81.3 | 64.5 | N/A | ||
Pepper stem/coffee grounds pellets | Raw | - | 16.5 | [192] | ||||
Torrefied | 250 | 30 | 21.5 | 87 | 83.6 | N/A | ||
Sugarcane leaves | Raw | 17.7 | [41] | |||||
Torrefied | 275 | 30 | 20.1 | 70 | 67.9 | N/A | ||
Wheat straw | Raw | 17.5 | 1 | [175] | ||||
Torrefied | 300 | 30 | 22.5 | 64 | 49.7 | 1.29 | ||
Wheat straw | Raw | 18.9 | 1 | [76] | ||||
Torrefied | 290 | 30 | 22.6 | 65.8 | 55 | 1.2 | ||
Microalgae/ lignocellulosic biomass | Raw | - | N/A | [179] | ||||
Torrefied | 300 | 60 | 19.3 | 40.8 | 78 | N/A | ||
Coal/sugarcane bagasse | Raw | - | 18.73 | 1 | [193] | |||
Torrefied | 300 | 45 | 25.83 | 74.7 | 54.1 | 1.38 | ||
Coal/corn cob | Raw | 18 | 1 | [193] | ||||
Torrefied | 300 | 45 | 24.31 | 76.5 | 56.7 | 1.35 | ||
Coal/pine saw dust | Raw | 20 | 1 | [193] | ||||
Torrefied | 300 | 45 | 28.27 | 74 | 52.44 | 1.41 | ||
Wheat straw | Raw | 18.2 | 1 | [181] | ||||
Torrefied | 250 | 360 | 20.8 | 77.1 | 61.2 | 1.14 | ||
Wheat straw | Raw | 19.2 | 1 | [151] | ||||
Torrefied | 250 | 30 | 20.9 | 41.2 | 51.1 | 1.15 | ||
Corn cob | Raw | 14 | 1 | [194] | ||||
Torrefied | 250 | 60 | 21 | 110 | 68 | 1.55 | ||
Rice husk | Raw | 15.5 | 1 | [194] | ||||
Torrefied | 275 | 60 | 19.5 | 95 | 75 | 1.2 |
Biomass | Raw/ Torrefied | Temperature (°C) | Time (min) | Catalyst | HHV (MJ/kg) | Energy Yield (%) | Mass Yield (%) | Reference |
---|---|---|---|---|---|---|---|---|
Spruce | Raw | 20.4 | [172] | |||||
Torrefied | 222 | 5 | None | 22.6 | N/A | 74.1 | ||
Barley straw | Raw | 17.5 | [54] | |||||
Torrefied | 200 | 25 | Acid | 24.3 | 68 | 31 | ||
Dewatered poultry sludge | Raw | 26.6 | [42] | |||||
Torrefied | 268 | 47 | None | 28.6 | N/A | 85.2 | ||
Palm kernel shell | Raw | 18.9 | [169] | |||||
Torrefied | 220 | 30 | None | 23.4 | N/A | 47.2 | ||
Microalgae | Raw | 20.8 | [55] | |||||
Torrefied | 160 | 10 | H2SO4 | 32.2 | 43 | 15 | ||
Tobacco stalk | Raw | 13.8 | [19] | |||||
Torrefied | 240 | 60 | None | 22.8 | N/A | 41.8 | ||
Spruce | Raw | 20.4 | [121] | |||||
Torrefied | 225 | 30 | None | 23 | N/A | 69.7 | ||
Birch | Raw | 19.9 | [121] | |||||
Torrefied | 225 | 30 | None | 22.9 | N/A | 58 | [121] | |
Rice husk | Raw | 16.2 | [159] | |||||
Torrefied | 240 | 60 | None | 18.1 | 52 | 48 | ||
Almond-tree pruning | Raw | 17.6 | [195] | |||||
Torrefied | N/A | N/A | None | 24 | 77 | 57.1 | ||
Microalgae | Raw | N/A | [122] | |||||
Torrefied | 170 | 30 | None | 26 | 63 | 55 | ||
Miscanthus | Raw | 18.8 | [196] | |||||
Torrefied | 220 | 10 | None | 20.1 | 75 | 70 | ||
Yard waste | Raw | 15.6 | [72] | |||||
Torrefied | 220 | 30 | None | 23.6 | 65.8 | 43.5 | ||
Sugarcane leaves | Raw | 17.7 | [41] | |||||
Torrefied | 250 | 30 | None | 23.3 | 43 | 34.5 |
Simulation | Material | Forecasting | Model | Software | Reference |
---|---|---|---|---|---|
AWL approach | Green waste | TGA | Di Blasi and Lanzetta | MATLAB | [214] |
Chemical equilibrium | Tomato peels | Gas composition | Chemical equilibrium | [215] | |
Commercial | Biomass | Mass, energy, size, cost, safety | Thermodynamic | Aspen Plus | [212] |
Commercial | Empty fruit bunch pellet | Temperature profile, microwave electric field | COMSOL Multiphysics | [49] | |
Commercial | Empty fruit bunch | Mass yield, energy | RKS, RKS-BM, MILP | Aspen Plus | [213] |
CTSF | Eucalyptus | TGA | [210] | ||
Dynamic simulation modeling approach | Sawdust, shavings | Cost, energy input, CO2 emission | PSC | ExtendSim | [216] |
Empirical | Corncob, rice husk | HHV, energy yield/density | [194] | ||
Gain and loss method | Eucalyptus, larch, yellow poplar, acacia, albasia, mixed softwood, mesocarp/oil palm residues | Calorific value, weight loss | 22 factorial experimental design, regression, severity factor | - | [217] |
Kinetic approach | Biomass | HHV, mass loss | Kinetics | Cycle-Tempo | [205] |
Kinetic approach | Rice husk, rice straw | HHV, energy | Lumped model | [38] | |
Kinetic approach | Biomass | Intra-particle temperature profile, mass/energy yield | Two-dimensional, transient, single particle | [140] | |
Kinetic approach | Sugarcane trash | HHV | Two-step reaction in series | [206] | |
Kinetic approach | Biomass | TGA | [24] | ||
Kinetic approach | Spruce, birch | Biochar yield, elemental composition | Consecutive reactions | [30] | |
Kinetic/thermochemical approach | Wheat straw, Groundnut stalk | TGA | WFO, Starink method, model-free methods, multiple linear regressions | [36] | |
Kinetics/thermochemical approach | Hardwood | Mass/energy yield | TPR, TSR, ER | [206] | |
Kinetics/ thermochemical approach | Poplar wood | TGA | Kinetic, thermochemical | MATLAB | [208] |
MARS, ANN | Microalgae, macroalga, biomass wastes | TSI | Megaputer PolyAnalyst | [197] | |
MARS-SA | Biomass | HHV | [198] | ||
MLP-ANN | Biomass | HHV | Weka | [198] | |
Model-free isoconversional approach | Biomass | Arrhenius pre-exponential factor, reaction model function | Coats and Redfern, Malek, Freeman and Carroll, compensation methods | [219] | |
Multi-objective, ANN | Coffee grounds | TG-FTIR | Kinetic, thermodynamic | [4] | |
One-dimensional simulation analysis | Wood pellet | HHV | MATLAB | [220] | |
Pattern search method | Beech wood | TGA | Kinetic | MATLAB | [218] |
Proximate/ultimate analyses | Biomass | HHV | Linear, quadratic | MS Excel | [221] |
PSO-SVM | Biomass | HHV | [199] | ||
RF | Biomass | HHV | Weka | [199] | |
RF-SA | Biomass | HHV | [198] | ||
Severity factor | Barley straw | HHV, energy yield, enhancement factor | Kinetics | [163] | |
Severity factor | Olive tree pruning | Product yield, solid quality, energy consumption, HHV | - | [173] | |
Statistical analysis | Sugarcane leaves | Energy/mass yield, proximate/ultimate analyses, fiber analysis, HHV, FTIR structural parameters, O/C ratio, H/C ratio | R Studio | [41] | |
SVM-SA | Biomass | HHV | [198] | ||
Taguchi approach | Chlorella vulgaris FSP-E | Energy yield, HHV, TGA, UEI | TED, ANOVA | [48] | |
Thermodynamic | Biomass | Torrefier design | Heat and mass transfer | MS Excel | [139] |
TSF | Wood chips, wood pellets, kenaf, rice straw, rice husk | TGA, HHV, VM, TTBGI | Correlations | [6] | |
TSF | Spent coffee grounds Arthrospira platensis residue, C. sp. JSC4, Chinese medicine residue | HHV, energy densification/yield | Linear | [209] | |
TSI | Spent coffee grounds, Chinese medicine residue, microalga residue | HHV enhancement factor, energy yield, decarbonization, dehydrogenation, deoxygenation, O/C, H/C | Correlations | [211] | |
TSR | Chinese fir, corn stalk, palm kernel shell | Ultimate/proximate analysis, mass/energy yields | Quadratic equation | [222] | |
TSR-PSO | Lignocellulosic biomass | TG-FTIR | Isothermal kinetics | [32] |
Simulation | Material | Forecasting | Design | Model | Software | Reference |
---|---|---|---|---|---|---|
ANN, DT | Microalgae (Chlorella vulgaris ESP-31, Chlorella sp. GD, Chlorella vulgaris FSP-E) | Glucose | Box–Behnken | Quadratic | [223] | |
CSF | Barley straw | HHV, EF, EY, SRY | Box–Behnken | Quadratic | Quantum XL | [54] |
CSF | Olive tree pruning | SRY, solid quality, energy consumption, HHV | [173] | |||
Kinetic analysis | Bamboo sawdust/plastic | Activation energy | KAS, OFW, FM | [31] | ||
Kinetic analysis | Spruce/birch wood | Decompositions of hemicellulose/cellulose/lignin | Three parallel reactions | [121] | ||
MARS, DT | Microalgae (Chlorella vulgaris ESP-31, Chlorella sp. GD, Chlorella vulgaris FSP-E) | Glucose | Box–Behnken | Quadratic | [223] | |
RSM | Barley straw | HHV, EF, EY, SRY | Box–Behnken | Quadratic | Quantum XL | [54] |
RSM | Palm kernel shell | HHV, SRY | CCD | Quadratic | [169] | |
RSM | Sludge/pulp/paper | Energy yield | CCD | PCM | Matlab, DesignExpert OriginLab | [224] |
Statistical analysis | Sugarcane leaves | SRY, energy yield, proximate/ultimate analyses, fiber analysis, HHV, FTIR structural parameters, O/C, H/C | RStudio | [41] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazos, A.; Politi, D.; Giakoumakis, G.; Sidiras, D. Simulation and Optimization of Lignocellulosic Biomass Wet- and Dry-Torrefaction Process for Energy, Fuels and Materials Production: A Review. Energies 2022, 15, 9083. https://doi.org/10.3390/en15239083
Nazos A, Politi D, Giakoumakis G, Sidiras D. Simulation and Optimization of Lignocellulosic Biomass Wet- and Dry-Torrefaction Process for Energy, Fuels and Materials Production: A Review. Energies. 2022; 15(23):9083. https://doi.org/10.3390/en15239083
Chicago/Turabian StyleNazos, Antonios, Dorothea Politi, Georgios Giakoumakis, and Dimitrios Sidiras. 2022. "Simulation and Optimization of Lignocellulosic Biomass Wet- and Dry-Torrefaction Process for Energy, Fuels and Materials Production: A Review" Energies 15, no. 23: 9083. https://doi.org/10.3390/en15239083
APA StyleNazos, A., Politi, D., Giakoumakis, G., & Sidiras, D. (2022). Simulation and Optimization of Lignocellulosic Biomass Wet- and Dry-Torrefaction Process for Energy, Fuels and Materials Production: A Review. Energies, 15(23), 9083. https://doi.org/10.3390/en15239083