Study on the Accuracy of Fracture Criteria in Predicting Fracture Characteristics of Granite with Different Occurrence Depths
Abstract
:1. Introduction
2. The Modified Maximum Tangential Stress (MMTS) Criterion
3. Methodology
4. Experimental Results
4.1. Test Results of Fracture Toughness
4.2. Brazilian Disk Splitting Experiment Results
4.2.1. Tensile Strength
4.2.2. Brazilian Splitting Modulus
5. Modification of Granite MMTS Criterion Considering Different Occurrence Depths
5.1. Comparative Analysis of Experimental Results and MMTS Criterion Prediction Results
5.2. The Modified MMTS Criteria
6. Numerical Simulation of Fracture of Granite Specimen
7. Discussion
8. Conclusions
- (1)
- FPZ seriously affects fracture initiation angle and mixed-mode (I+II) fracture toughness, which affects the accuracy of MMTS in predicting rock fracture behavior. Considering the influence of different occurrence depths, rc fails to accurately reflect the actual size of FPZ, so it needs to be modified to obtain results consistent with the actual. The Mode II fracture toughness and mixed-mode (I+II) fracture toughness of granites with different occurrence depths predicted by MMTS are significantly different from the measured values.
- (2)
- The rce obtained from the reverse solution of the test results is smaller than the rc. With the increase in temperature and deviatoric stress, the changes of rc and rce are not coordinated. When the rce obtained by the reverse calculation of the experimental data is substituted into the MMTS criterion, the predicted results are in good agreement with the experimental results. Temperature and three-dimensional stress affect the size of FPZ by changing the microscopic properties of rock. It is also verified by numerical simulation that after correcting the critical crack propagation radius, the fracture trajectories obtained are basically consistent with the experimental results. Further theoretical and experimental studies are needed to evaluate the fracture characteristics of geothermal reservoirs at different depths predicted by MMTS criteria.
- (3)
- Under the influence of temperature and pressure, the Brazilian splitting strength, σt, of granite fluctuates and rises with the increase in temperature. With the increase in deviatoric stress, Brazilian splitting strength and Brazilian splitting modulus first increase, then decrease, and then increase.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xie, H.; Li, C.; Zhao, T.; Chen, J.; Liao, J.; Ma, J.; Li, B. Conceptualization and evaluation of the exploration and utilization of low/medium-temperature geothermal energy: A case study of the Guangdong-Hong Kong-Macao Greater Bay Area. Geomech. Geophys. Geo-Energy Geo-Resour. 2020, 6, 18. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, X.; Xu, Y.; Yao, J.; Wang, H.; Lv, S.; Sun, Z.; Huang, Y.; Cai, M.; Huang, X. Numerical simulation of the heat extraction in EGS with thermal hydraulic-mechanical coupling method based on discrete fractures. Energy 2017, 120, 20–33. [Google Scholar] [CrossRef]
- Ye, Z.; Wang, J.; Hu, B. Comparative study on heat extraction performance of geothermal reservoirs with presupposed shapes and permeability heterogeneity in the stimulated reservoir volume. J. Pet. Sci. Eng. 2021, 206, 109023. [Google Scholar] [CrossRef]
- Liu, B.; Suzuki, A.; Watanabe, N.; Ishibashi, T.; Sakaguchi, K.; Ito, T. Fracturing of granite rock with supercritical water for superhot geothermal resources. Renew. Energy 2022, 184, 56–67. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, W.; Ma, F.; Lin, W.; Liang, J.; Zhu, X. Overview on hydrothermal and hot dry rock researches in China. China Geol. 2018, 1, 273–285. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, K.; Lu, X.; Huang, X.; Liu, K.; Wu, X. A review of geothermal energy resources, development, and applications in China: Current status and prospects. Energy 2015, 93, 466–483. [Google Scholar] [CrossRef]
- Ganguly, S.; Kumar, M.S.M. Geothermal reservoirs—A brief review. J. Geol. Soc. India 2012, 79, 589–602. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Jin, Y.; Zeng, Y.; Zhang, X.; Zhou, J.; Zhuang, L.; Xin, S. Investigation on fracture creation in hot dry rock geothermal formations of China during hydraulic fracturing. Renew. Energy 2020, 153, 301–303. [Google Scholar] [CrossRef]
- Lu, S.M. A global review of enhanced geothermal system (EGS). Renew. Sustain. Energy Rev. 2018, 81, 2902–2921. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, G. A global review of deep geothermal energy exploration: From a view of rock mechanics and engineering. Geomech. Geophys. Geo-Energy Geo-Resour. 2019, 6, 4. [Google Scholar] [CrossRef]
- Kang, F.; Tang, C.; Li, Y.; Li, T.; Men, J. Challenges and opportunities of enhanced geothermal systems: A review. Chin. J. Eng. 2022, 44, 1767–1777. (In Chinese) [Google Scholar]
- Olasolo, P.; Juarez, M.C.; Morales, M.P.; D’Amico, S.; Liarte, I.A. Enhanced geothermal systems (EGS): A review. Renew. Sustain. Energy Rev. 2016, 56, 133–144. [Google Scholar] [CrossRef]
- Richards, H.G.; Parker, R.H.; Green, A.S.P.; Jones, R.H.; Nicholls, J.D.M.; Nicol, D.A.C.; Randall, M.M.; Richards, S.; Stewart, R.C.; Willisrichards, J. The performance and characteristics of the experimental hot dry rock geothermal reservoir at rosemanowes, cornwall (1985–1988). Geothermics 1994, 23, 73–109. [Google Scholar] [CrossRef]
- Seibt, P.; Hoth, P. The neustadt-glewe geothermal station: Form surveys to active operation. Therm. Eng. 2004, 51, 494–497. [Google Scholar]
- Schill, E.; Genter, A.; Cuenot, N.; Kohl, T. Hydraulic performance history at the Soultz EGS reservoirs from stimulation and long-term circulation tests. Geothermics 2017, 70, 110–124. [Google Scholar] [CrossRef]
- Ayatollahi, M.R.; Sistaninia, M. Mode-II fracture study of rocks using Brazilian disk specimens. Int. J. Rock Mech. Min. Sci. 2011, 48, 819–826. [Google Scholar] [CrossRef]
- Akbardoost, J.; Ayatollahi, M.R. Experimental analysis of mixed mode crack propagation in brittle rocks: The effect of non-singular terms. Eng. Fract. Mech. 2014, 129, 77–89. [Google Scholar] [CrossRef]
- Yang, J.; Liang, W.; Chen, Y.; Li, L.; Lian, H. Experiment research on the fracturing characteristics of mudstone with different degrees of water damage. Chin. J. Rock. Mech. Eng. 2017, 36, 2431–2440. (In Chinese) [Google Scholar]
- Wang, C.; Wang, S. Modified generalized maximum tangential stress criterion for simulation of crack propagation and its application in discontinuous deformation analysis. Eng. Fract. Mech. 2022, 259, 108159. [Google Scholar] [CrossRef]
- Aliha, M.R.M.; Samareh-Mousavi, S.S.; Mirsayar, M.M. Loading rate effect on mixed mode I/II brittle fracture behavior of PMMA using inclined cracked SBB specimen. Int. J. Solids Struct. 2021, 232, 111177. [Google Scholar] [CrossRef]
- Feng, G.; Wang, X.; Kang, Y.; Zhang, Z. Effect of thermal cycling-dependent cracks on physical and mechanical properties of granite for enhanced geothermal system. Int. J. Rock Mech. Min. 2020, 134, 104476. [Google Scholar] [CrossRef]
- Feng, G.; Wang, X.; Wang, M.; Kang, Y. Experimental investigation of thermal cycling effect on fracture characteristics of granite in a geothermal-energy reservoir. Eng. Fract. Mech. 2020, 235, 107180. [Google Scholar] [CrossRef]
- Tang, S. The effect of T-stress on the fracture of brittle rock under compression. Int. J. Rock Mech. Min. 2015, 79, 86–98. [Google Scholar] [CrossRef]
- Tang, S.; Bao, C.; Liu, H. Brittle fracture of rock under combined tensile and compressive loading conditions. Can. Geotech. J. 2017, 54, 88–101. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.; Zhang, H. The characteristics of crack initiation at the crack tip in rock material. Chin. J. Rock. Mech. Eng. 2017, 36, 552–561. (In Chinese) [Google Scholar]
- Wu, S.; Li, L.; Zhang, X. Rock Mechanics; Higher Educational Press: Beijing, China, 2021; pp. 28–29. [Google Scholar]
- Ma, F.; Liu, G.; Zhao, Z.; Xu, H.; Wang, G. Coupled Thermo-Hydro-Mechanical Modeling on the Rongcheng Geothermal Field, China. Rock Mech. Rock Eng. 2022, 55, 5209–5233. [Google Scholar] [CrossRef]
- Li, T.; Tang, C.; Rutqvist, J.; Hu, M. TOUGH-RFPA: Coupled thermal-hydraulic-mechanical Rock Failure Process Analysis with application to deep geothermal wells. Int. J. Rock Mech. Min. 2021, 142, 104726. [Google Scholar] [CrossRef]
- Wang, K.; Liu, Z.; Zeng, T.; Wang, F.; Shen, W.; Shao, J. Performance of enhanced geothermal system with varying injection-production parameters and reservoir properties. Appl. Therm. Eng. 2022, 207, 118160. [Google Scholar] [CrossRef]
- Zhang, X.; Kong, B.; Yu, S.; Zhai, J.; Zhang, W.; Wang, R. Time series characteristics and difference analysis of AE of coal deformation and fracture under different damage and failure conditions. In Proceedings of the Third International Conference on Optoelectronic Science and Materials (ICOSM 2021), Hefei, China, 10–12 September 2021. [Google Scholar]
- Zhang, C.; Yu, B.; Feng, Y.; Yuan, J.; Deng, J. Integrated Approach for the Wellbore Instability Analysis of a High-pressure, High-temperature Field in the South China Sea. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Beijing, China, 23–26 October 2020. [Google Scholar]
- Wang, C.; Liu, Z.; Zhou, H.; Wang, K.; Shen, W. A novel true triaxial test device with a high-temperature module for thermal-mechanical property characterization of hard rocks. Eur. J. Environ. Civ. Eng. 2022. [Google Scholar] [CrossRef]
- Guo, T.; Tang, S.; Liu, S.; Liu, X.; Zhang, W.; Qu, G. Numerical simulation of hydraulic fracturing of hot dry rock under thermal stress. Eng. Fract. Mech. 2021, 240, 107350. [Google Scholar] [CrossRef]
- Kumari, W.G.P.; Ranjith, P.G.; Perera, M.S.A.; Li, X.; Li, L.H.; Chen, B.K.; Avanthi Isaka, B.L.; De Silva, V.R.S. Hydraulic fracturing under high temperature and pressure conditions with micro CT applications: Geothermal energy from hot dry rocks. Fuel 2018, 230, 138–154. [Google Scholar] [CrossRef]
- Meng, Q.; Liu, J.; Pu, H.; Yu, L.; Wu, J.; Wang, C. Mechanical properties of limestone after high-temperature treatment under triaxial cyclic loading and unloading conditions. Rock Mech. Rock Eng. 2021, 54, 6413–6437. [Google Scholar] [CrossRef]
- Ding, K.; Wang, L.; Ren, B.; Li, Z.; Wang, S.; Jiang, C. Experimental study on relative permeability characteristics for CO2 in sandstone under high temperature and overburden pressure. Minerals 2021, 11, 956. [Google Scholar] [CrossRef]
- Ergodan, F.; Sih, G.C. On the crack extension in plates under plane loading and transverse shear. J. Basic Eng. 1963, 85, 519–525. [Google Scholar]
- Mirsayar, M.M.; Razmi, A.; Aliha, M.R.M.; Berto, F. Frictional crack initiation and propagation in rocks in rock materials. Eng. Fract. Mech. 2018, 190, 186–197. [Google Scholar] [CrossRef]
- Williams, M.L. On the stress distribution at the base of a stationary crack. ASME. J. Appl. Mech. 1957, 24, 109–114. [Google Scholar] [CrossRef]
- Saghafi, H.; Ayatollahi, M.R.; Sistaninia, M. A modified MTS criterion (MMTS) for mixed-mode fracture toughness assessment of brittle materials. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2010, 527, 5624–5630. [Google Scholar] [CrossRef]
- Ayatollahi, M.R.; Aliha, M.R.M. Wide range data for crack tip parameters in two disc-type specimens under Mixed-mode loading. Comput. Mater. Sci. 2017, 38, 660–670. [Google Scholar] [CrossRef]
- Yang, J.; Lian, H.; Liang, W.; Nguyen, V.P.; Chen, Y. Experimental investigation of the effects of supercritical carbon dioxide on fracture toughness of bituminous coals. Int. J. Rock Mech. Min. 2018, 107, 233–242. [Google Scholar] [CrossRef]
- Wei, M.; Dai, F.; Xu, N.; Liu, Y.; Zhao, T. Fracture prediction of rocks under mode I and mode II loading using the generalized maximum tangential strain criterion. Eng. Fract. Mech. 2017, 186, 21–38. [Google Scholar] [CrossRef]
- Aliha, M.R.M.; Ayatollahi, M.R. Two-parameter fracture analysis of SCB rock specimen under mixed mode loading. Eng. Fract. Mech. 2013, 103, 115–123. [Google Scholar] [CrossRef]
- Schmidt, R.A. A microcrack model and its significance to hydraulic fracturing and fracture toughness testing. In Proceedings of the 21st US Rock Mechanics Symposium, Rolla, MI, USA, 27–30 May 1980; pp. 581–590. [Google Scholar]
- Alneasan, M.; Behnia, M.; Bagherpour, R. Frictional crack initiation and propagation in rocks under compressive loading. Theor. Appl. Fract. Mech. 2018, 97, 189–203. [Google Scholar] [CrossRef]
- Meng, T.; Xue, G.; Ma, J.; Yang, Y.; Liu, W.; Zhang, J.; Jiao, B.; Fang, S.; Ren, G. Mixed mode fracture tests and inversion of FPZ at crack tip of overlying strata in underground coal gasification combustion cavity under real-time high temperature condition. Eng. Fract. Mech. 2020, 239, 107298. [Google Scholar] [CrossRef]
- Feng, G.; Liu, C.; Wang, J.; Tao, Y.; Duan, Z.; Xiang, W. Experimental study on the fracture toughness of granite affected by coupled mechanical-thermo. Lithosphere 2022, 2022, 5715093. [Google Scholar] [CrossRef]
- Kuruppu, M.D.; Obara, Y.; Ayatollahi, M.R.; Chong, K.P.; Funatsu, T. ISRM suggested method for determining the Mode I fracture toughness using semi-circular bend specimen. Rock Mech. Rock Eng. 2014, 47, 267–274. [Google Scholar] [CrossRef]
- Sun, Z.; Feng, G.; Song, X.; Meng, T.; Zhu, D.; Zhai, Y.; Wang, Z. Effects of CO2 state and anisotropy on the progressive failure characteristics of bituminous coal: An experimental study. Chin. J. Rock. Mech. Eng. 2022, 41, 70–81. (In Chinese) [Google Scholar]
- Suo, Y.; Chen, Z.; Rahman, S.S.; Song, H. Experimental and numerical investigation of the effect of bedding layer orientation on fracture toughness of shale rocks. Rock Mech. Rock Eng. 2020, 53, 3625–3635. [Google Scholar] [CrossRef]
- Meng, F.; Song, J.; Wong, L.N.Y.; Wang, Z.; Zhang, C. Characterization of roughness and shear behavior of thermally treated granite fractures. Eng. Geol. 2021, 293, 106287. [Google Scholar] [CrossRef]
- Zhao, F.; Sun, Q.; Zhang, W. Environ. Fractal analysis of pore structure of granite after variable thermal cycles. Earth Sci. 2019, 78, 677. [Google Scholar] [CrossRef]
- Xiao, W.; Yu, G.; Li, H.; Zhang, D.; Li, S.; Yu, B. Thermal cracking characteristics and mechanism of sandstone after high-temperature treatment. Fatigue Fract. Eng. Mater. Struct. 2021, 44, 3169–3185. [Google Scholar] [CrossRef]
- Taheri, A.; Zhang, Y.; Munoz, H. Performance of rock crack stress thresholds determination criteria and investigating strength and confining pressure effects. Constr. Build. Mater. 2020, 243, 118263. [Google Scholar] [CrossRef]
- Feng, G.; Kang, Y.; Chen, F.; Liu, Y.; Wang, X. The influence of temperatures on mixed-mode (I plus II) and mode-II fracture toughness of sandstone. Eng. Fract. Mech. 2018, 189, 51–63. [Google Scholar] [CrossRef]
- Meng, Q.; Qian, W.; Liu, J.; Zhang, M.; Lu, M.; Wu, Y. Analysis of triaxial compression deformation and strength characteristics of limestone after high temperature. Arab. J. Geosci. 2020, 13, 153. [Google Scholar] [CrossRef]
- Funatsu, T.; Kuruppu, M.; Matsui, K. Effects of temperature and confining pressure on mixed-mode (I-II) and mode-II fracture toughness of Kimachi sandstone. Int. J. Rock Mech. Min. 2014, 67, 1–8. [Google Scholar] [CrossRef]
- Li, Y.; Dai, F.; Wei, M.; Du, H. Numerical investigation on dynamic fracture behavior of cracked rocks under mixed mode I/II loading. Eng. Fract. Mech. 2020, 235, 107176. [Google Scholar] [CrossRef]
Group Number | Conditions of Experiment | Fracture Mode | Keff (MPa·m1/2) |
---|---|---|---|
Group 1 | The axial pressure is 25 MPa, the lateral pressure is 20 MPa, and the temperature is 100 °C | Mode I | 1.396 |
Mixed mode (I+II) (α = 30°) | 1.086 | ||
Mode II | 0.437 | ||
Group 2 | The axial pressure is 40 MPa, the lateral pressure is 30 MPa, and the temperature is 130 °C | Mode I | 1.344 |
Mixed mode (I+II) (α = 30°) | 1.137 | ||
Mode II | 0.532 | ||
Group 3 | The axial pressure is 50 MPa, the lateral pressure is 35 MPa, and the temperature is 100 °C | Mode I | 1.536 |
Mixed mode (I+II) (α = 30°) | 0.915 | ||
Mode II | 0.416 | ||
Group 4 | The axial pressure is 50 MPa, the lateral pressure is 40 MPa, and the temperature is 150 °C | Mode I | 1.481 |
Mixed mode (I+II) (α = 30°) | 0.949 | ||
Mode II | 0.407 | ||
Group 5 | The axial pressure is 60 MPa, the lateral pressure is 40 MPa, and the temperature is 100 °C | Mode I | 1.581 |
Mixed mode (I+II) (α = 30°) | 0.969 | ||
Mode II | 0.381 | ||
Group 6 | The axial pressure is 75 MPa, the lateral pressure is 50 MPa, and the temperature is 200 °C | Mode I | 1.357 |
Mixed mode (I+II) (α = 30°) | 0.925 | ||
Mode II | 0.461 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Feng, G.; Xie, H.; Wang, J.; Duan, Z.; Tao, Y.; Lu, G.; Xu, H.; Hu, Y.; Li, C.; et al. Study on the Accuracy of Fracture Criteria in Predicting Fracture Characteristics of Granite with Different Occurrence Depths. Energies 2022, 15, 9248. https://doi.org/10.3390/en15239248
Liu C, Feng G, Xie H, Wang J, Duan Z, Tao Y, Lu G, Xu H, Hu Y, Li C, et al. Study on the Accuracy of Fracture Criteria in Predicting Fracture Characteristics of Granite with Different Occurrence Depths. Energies. 2022; 15(23):9248. https://doi.org/10.3390/en15239248
Chicago/Turabian StyleLiu, Chenbo, Gan Feng, Hongqiang Xie, Jilan Wang, Zhipan Duan, Ye Tao, Gongda Lu, Huining Xu, Yaoqing Hu, Chun Li, and et al. 2022. "Study on the Accuracy of Fracture Criteria in Predicting Fracture Characteristics of Granite with Different Occurrence Depths" Energies 15, no. 23: 9248. https://doi.org/10.3390/en15239248
APA StyleLiu, C., Feng, G., Xie, H., Wang, J., Duan, Z., Tao, Y., Lu, G., Xu, H., Hu, Y., Li, C., Hu, Y., Wu, Q., & Chen, L. (2022). Study on the Accuracy of Fracture Criteria in Predicting Fracture Characteristics of Granite with Different Occurrence Depths. Energies, 15(23), 9248. https://doi.org/10.3390/en15239248