Energy Security Assessment Based on a New Dynamic Multi-Criteria Decision-Making Framework
Abstract
:1. Introduction
2. Dynamic Multi-Criteria Decision Making
3. Framework for Dynamic Multi-Criteria Evaluation of the Energy Security of States
3.1. Basic Assumptions
3.2. Conceptual Framework
- Enables the aggregation of the performance of alternatives from successive periods of time;
- Allows the definition of any strategies of aggregation of individual periods through the coefficient ;
- Takes into account the variability of sets of alternatives and criteria along with weights;
- Is adapted to capture certain data from the past and present and uncertain data which are predictions of the future;
- Takes into account the trend of changes of alternatives over time when forecasting future data values, and thus takes the trend into account in the evaluation.
3.3. Data Sources
4. Results
5. Discussion
6. Conclusions
- Aggregation of assessments from various periods of time into one global assessment;
- Defining any strategies for aggregating periods of time;
- Capture of data from the past, present and forecasts of the future;
- Consideration of changes in the sets of alternatives and criteria;
- Consideration of variable weights of criteria;
- Consideration of the trend of changes in the value of alternatives over time.
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- Cergibozan, R. Renewable Energy Sources as a Solution for Energy Security Risk: Empirical Evidence from OECD Countries. Renew. Energy 2022, 183, 617–626. [Google Scholar] [CrossRef]
- Tete, K.H.S.; Soro, Y.M.; Sidibé, S.S.; Jones, R.V. Assessing Energy Security within the Electricity Sector in the West African Economic and Monetary Union: Inter-Country Performances and Trends Analysis with Policy Implications. Energy Policy 2023, 173, 113336. [Google Scholar] [CrossRef]
- Tutak, M.; Brodny, J. Analysis of the Level of Energy Security in the Three Seas Initiative Countries. Appl. Energy 2022, 311, 118649. [Google Scholar] [CrossRef]
- Plėta, T.; Tvaronavičienė, M.; Casa, S.D. Cyber Effect and Security Management Aspects in Critical Energy Infrastructures. Insights Into Reg. Dev. 2020, 2, 538–548. [Google Scholar] [CrossRef]
- Polyakov, M.; Khanin, I.; Shevchenko, G.; Bilozubenko, V. Constructing a Model of National Production System for Building a Circular Economy for International Trade Involvement. Entrep. Sustain. Issues 2021, 9, 287–299. [Google Scholar] [CrossRef]
- Ziemba, P. NEAT F-PROMETHEE—A New Fuzzy Multiple Criteria Decision Making Method Based on the Adjustment of Mapping Trapezoidal Fuzzy Numbers. Expert Syst. Appl. 2018, 110, 363–380. [Google Scholar] [CrossRef]
- Ziemba, P. Inter-Criteria Dependencies-Based Decision Support in the Sustainable Wind Energy Management. Energies 2019, 12, 749. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Li, S. Shale Gas Industry Sustainability Assessment Based on WSR Methodology and Fuzzy Matter-Element Extension Model: The Case Study of China. J. Clean. Prod. 2019, 226, 336–348. [Google Scholar] [CrossRef]
- Umar, M.; Riaz, Y.; Yousaf, I. Impact of Russian-Ukraine War on Clean Energy, Conventional Energy, and Metal Markets: Evidence from Event Study Approach. Resour. Policy 2022, 79, 102966. [Google Scholar] [CrossRef]
- Nerlinger, M.; Utz, S. The Impact of the Russia-Ukraine Conflict on Energy Firms: A Capital Market Perspective. Financ. Res. Lett. 2022, 50, 103243. [Google Scholar] [CrossRef]
- Zakeri, B.; Paulavets, K.; Barreto-Gomez, L.; Echeverri, L.G.; Pachauri, S.; Boza-Kiss, B.; Zimm, C.; Rogelj, J.; Creutzig, F.; Ürge-Vorsatz, D.; et al. Pandemic, War, and Global Energy Transitions. Energies 2022, 15, 6114. [Google Scholar] [CrossRef]
- Rodríguez-Fernández, L.; Carvajal, A.B.F.; de Tejada, V.F. Improving the Concept of Energy Security in an Energy Transition Environment: Application to the Gas Sector in the European Union. Extr. Ind. Soc. 2022, 9, 101045. [Google Scholar] [CrossRef]
- Mišík, M. The EU Needs to Improve Its External Energy Security. Energy Policy 2022, 165, 112930. [Google Scholar] [CrossRef]
- Toborek-Mazur, J.; Partacz, K.; Surówka, M. Energy Security as a Premise for Mergers and Acquisitions on the Example of the Multi-Energy Concern PKN Orlen in the Face of the Challenges of the 2020s. Energies 2022, 15, 5112. [Google Scholar] [CrossRef]
- Azzuni, A.; Breyer, C. Global Energy Security Index and Its Application on National Level. Energies 2020, 13, 2502. [Google Scholar] [CrossRef]
- Ang, B.W.; Choong, W.L.; Ng, T.S. Energy Security: Definitions, Dimensions and Indexes. Renew. Sustain. Energy Rev. 2015, 42, 1077–1093. [Google Scholar] [CrossRef]
- Saisana, M.; Saltelli, A.; Tarantola, S. Uncertainty and Sensitivity Analysis Techniques as Tools for the Quality Assessment of Composite Indicators. J. R. Stat. Soc. Ser. A 2005, 168, 307–323. [Google Scholar] [CrossRef]
- Gasser, P. A Review on Energy Security Indices to Compare Country Performances. Energy Policy 2020, 139, 111339. [Google Scholar] [CrossRef]
- Franki, V.; Višković, A. Multi-Criteria Decision Support: A Case Study of Southeast Europe Power Systems. Util. Policy 2021, 73, 101286. [Google Scholar] [CrossRef]
- Wang, Q.; Zhan, L. Assessing the Sustainability of Renewable Energy: An Empirical Analysis of Selected 18 European Countries. Sci. Total Environ. 2019, 692, 529–545. [Google Scholar] [CrossRef]
- Ziemba, P. Multi-Criteria Fuzzy Evaluation of the Planned Offshore Wind Farm Investments in Poland. Energies 2021, 14, 978. [Google Scholar] [CrossRef]
- Antunes, C.H.; Henriques, C.O. Multi-Objective Optimization and Multi-Criteria Analysis Models and Methods for Problems in the Energy Sector. In Multiple Criteria Decision Analysis; Greco, S., Ehrgott, M., Figueira, J.R., Eds.; International Series in Operations Research & Management Science; Springer: New York, NY, USA, 2016; pp. 1067–1165. ISBN 978-1-4939-3093-7. [Google Scholar]
- Yu, P.-L.; Chen, Y.-C. Dynamic MCDM, Habitual Domains and Competence Set Analysis for Effective Decision Making in Changeable Spaces. In Trends in Multiple Criteria Decision Analysis; Ehrgott, M., Figueira, J.R., Greco, S., Eds.; International Series in Operations Research & Management Science; Springer: Boston, MA, USA, 2010; pp. 1–35. ISBN 978-1-4419-5904-1. [Google Scholar]
- Campanella, G.; Ribeiro, R.A. A Framework for Dynamic Multiple-Criteria Decision Making. Decis. Support Syst. 2011, 52, 52–60. [Google Scholar] [CrossRef]
- Zulueta, Y.; Martell, V.; Martínez, J.; Martínez, L. A Dynamic Multi-Expert Multi-Criteria Decision Making Model for Risk Analysis. In Proceedings of the Advances in Artificial Intelligence and Its Applications, Mexico City, Mexico, 24–30 November 2013; Castro, F., Gelbukh, A., González, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 132–143. [Google Scholar]
- Chen, Y.; Li, K.W.; He, S. Dynamic Multiple Criteria Decision Analysis with Application in Emergency Management Assessment. In Proceedings of the 2010 IEEE International Conference on Systems, Man and Cybernetics, Istanbul, Turkey, 10–13 October 2010; pp. 3513–3517. [Google Scholar]
- Ziemba, P.; Jankowski, J.; Wątróbski, J. Dynamic Decision Support in the Internet Marketing Management. In Transactions on Computational Collective Intelligence XXIX; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; pp. 39–68. ISBN 978-3-319-90286-9. [Google Scholar]
- Chen, Y.; Li, B. Dynamic Multi-Attribute Decision Making Model Based on Triangular Intuitionistic Fuzzy Numbers. Sci. Iran. 2011, 18, 268–274. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Kou, G.; Peng, Y. Dynamic Fuzzy Multiple Criteria Decision Making for Performance Evaluation. Technol. Econ. Dev. Econ. 2015, 21, 705–719. [Google Scholar] [CrossRef]
- Yang, Z.; Li, J.; Huang, L.; Shi, Y. Developing Dynamic Intuitionistic Normal Fuzzy Aggregation Operators for Multi-Attribute Decision-Making with Time Sequence Preference. Expert Syst. Appl. 2017, 82, 344–356. [Google Scholar] [CrossRef]
- Polomčić, D.; Gligorić, Z.; Bajić, D.; Gligorić, M.; Negovanović, M. Multi-Criteria Fuzzy-Stochastic Diffusion Model of Groundwater Control System Selection. Symmetry 2019, 11, 705. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.; Liu, S.; Liu, X. Dynamic Grey Target Decision Making Method with Three-Parameter Grey Numbers. Grey Syst. Theory Appl. 2016, 6, 169–179. [Google Scholar] [CrossRef]
- Keshavarz-Ghorabaee, M.; Amiri, M.; Zavadskas, E.K.; Turskis, Z.; Antucheviciene, J. A Dynamic Fuzzy Approach Based on the EDAS Method for Multi-Criteria Subcontractor Evaluation. Information 2018, 9, 68. [Google Scholar] [CrossRef] [Green Version]
- Su, Z.; Chen, M.; Xia, G.; Wang, L. An Interactive Method for Dynamic Intuitionistic Fuzzy Multi-Attribute Group Decision Making. Expert Syst. Appl. 2011, 38, 15286–15295. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, L.; Martínez, L. A Dynamic Multi-Criteria Decision Making Model with Bipolar Linguistic Term Sets. Expert Syst. Appl. 2018, 95, 104–112. [Google Scholar] [CrossRef]
- Tao, R.; Liu, Z.; Cai, R.; Cheong, K.H. A Dynamic Group MCDM Model with Intuitionistic Fuzzy Set: Perspective of Alternative Queuing Method. Inf. Sci. 2021, 555, 85–103. [Google Scholar] [CrossRef]
- Jassbi, J.J.; Ribeiro, R.A.; Varela, L.R. Dynamic MCDM with Future Knowledge for Supplier Selection. J. Decis. Syst. 2014, 23, 232–248. [Google Scholar] [CrossRef]
- Wei, G. Grey Relational Analysis Model for Dynamic Hybrid Multiple Attribute Decision Making. Knowl.-Based Syst. 2011, 24, 672–679. [Google Scholar] [CrossRef]
- Guitouni, A.; Martel, J.-M. Tentative Guidelines to Help Choosing an Appropriate MCDA Method. Eur. J. Oper. Res. 1998, 109, 501–521. [Google Scholar] [CrossRef]
- Hwang, C.-L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications A State-of-the-Art Survey; Lecture Notes in Economics and Mathematical Systems; Springer: Berlin/Heidelberg, Germany, 1981; ISBN 978-3-540-10558-9. [Google Scholar]
- Brans, J.-P.; Mareschal, B. The PROMCALC & GAIA Decision Support System for Multicriteria Decision Aid. Decis. Support Syst. 1994, 12, 297–310. [Google Scholar] [CrossRef]
- Vinogradova, I. Multi-Attribute Decision-Making Methods as a Part of Mathematical Optimization. Mathematics 2019, 7, 915. [Google Scholar] [CrossRef] [Green Version]
- Ziemba, P.; Gago, I. Uncertainty of Preferences in the Assessment of Supply Chain Management Systems Using the PROMETHEE Method. Symmetry 2022, 14, 1043. [Google Scholar] [CrossRef]
- Brans, J.-P.; De Smet, Y. PROMETHEE Methods. In Multiple Criteria Decision Analysis: State of the Art Surveys; Greco, S., Ehrgott, M., Figueira, J.R., Eds.; International Series in Operations Research & Management Science; Springer: New York, NY, USA, 2016; pp. 187–219. ISBN 978-1-4939-3094-4. [Google Scholar]
- Ziemba, P. Uncertain Multi-Criteria Analysis of Offshore Wind Farms Projects Investments—Case Study of the Polish Economic Zone of the Baltic Sea. Appl. Energy 2022, 309, 118232. [Google Scholar] [CrossRef]
- Ziemba, P. Selection of Electric Vehicles for the Needs of Sustainable Transport under Conditions of Uncertainty—A Comparative Study on Fuzzy MCDA Methods. Energies 2021, 14, 7786. [Google Scholar] [CrossRef]
- Hanuláková, E.; Daňo, F.; Kukura, M. Transition of Business Companies to Circular Economy in Slovakia. Entrep. Sustain. Issues 2021, 9, 204–220. [Google Scholar] [CrossRef]
- Holt, C.C. Forecasting Seasonals and Trends by Exponentially Weighted Moving Averages. Int. J. Forecast. 2004, 20, 5–10. [Google Scholar] [CrossRef]
- International Index of Energy Security Risk, Assessing Risk in a Global Energy Market; Global Energy Institute, The United States Chamber of Commerce, 2020. Available online: https://www.globalenergyinstitute.org/international-index-energy-security-risk-2020-edition (accessed on 7 December 2022).
- Ziemba, P.; Becker, A.; Becker, J. Forecasting and Assessment of the Energy Security Risk in Fuzzy Environment. Energies 2021, 14, 5934. [Google Scholar] [CrossRef]
- Podbregar, I.; Šimić, G.; Radovanović, M.; Filipović, S.; Šprajc, P. International Energy Security Risk Index—Analysis of the Methodological Settings. Energies 2020, 13, 3234. [Google Scholar] [CrossRef]
- Podbregar, I.; Šimić, G.; Radovanović, M.; Filipović, S.; Maletič, D.; Šprajc, P. The International Energy Security Risk Index in Sustainable Energy and Economy Transition Decision Making—A Reliability Analysis. Energies 2020, 13, 3691. [Google Scholar] [CrossRef]
- Keeney, R.L.; Raiffa, H. Decisions with Multiple Objectives: Preferences and Value Trade-Offs; Cambridge University Press: Cambridge, UK, 1993; ISBN 978-0-521-43883-4. [Google Scholar]
- Roy, B. Decision-Aiding Today: What Should We Expect? In Multicriteria Decision Making. Advances in MCDM Models, Algorithms, Theory, and Applications; Gal, T., Stewart, T.J., Hanne, T., Eds.; International Series in Operations Research & Management Science; Springer: Boston, MA, USA, 1999; pp. 1–35. ISBN 978-1-4613-7283-7. [Google Scholar]
- Doumpos, M.; Zopounidis, C. An Overview of Multiple Criteria Decision Aid. In Multicriteria Analysis in Finance; Springer Briefs in Operations Research; Springer: Cham, Switzerland, 2014; pp. 11–21. ISBN 978-3-319-05863-4. [Google Scholar]
- Ziemba, P. Multi-Criteria Approach to Stochastic and Fuzzy Uncertainty in the Selection of Electric Vehicles with High Social Acceptance. Expert Syst. Appl. 2021, 173, 114686. [Google Scholar] [CrossRef]
Application Field | MCDM Methods | DMCDM Extensions | Reference |
---|---|---|---|
Emergency management | DEA | Aggregation of different periods of time, different aggregation strategies | [26] |
Project risk management | MAUT | Calculation of dynamic risk exposure and dynamic discriminative index for different periods | [25] |
Air traffic | SAW | Changeability of the set of alternatives over time, taking into account historical and present data | [24] |
Automotive manufacturing | SAW | Changeability of the set of alternatives and the set of criteria over time, taking into account historical, present and projected future data | [37] |
Construction industry | Fuzzy EDAS | Changeability of the set of alternatives and the set of decision makers over time, aggregation of different periods of time | [33] |
Marketing management | PROMETHEE GDSS | Aggregation of different periods of time, different aggregation strategies | [27] |
Enterprise Resources Planning system implementation | GRA/Fuzzy GRA | Changeability of criteria weights over time, aggregation of different periods of time, the use of real numbers for the oldest periods, interval numbers for intermediate periods and triangular fuzzy numbers for the most recent periods | [38] |
Investment management | TIFN-WAA | Aggregation of different periods of time, different aggregation strategies | [28] |
Investment management | Fuzzy TOPSIS | Variability of criterion weights over time, aggregation of different periods of time | [29] |
Vendor selection | TPIGN | Study of the trend of changes in alternatives on the criteria in subsequent periods, aggregation of different periods of time, taking into account the trend of changes | [32] |
Reverse logistics management | DIF-MAGDM | Variability of criteria weights over time, aggregation of different time periods, aggregation of assessments of many experts | [34] |
Electric energy metering device selection | DINFWAA/DINFWGA | Aggregation of different periods of time, different aggregation strategies | [30] |
Supplier selection | BLTS DMCDM | Variability of the set of alternatives and the set of criteria over time, taking into account historical and present data | [35] |
Groundwater management | Fuzzy TOPSIS | Aggregation of different periods of time | [31] |
Supplier selection | IFS DGMCDM | Variability of the set of alternatives and the set of criteria over time, taking into account historical and present data | [36] |
Data Group | Description |
---|---|
Global Fuels | Reliability and diversity of the world’s oil, natural gas and coal reserves and supplies. |
Fuel Imports | Exposure to unreliable supplies of crude oil, natural gas and coal. |
Energy Expenditures | Energy costs and the risk of consumer exposure to price shocks. |
Price & Market Volatility | Susceptibility of economies to large fluctuations in energy prices. |
Energy Use Intensity | Energy consumption in relation to population and economic performance. |
Electric Power Sector | Reliability of electricity generation capacity. |
Transportation Sector | Efficiency of energy use in the transport sector per unit of GDP and population. |
Environmental | The degree of exposure to orders to reduce greenhouse gas emissions. |
Data Group | Indicator | Weight |
---|---|---|
Global Fuels | C1—Security of World Oil Reserves | 2 |
C2—Security of World Oil Production | 3 | |
C3—Security of World Natural Gas Reserves | 2 | |
C4—Security of World Natural Gas Production | 3 | |
C5—Security of World Coal Reserves | 2 | |
C6—Security of World Coal Production | 2 | |
Fuel Imports | C7—Petroleum Import Exposure | 3 |
C8—Natural Gas Import Exposure | 3 | |
C9—Coal Import Exposure | 2 | |
C10—Total Energy Import Exposure | 4 | |
C11—Fossil Fuel Import Expenditures per GDP | 5 | |
Energy Expenditures | C12—Energy Expenditure Intensity | 4 |
C13—Energy Expenditures per Capita | 3 | |
C14—Retail Electricity Prices | 6 | |
C15—Crude Oil Prices | 7 | |
Price and Market Volatility | C16—Crude Oil Price Volatility | 5 |
C17—Energy Expenditure Volatility | 4 | |
C18—World Oil Refinery Utilization | 2 | |
C19—GDP per Capita | 4 | |
Energy Use Intensity | C20—Energy Consumption per Capita | 4 |
C21—Energy Intensity | 7 | |
C22—Petroleum Intensity | 3 | |
Electric Power Sector | C23—Electricity Diversity | 5 |
C24—Non-CO2 Emitting Share of Electricity Generation | 2 | |
Transportation Sector | C25—Transportation Energy per Capita | 3 |
C26—Transportation Energy Intensity | 4 | |
Environmental | C27—CO2 Emissions Trend | 2 |
C28—Energy-Related Carbon Dioxide Emissions per Capita | 2 | |
C29—Energy-Related Carbon Dioxide Emissions Intensity | 2 |
Country (Alternative) | k = 1 (2015) | k = 2 (2016) | k = 3 (2017) | k = 4 (2018) | k = 5 (2025) | 2015–2025 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Risk Score | Rank | Risk Score | Rank | Risk Score | Rank | Risk Score | Rank | Risk Score | Rank | Risk Score | Rank | |
A1-Australia | 824.63 | 4 | 845.97 | 5 | 842.38 | 4 | 805.37 | 4 | 866.4346 | 5 | 833.3764 | 5 |
A2-Brazil | 1077.87 | 13 | 1065.05 | 13 | 1058.23 | 13 | 1059.04 | 13 | 1106.213 | 13 | 1075.595 | 13 |
A3-Canada | 832.59 | 5 | 834.24 | 4 | 830.15 | 3 | 802.05 | 3 | 832.6732 | 4 | 820.32 | 4 |
A4-China | 917.83 | 9 | 956.64 | 10 | 955.6 | 9 | 912.09 | 8 | 927.4488 | 8 | 926.0776 | 8 |
A5-Denmark | 861.02 | 6 | 864.51 | 6 | 875.99 | 6 | 864.36 | 5 | 889.9508 | 6 | 872.8812 | 6 |
A6-France | 1133.04 | 15 | 1137.06 | 15 | 1160.19 | 15 | 1128.04 | 15 | 1220.567 | 14 | 1160.415 | 15 |
A7-Germany | 1087.07 | 14 | 1100.46 | 14 | 1118.98 | 14 | 1084.78 | 14 | 1246.538 | 15 | 1138.524 | 14 |
A8-India | 1216.16 | 19 | 1205.31 | 17 | 1169.71 | 17 | 1144.63 | 16 | 1348.524 | 19 | 1221.527 | 19 |
A9-Indonesia | 930.37 | 10 | 920.06 | 7 | 929.66 | 8 | 931.96 | 9 | 912.3883 | 7 | 924.5095 | 7 |
A10-Italy | 1225.02 | 20 | 1239.57 | 21 | 1269.55 | 21 | 1240.15 | 20 | 1340.313 | 18 | 1271.568 | 20 |
A11-Japan | 1292.8 | 22 | 1277.66 | 22 | 1307.14 | 22 | 1280.56 | 22 | 1496.696 | 22 | 1348.993 | 22 |
A12-Mexico | 899.61 | 7 | 947.77 | 8 | 975.32 | 10 | 966.19 | 11 | 1015.753 | 11 | 973.472 | 10 |
A13-Netherlands | 1172.44 | 16 | 1163.36 | 16 | 1162.95 | 16 | 1146.65 | 17 | 1362.414 | 20 | 1217.259 | 16 |
A14-New Zealand | 779.31 | 3 | 771.32 | 2 | 774.19 | 2 | 757.39 | 2 | 780.674 | 3 | 769.6402 | 2 |
A15-Norway | 683.42 | 1 | 686.87 | 1 | 865.86 | 5 | 869.39 | 6 | 668.605 | 1 | 771.9525 | 3 |
A16-Poland | 985.25 | 12 | 1010.42 | 12 | 1010.2 | 12 | 967.43 | 12 | 1011.327 | 10 | 990.9571 | 12 |
A17-South Africa | 1185.7 | 17 | 1226.52 | 20 | 1185.47 | 18 | 1155.67 | 18 | 1328.364 | 17 | 1220.546 | 18 |
A18-South Korea | 1487.92 | 24 | 1489.86 | 24 | 1492.33 | 24 | 1453.2 | 24 | 1621.731 | 23 | 1514.81 | 24 |
A19-Spain | 1209.45 | 18 | 1211.11 | 18 | 1225.49 | 19 | 1189.13 | 19 | 1262.946 | 16 | 1219.141 | 17 |
A20-Thailand | 1456.31 | 23 | 1442.6 | 23 | 1440.73 | 23 | 1396.36 | 23 | 1662.608 | 24 | 1491.29 | 23 |
A21-Turkey | 1228.48 | 21 | 1225.65 | 19 | 1261.93 | 20 | 1266.61 | 21 | 1392.034 | 21 | 1295.86 | 21 |
A22-United Kingdom | 907.29 | 8 | 956.26 | 9 | 978.7 | 11 | 943.85 | 10 | 1050.369 | 12 | 976.8756 | 11 |
A23-United States | 772.25 | 2 | 775.42 | 3 | 769.17 | 1 | 727.44 | 1 | 708.9944 | 2 | 735.3583 | 1 |
A24-Russian Federation | 943.54 | 11 | 975.81 | 11 | 914.25 | 7 | 875.04 | 7 | 984.1553 | 9 | 928.6226 | 9 |
A25-Ukraine | 1765.67 | 25 | 1734.17 | 25 | 1594.36 | 25 | 1462.82 | 25 | 1782.405 | 25 | 1629.269 | 25 |
Country (Alternative) | k = 1 (2015) | k = 2 (2016) | k = 3 (2017) | k = 4 (2018) | k = 5 (2025) | 2015–2025 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rank | Rank | Rank | Rank | Rank | Rank | |||||||
A1-Australia | 0.0297 | 11 | 0.0162 | 12 | 0.0191 | 11 | 0.0282 | 10 | 0.0277 | 12 | 0.0261 | 11 |
A2-Brazil | 0.0329 | 10 | 0.0313 | 11 | 0.0317 | 10 | 0.0161 | 12 | 0.0783 | 7 | 0.0395 | 10 |
A3-Canada | 0.0649 | 8 | 0.0649 | 8 | 0.0607 | 9 | 0.0617 | 8 | 0.0498 | 10 | 0.0587 | 9 |
A4-China | 0.1026 | 4 | 0.0985 | 5 | 0.0989 | 5 | 0.1099 | 5 | 0.1289 | 3 | 0.1127 | 4 |
A5-Denmark | 0.1360 | 2 | 0.1343 | 1 | 0.1412 | 1 | 0.1362 | 2 | 0.1464 | 1 | 0.1396 | 1 |
A6-France | 0.0571 | 9 | 0.0632 | 9 | 0.0691 | 7 | 0.0788 | 7 | 0.0553 | 9 | 0.0671 | 7 |
A7-Germany | −0.0050 | 14 | −0.0038 | 14 | 0.0021 | 14 | 0.0102 | 13 | −0.0404 | 17 | −0.0087 | 15 |
A8-India | −0.0438 | 19 | −0.0332 | 18 | −0.0195 | 17 | −0.0292 | 18 | −0.0440 | 18 | −0.0345 | 18 |
A9-Indonesia | 0.0246 | 12 | 0.0361 | 10 | 0.0166 | 12 | −0.0057 | 15 | 0.0628 | 8 | 0.0243 | 12 |
A10-Italy | −0.0189 | 17 | −0.0197 | 17 | −0.0190 | 16 | −0.0106 | 16 | −0.0138 | 15 | −0.0141 | 16 |
A11-Japan | −0.0717 | 20 | −0.0586 | 20 | −0.0628 | 20 | −0.0621 | 20 | −0.1244 | 20 | −0.0815 | 20 |
A12-Mexico | 0.0958 | 6 | 0.0707 | 7 | 0.0638 | 8 | 0.0611 | 9 | 0.0485 | 11 | 0.0620 | 8 |
A13-Netherlands | −0.0994 | 21 | −0.0948 | 21 | −0.0864 | 21 | −0.0832 | 21 | −0.1339 | 21 | −0.1015 | 21 |
A14-New Zealand | 0.1026 | 5 | 0.1068 | 4 | 0.1099 | 4 | 0.1071 | 6 | 0.1061 | 6 | 0.1066 | 6 |
A15-Norway | 0.1295 | 3 | 0.1317 | 2 | 0.1194 | 3 | 0.1267 | 3 | 0.1344 | 2 | 0.1290 | 3 |
A16-Poland | −0.0186 | 16 | −0.0170 | 16 | −0.0133 | 15 | −0.0033 | 14 | 0.0088 | 13 | −0.0036 | 14 |
A17-South Africa | −0.1188 | 22 | −0.1369 | 22 | −0.1361 | 22 | −0.1439 | 22 | −0.1532 | 22 | −0.1427 | 22 |
A18-South Korea | −0.1616 | 23 | −0.1592 | 23 | −0.1517 | 23 | −0.1603 | 23 | −0.1631 | 23 | −0.1603 | 23 |
A19-Spain | −0.0019 | 13 | 0.0079 | 13 | 0.0098 | 13 | 0.0191 | 11 | 0.0058 | 14 | 0.0110 | 13 |
A20-Thailand | −0.1756 | 24 | −0.1638 | 24 | −0.1876 | 24 | −0.2040 | 24 | −0.1638 | 24 | −0.1834 | 24 |
A21-Turkey | −0.0128 | 15 | −0.0049 | 15 | −0.0281 | 18 | −0.0602 | 19 | −0.0466 | 19 | −0.0427 | 19 |
A22-United Kingdom | 0.1379 | 1 | 0.1288 | 3 | 0.1361 | 2 | 0.1458 | 1 | 0.1108 | 5 | 0.1319 | 2 |
A23-United States | 0.0858 | 7 | 0.0907 | 6 | 0.0978 | 6 | 0.1135 | 4 | 0.1173 | 4 | 0.1080 | 5 |
A24-Russian Federation | −0.0283 | 18 | −0.0475 | 19 | −0.0349 | 19 | −0.0243 | 17 | −0.0142 | 16 | −0.0250 | 17 |
A25-Ukraine | −0.2429 | 25 | −0.2417 | 25 | −0.2366 | 25 | −0.2276 | 25 | −0.1836 | 25 | −0.2183 | 25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziemba, P. Energy Security Assessment Based on a New Dynamic Multi-Criteria Decision-Making Framework. Energies 2022, 15, 9356. https://doi.org/10.3390/en15249356
Ziemba P. Energy Security Assessment Based on a New Dynamic Multi-Criteria Decision-Making Framework. Energies. 2022; 15(24):9356. https://doi.org/10.3390/en15249356
Chicago/Turabian StyleZiemba, Paweł. 2022. "Energy Security Assessment Based on a New Dynamic Multi-Criteria Decision-Making Framework" Energies 15, no. 24: 9356. https://doi.org/10.3390/en15249356
APA StyleZiemba, P. (2022). Energy Security Assessment Based on a New Dynamic Multi-Criteria Decision-Making Framework. Energies, 15(24), 9356. https://doi.org/10.3390/en15249356