Utilization of Ashes from Biomass Combustion
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Characteristics of Fly Ash from Biomass Combustion
3.1.1. Sources of Fly Ash
3.1.2. Chemical Composition of Fly Ash
3.1.3. Residual Organic Pollutants in Ashes
3.1.4. Leachability of Impurities
3.1.5. Distribution of Particle Size of Ashes from Biomass Combustion
3.2. Directions for the Management of Ashes from Biomass Combustion
3.2.1. Application of Ashes in Civil Engineering
3.2.2. Application of Ashes in Materials Used in Industry
3.2.3. Application of Ashes to Improve the Quality of Soils and Plant Growth Conditions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stępień, M.; Białecka, B. Inwentaryzacja Innowacyjnych Technologii Odzysku Odpadów Energetycznych. Syst. Support. Prod. Eng. 2017, 6, 108–123. [Google Scholar]
- Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.328.01.0082.01.ENG (accessed on 3 October 2022).
- Ahl, A.; Eklund, J.; Lundqvist, P.; Yarime, M. Balancing Formal and Informal Success Factors Perceived by Supply Chain Stakeholders: A Study of Woody Biomass Energy Systems in Japan. J. Clean. Prod. 2018, 175, 50–59. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). IEA Energy Technology Essentials ETE03: Biomass for Power Generation and CHP. 2007. Available online: http://www.iea.org/techno/essentials3.pdf (accessed on 9 December 2022).
- International Energy Agency (IEA). World Energy Outlook 2022. Available online: https://iea.blob.core.windows.net/assets/c282400e-00b0-4edf-9a8e-6f2ca6536ec8/WorldEnergyOutlook2022.pdf (accessed on 9 December 2022).
- Belviso, C. State-of-the-Art Applications of Fly Ash from Coal and Biomass: A Focus on Zeolite Synthesis Processes and Issues. Prog. Energy Combust. Sci. 2018, 65, 109–135. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An Overview of the Composition and Application of Biomass Ash. Part 1. Phase—Mineral and Chemical Composition and Classification. Fuel 2013, 105, 40–76. [Google Scholar] [CrossRef]
- Jacobson, S.; Högbom, L.; Ring, E.; Nohrstedt, H.-Ö. Effects of Wood Ash Dose and Formulation on Soil Chemistry at Two Coniferous Forest Sites. Water Air Soil Pollut. 2004, 158, 113–125. [Google Scholar] [CrossRef]
- Regulation of the Minister of Agriculture and Rural Development on 18 June 2008 on the Implementation of Certain Provisions of the Act on Fertilizers and Fertilization [J. of Laws 2008 No. 119, Item 765, as Amended]. Available online: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC087385/ (accessed on 3 October 2022).
- Żuchowska-Grzywacz, M. Chemisation of Agriculture in Selected Legal Acts. Stud. Iurid. Lub. 2021, 30, 621. [Google Scholar] [CrossRef]
- Kanhar, A.H.; Chen, S.; Wang, F. Incineration Fly Ash and Its Treatment to Possible Utilization: A Review. Energies 2020, 13, 6681. [Google Scholar] [CrossRef]
- Uliasz-Bocheńczyk, A.; Mazurkiewicz, M.; Mokrzycki, E. Fly Ash from Energy Production—A Waste, Byproduct and Raw Material. Gospod. Surowcami Miner. 2015, 31, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Regulation of the Minister of Environment of 20 December 2005 on the Emission Standards for Installations [Journal of Laws No. 260, Item 2181, as Amended]. Available online: https://bip.mos.gov.pl/g2/big/2013_11/0add2d9dd84ce225fc9401fcc276ebcd.pdf (accessed on 3 October 2022).
- Eliche-Quesada, D.; Felipe-Sesé, M.A.; Fuentes-Sánchez, M.J. Biomass Bottom Ash Waste and By-Products of the Acetylene Industry as Raw Materials for Unfired Bricks. J. Build. Eng. 2021, 38, 102191. [Google Scholar] [CrossRef]
- Wierzbowska, J.; Sienkiewicz, S.; Żarczyński, P.; Krzebietke, S. Environmental Application of Ash from Incinerated Biomass. Agronomy 2020, 10, 482. [Google Scholar] [CrossRef] [Green Version]
- Gradziuk, P.; Gradziuk, B.; Trocewicz, A.; Jendrzejewski, B. Potential of Straw for Energy Purposes in Poland—Forecasts Based on Trend and Causal Models. Energies 2020, 13, 5054. [Google Scholar] [CrossRef]
- Uliasz-Bocheńczyk, A.; Pawluk, A.; Pyzalski, M. Characteristics of Ash from the Combustion of Biomass in Fluidized Bed Boilers. Gospod. Surowcami Miner. 2016, 32, 149–162. [Google Scholar] [CrossRef]
- Stolarski, M.; Krzyżaniak, M.; Stolarski, M.; Szczukowski, S.; Tworkowski, J.; Grygutis, J. Changes of the Quality of Willow Biomass as Renewable Energy Feedstock Harvested with Biobaler. J. Elem. 2015, 20, 717–730. [Google Scholar] [CrossRef]
- Kozłowski, M.; Kozłowski, M.; Gilewska, M.; Otremba, K. Physical and Chemical Properties of Ash from Thermal Power Station Combusting Lignite. A Case Study from Central Poland. J. Elem. 2020, 25, 279–295. [Google Scholar] [CrossRef]
- Regulation of the Minister of the Environment of 9 December 2014 on the Waste Catalog (Journal of Laws of 2013, Item 21, as Amended). Available online: https://www.global-regulation.com/translation/poland/8302260/act-of-14-december-2012-on-waste.html (accessed on 14 September 2022).
- Mirowski, T.; Mokrzycki, E.; Filipowicz, M.; Sornek, K. Charakterystyka wybranych technologii produkcji energii z biomasy w energetyce rozproszonej. Zesz. Nauk. Inst. Gospod. Surowcami Miner. Pol. Akad. Nauk. 2018, 105, 63–74. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An Overview of the Chemical Composition of Biomass. Fuel 2010, 89, 913–933. [Google Scholar] [CrossRef]
- Ciesielczuk, T.; Rosik-Dulewska, C.; Kochanowska, K. The Influence of Biomass Ash on the Migration of Heavy Metals in the Flooded Soil Profile—Model Experiment. Arch. Environ. Prot. 2014, 40, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Shi, R.; Li, J.; Jiang, J.; Mehmood, K.; Liu, Y.; Xu, R.; Qian, W. Characteristics of Biomass Ashes from Different Materials and Their Ameliorative Effects on Acid Soils. J. Environ. Sci. 2017, 55, 294–302. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, J.; Preto, F.; Zhu, J.; Xu, C. Ash Deposition in Biomass Combustion or Co-Firing for Power/Heat Generation. Energies 2012, 5, 5171–5189. [Google Scholar] [CrossRef]
- Supancic, K.; Obernberger, I.; Kienzl, N.; Arich, A. Conversion and Leaching Characteristics of Biomass Ashes during Outdoor Storage—Results of Laboratory Tests. Biomass Bioenergy 2014, 61, 211–226. [Google Scholar] [CrossRef]
- Lanzerstorfer, C. Chemical Composition and Physical Properties of Filter Fly Ashes from Eight Grate-Fired Biomass Combustion Plants. J. Environ. Sci. 2015, 30, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Reimann, C.; Ottesen, T.; Andersson, M.; Arnoldussen, A.; Koller, F.; Englmaier, P. Element Levels in Birch and Spruce Woods Ashes—Green Energy? Sci. Total Environ. 2008, 393, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Pitman, R.M. Wood Ash Use in Forestry—A Review of the Environmental Impacts. Forestry 2006, 79, 563–588. [Google Scholar] [CrossRef] [Green Version]
- Poluszyńska, J. Possibilities of applications of fly ash from the biomass combustion in the sludge management. ICIMB 2013, 6, 49–59. [Google Scholar]
- Wołejko, E.; Wydro, U.; Jabłońska-Trypuć, A.; Butarewicz, A.; Łoboda, T. The Effect of Sewage Sludge Fertilization on the Concentration of PAHs in Urban Soils. Environ. Pollut. 2018, 232, 347–357. [Google Scholar] [CrossRef]
- Zhou, H.; Wu, C.; Onwudili, J.A.; Meng, A.; Zhang, Y.; Williams, P.T. Polycyclic Aromatic Hydrocarbons (PAH) Formation from the Pyrolysis of Different Municipal Solid Waste Fractions. Waste Manag. 2015, 36, 136–146. [Google Scholar] [CrossRef]
- Orasche, J.; Seidel, T.; Hartmann, H.; Schnelle-Kreis, J.; Chow, J.C.; Ruppert, H.; Zimmermann, R. Comparison of Emissions from Wood Combustion. Part 1: Emission Factors and Characteristics from Different Small-Scale Residential Heating Appliances Considering Particulate Matter and Polycyclic Aromatic Hydrocarbon (PAH)-Related Toxicological Potential of Particle-Bound Organic Species. Energy Fuels 2012, 26, 6695–6704. [Google Scholar] [CrossRef]
- Košnář, Z.; Wiesnerová, L.; Částková, T.; Kroulíková, S.; Bouček, J.; Mercl, F.; Tlustoš, P. Bioremediation of Polycyclic Aro-matic Hydrocarbons (PAHs) Present in Biomass Fly Ash by Co-Composting and Co-Vermicomposting. J. Hazard. Mater. 2019, 369, 79–86. [Google Scholar] [CrossRef]
- Atkins, A.; Bignal, K.L.; Zhou, J.L.; Cazier, F. Profiles of Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls from the Combustion of Biomass Pellets. Chemosphere 2010, 78, 1385–1392. [Google Scholar] [CrossRef]
- Straka, P.; Havelcová, M. Polycyclic Aromatic Hydrocarbons and Other Organic Compo-Unds in Ashes from Biomass Combustion. Acta Geodyn. Geomater. 2012, 9, 481–490. [Google Scholar]
- Masto, R.E.; Sarkar, E.; George, J.; Jyoti, K.; Dutta, P.; Ram, L.C. PAHs and Potentially Toxic Elements in the Fly Ash and Bed Ash of Biomass Fired Power Plants. Fuel Process. Technol. 2015, 132, 139–152. [Google Scholar] [CrossRef]
- Eriksson, A.C.; Nordin, E.Z.; Nyström, R.; Pettersson, E.; Swietlicki, E.; Bergvall, C.; Westerholm, R.; Boman, C.; Pagels, J.H. Particulate PAH Emissions from Residential Biomass Combustion: Time-Resolved Analysis with Aerosol Mass Spectrometry. Environ. Sci. Technol. 2014, 48, 7143–7150. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Yu, X.; Wu, J.; Han, J.; Liu, F.; Pan, H. A Comprehensive Review of Ash Issues in Oxyfuel Combustion of Coal and Biomass: Mineral Matter Transformation, Ash Formation, and Deposition. Energy Fuels 2021, 35, 17241–17260. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Vassileva, C.G. An Overview of the Behaviour of Biomass during Combustion: Part II. Ash Fusion and Ash Formation Mechanisms of Biomass Types. Fuel 2014, 117, 152–183. [Google Scholar] [CrossRef]
- Cuenca, J.; Rodríguez, J.; Martín-Morales, M.; Sánchez-Roldán, Z.; Zamorano, M. Effects of Olive Residue Biomass Fly Ash as Filler in Self-Compacting Concrete. Constr. Build. Mater. 2013, 40, 702–709. [Google Scholar] [CrossRef]
- Romero, E.; Quirantes, M.; Nogales, R. Characterization of Biomass Ashes Produced at Different Temperatures from Olive-Oil-Industry and Greenhouse Vegetable Wastes. Fuel 2017, 208, 1–9. [Google Scholar] [CrossRef]
- Modrzycka, A. Wstępna Charakterystyka Popiołów Lotnych Ze Spalania Biomasy w Aspekcie Ich Zastosowania w Materiałach Budowlanych. Mater. Bud. 2015, 1, 82–83. [Google Scholar] [CrossRef]
- Cruz, N.C.; Rodrigues, S.M.; Carvalho, L.; Duarte, A.C.; Pereira, E.; Römkens, P.F.A.M.; Tarelho, L.A.C. Ashes from Fluidized Bed Combustion of Residual Forest Biomass: Recycling to Soil as a Viable Management Option. Environ. Sci. Pollut. Res. Int. 2017, 24, 14770–14781. [Google Scholar] [CrossRef]
- Doudart de la Grée, G.C.H.; Florea, M.V.A.; Keulen, A.; Brouwers, H.J.H. Contaminated Biomass Fly Ashes—Characterization and Treatment Optimization for Reuse as Building Materials. Waste Manag. 2016, 49, 96–109. [Google Scholar] [CrossRef]
- Xiao, R.; Chen, X.; Wang, F.; Yu, G. The Physicochemical Properties of Different Biomass Ashes at Different Ashing Temperature. Renew. Energy 2011, 36, 244–249. [Google Scholar] [CrossRef]
- Szcześniak, A.; Zychowicz, J.; Stolarski, A. Assessment of the Influence of Fly Ash Additive on the Tightness of Concrete with Furnace Cement CEM IIIA 32,5N. Bull. Mil. Univ. Technol. 2017, 66, 153–164. [Google Scholar] [CrossRef]
- Alderete, N.M.; Joseph, A.M.; Van den Heede, P.; Matthys, S.; De Belie, N. Effective and Sustainable Use of Municipal Solid Waste Incineration Bottom Ash in Concrete Regarding Strength and Durability. Resour. Conserv. Recycl. 2021, 167, 105356. [Google Scholar] [CrossRef]
- Rutkowska, G.; Wiśniewski, K.; Chalecki, M.; Górecka, M.; Miłosek, K. Influence of Fly-Ashes on Properties of Ordinary Concretes. Ann. Wars. Univ. Life Sci.—SGGW Land Reclam. 2016, 48, 79–94. [Google Scholar] [CrossRef]
- Rajamma, R.; Ball, R.J.; Tarelho, L.A.C.; Allen, G.C.; Labrincha, J.A.; Ferreira, V.M. Characterisation and Use of Biomass Fly Ash in Cement-Based Materials. J. Hazard. Mater. 2009, 172, 1049–1060. [Google Scholar] [CrossRef] [PubMed]
- Demis, S.; Tapali, J.G.; Papadakis, V.G. An Investigation of the Effectiveness of the Utilization of Biomass Ashes as Pozzolanic Materials. Constr. Build. Mater. 2014, 68, 291–300. [Google Scholar] [CrossRef]
- De La Casa, J.A.; Castro, E. Recycling of washed olive pomace ash for fired clay brick manufacturing. Constr. Build. Mater. 2014, 61, 320–326. [Google Scholar] [CrossRef]
- Coutinho, N.C.; Paes, H.R.; Holanda, J.N.F. Effect of Firewood Ash Waste on the Densification Behavior of Electrical Siliceous Porcelain Formulations. Silicon 2022, 14, 10591–10601. [Google Scholar] [CrossRef]
- Rosales, J.; Cabrera, M.; Beltrán, M.G.; López, M.; Agrela, F. Effects of Treatments on Biomass Bottom Ash Applied to the Manufacture of Cement Mortars. J. Clean. Prod. 2017, 154, 424–435. [Google Scholar] [CrossRef]
- Skels, P.; Haritonovs, V.; Pavlovskis, E. Wood Fly Ash Stabilized Road Base Layers with High Recycled Asphalt Pavement Content. Balt. J. Road Bridge Eng. 2021, 16, 1–15. [Google Scholar] [CrossRef]
- Cabrera, M.; Rosales, J.; Ayuso, J.; Estaire, J.; Agrela, F. Feasibility of Using Olive Biomass Bottom Ash In The Sub-Bases Of Roads And Rural Paths. Constr. Build. Mater. 2018, 181, 266–275. [Google Scholar] [CrossRef]
- Porcino, D.D.; Mauriello, F.; Bonaccorsi, L.; Tomasello, G.; Paone, E.; Malara, A. Recovery of Biomass Fly Ash and HDPE in Innovative Synthetic Lightweight Aggregates for Sustainable Geotechnical Applications. Sustainability 2020, 12, 6552. [Google Scholar] [CrossRef]
- Sarkkinen, M.; Kujala, K.; Kemppainen, K.; Gehör, S. Effect of Biomass Fly Ashes as Road Stabilisation Binder. Road Mater. Pavement Des. 2018, 19, 239–251. [Google Scholar] [CrossRef]
- Galvín, A.P.; López-Uceda, A.; Cabrera, M.; Rosales, J.; Ayuso, J. Stabilization of Expansive Soils with Biomass Bottom Ashes for an Eco-Efficient Construction. Environ. Sci. Pollut. Res. Int. 2021, 28, 24441–24454. [Google Scholar] [CrossRef]
- Bhaskara Rao, B.; Kumar, V. Use of Fly Ash in Mining Sector. In Waste Valorisation and Recycling; Springer: Singapore, 2019; pp. 167–178. [Google Scholar]
- Kuźnia, M.; Zygmunt-Kowalska, B.; Szajding, A.; Magiera, A.; Stanik, R.; Gude, M. Comparative Study on Selected Properties of Modified Polyurethane Foam with Fly Ash. Int. J. Mol. Sci. 2022, 23, 9725. [Google Scholar] [CrossRef] [PubMed]
- Gnatowski, A.; Ulewicz, M.; Chyra, M. Analysis of Changes in Thermomechanical Properties and Structure of Polyamide Modified with Fly Ash from Biomass Combustion. J. Polym. Environ. 2018, 26, 647–654. [Google Scholar] [CrossRef] [Green Version]
- Pardo, S.G.; Bernal, C.; Abad, M.J.; Cano, J.; Ares, A. Fracture and Thermal Behaviour of Biomass Ash Polypropylene Composites. J. Thermoplast. Compos. Mater. 2014, 27, 481–497. [Google Scholar] [CrossRef]
- Huygens, D.; Saveyn, H.; Tonini, D.; Eder, P.; Delgado Sancho, L. Technical Proposals for Selected New Fertilising Materials under the Fertilising Products Regulation (Regulation (EU) 2019/1009); EUR 29841 EN; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Zhai, J.; Burke, I.T.; Stewart, D.I. Potential Reuse Options for Biomass Combustion Ash as Affected by the Persistent Organic Pollutants (POPs) Content. J. Hazard. Mater. Adv. 2022, 5, 100038. [Google Scholar] [CrossRef]
- Zhai, J.; Burke, I.T.; Mayes, W.M.; Stewart, D.I. New Insights into Biomass Combustion Ash Categorisation: A Phylogenetic Analysis. Fuel 2021, 287, 119469. [Google Scholar] [CrossRef]
- Yao, X.; Xu, K.; Li, Y. Physicochemical Properties and Possible Applications of Waste Corncob Fly Ash from Biomass Gasification Industries of China. BioResources 2016, 11, 3783–3798. [Google Scholar] [CrossRef] [Green Version]
- Wójcik, M.; Stachowicz, F.; Masłoń, A. The Use of Wood Biomass Ash in Sewage Sludge Treatment in Terms of Its Agricultural Utilization. Waste Biomass Valoriz. 2020, 11, 753–768. [Google Scholar] [CrossRef] [Green Version]
- Mercl, F.; Tejnecký, V.; Száková, J.; Tlustoš, P. Nutrient Dynamics in Soil Solution and Wheat Response after Biomass Ash Amendments. Agron. J. 2016, 108, 2222–2234. [Google Scholar] [CrossRef]
- Pavla, O.; Filip, M.; Zdeněk, K.; Pavel, T. Fertilization Efficiency of Wood Ash Pellets Amended by Gypsum and Superphosphate in the Ryegrass Growth. Plant Soil Environ. 2017, 63, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Barišić, I.; Netinger Grubeša, I.; Hackenberger, D.K.; Palijan, G.; Glavić, S.; Trkmić, M. Multidisciplinary Approach to Agricultural Biomass Ash Usage for Earthworks in Road Construction. Materials 2022, 15, 4529. [Google Scholar] [CrossRef] [PubMed]
- Lindvall, E.; Gustavsson, A.-M.; Samuelsson, R.; Magnusson, T.; Palmborg, C. Ash as a phosphorus fertilizer to reed canary grass: Effects of nutrient and heavy metal composition on plant and soil. Glob. Chang. Biol. Bioenergy 2015, 7, 553–564. [Google Scholar] [CrossRef]
- Piekarczyk, M.; Kotwica, K.; Jaskulski, D. Effect of spring barley straw ash on the chemical properties of light soil. Fragm. Agron. 2011, 28, 91–99. [Google Scholar]
- Piekarczyk, M.; Kotwica, K.; Jaskulski, D. The elemental composition of ash from straw and hay in the context of their agricultural utilization. Acta Sci. Pol. Agric. 2011, 10, 97–104. [Google Scholar]
- Mohammadi, A.; Anukam, A.I.; Granström, K.; Eskandari, S.; Zywalewska, M.; Sandberg, M.; Aladejana, E.B. Effects of Wood Ash on Physicochemical and Morphological Characteristics of Sludge-Derived Hydrochar Pellets Relevant to Soil and Energy Applications. Biomass Bioenergy 2022, 163, 106531. [Google Scholar] [CrossRef]
- Wacławowicz, R. The effect of ashes from biomass combustion on infection of spring wheat by Gaeumannomyces graminis. Prog. Plant Prot. 2012, 2, 52. [Google Scholar]
- Garg, R.N.; Pathak, H.; Das, D.K.; Tomar, R.K. Use of Flyash and Biogas Slurry for Improving Wheat Yield and Physical Properties of Soil. Environ. Monit. Assess. 2005, 107, 1–9. [Google Scholar] [CrossRef]
- Basu, M.; Pande, M.; Bhadoria, P.B.S.; Mahapatra, S.C. Potential Fly-Ash Utilization in Agriculture: A Global Review. Prog. Nat. Sci. 2009, 19, 1173–1186. [Google Scholar] [CrossRef]
- Paul, S.C. Use of Fly Ash in Agriculture. In Sustainable Agriculture; Apple Academic Press: Palm Bay, FL, USA, 2020; pp. 319–334. [Google Scholar]
- Usmani, Z.; Kumar, V.; Gupta, P.; Gupta, G.; Rani, R.; Chandra, A. Enhanced soil fertility, plant growth promotion and microbial enzymatic activities of vermicomposted fly ash. Sci. Rep. 2019, 9, 10455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basu, M.; Mahapatra, S.C.; Bhadoria, P.B.S. Exploiting Fly Ash as Soil Ameliorant to Improve Productivity of Sabai Grass (Eulaliopsis Binata (Retz.) C.e. Hubb) under Acid Lateritic Soil of India. Asian J. Plant Sci. 2006, 5, 1027–1030. [Google Scholar] [CrossRef] [Green Version]
- Zapałowska, A.; Puchalski, C.; Hury, G.; Makarewicz, A. Influence of Fertilization with the Use of Biomass Ash and Sewage Sludge on the Chemical Composition of Jerusalem Artichoke Used for Energy-Related Purposes. Inż. Ekol. 2017, 18, 235–245. [Google Scholar] [CrossRef]
- Uliasz-Bocheńczyk, A.; Mokrzycki, E. The Elemental Composition of Biomass Ashes as a Preliminary Assessment of the Recovery Potential. Miner. Resour. Manag. 2018, 34, 115–132. [Google Scholar]
- Buneviciene, K.; Drapanauskaite, D.; Mazeika, R.; Tilvikiene, V.; Baltrusaitis, J. Granulated Biofuel Ash as a Sustainable Source of Plant Nutrients. Waste Manag. Res. 2021, 39, 806–817. [Google Scholar] [CrossRef] [PubMed]
- Stavridou, E.; Webster, R.J.; Robson, P.R.H. The Effects of Moderate and Severe Salinity on Composition and Physiology in the Biomass Crop Miscanthus × Giganteus. Plants 2020, 9, 1266. [Google Scholar] [CrossRef]
Type of Fly | Oxide Composition [%] | ||||
---|---|---|---|---|---|
CaO | MgO | Na2O | K2O | P2O5 | |
Straw | 3.05 | 1.34 | 2.3 | 11.14 | 10.76 |
Corn | 6.62 | 2.45 | 0.05 | 35.90 | 9.3 |
Wood biomass | |||||
Pine | 38.9 | 10.6 | 1.1 | 22.0 | 7.0 |
Spruce | 14.9 | 3.9 | 0.6 | 69.3 | 3.7 |
Oak | 50.9 | 5.9 | 0.5 | 12.2 | 3.8 |
Beech | 20.1 | 14.6 | 0.4 | 33.2 | 4.8 |
Energy plants | |||||
Willow | 46.09 | 4.03 | 1.61 | 23.40 | 13.01 |
Poplar | 57.33 | 13.11 | 0.28 | 18.73 | 0.85 |
Eucalyptus | 57.74 | 10.91 | 1.86 | 9.29 | 2.35 |
Miscanthus | 10.00 | - | 0.06 | 11.50 | 1.61 |
Heavy Metals | The Content of Heavy Metals in Ash [Mg × Kg−1] | |||||
---|---|---|---|---|---|---|
Birch | Spruce | Poplar | Miscanthus | Eucalyptus | Willow | |
Cd | 26–203 | 184–4 | 9 | 7 | - | 0.05 |
Cr | 147–508 | 183–342 | 101 | 90 | 82 | 0.60 |
Pb | 37–13,700 | 8–1290 | 177 | 57 | - | 2.84 |
Ni | 18–156 | 1.4–80 | 41 | 45 | - | 0.21 |
Hg | 0.2–1.7 | 0.1–1.2 | 0.2 | - | - | - |
Cu | 138–650 | 294–860 | 175 | 51 | 158 | 0.73 |
Zn | 3910–43,500 | 2630–7910 | 2274 | 185 | 659 | 1.65 |
PAHs | PAHs Content (mg × kg−1 D.M) | ||
---|---|---|---|
NA | 11.1 | 1.87 | 19.1 |
ACY | 0.427 | 0.018 | 12.6 |
ACE | 0.030 | 0.005 | 3.9 |
FL | 0.022 | <0.0007 | 0.2 |
PH | 0.386 | 0.551 | 17.9 |
AN | 0.045 | 0.067 | 21.7 |
FLU | 0.198 | 0.551 | 16.3 |
PY | 0.119 | 0.151 | 6.5 |
BaA | <0.0004 | 0.006 | 7.3 |
CHR | <0.0003 | <0.0003 | 6.5 |
BbF | 0.003 | 0.014 | 13.8 |
BkF | <0.001 | 0.022 | 7.6 |
BaP | 0.003 | 0.088 | 15.0 |
DahA | <0.006 | 0.117 | 1.2 |
IP | <0.006 | 0.029 | 3.9 |
BahiP | <0.006 | 0.101 | 6.7 |
Sum of 16 PAHs | 12.3 | 3.59 | 160.2 |
Type of Ash | pH | Leachability of Contaminants | ||||||
---|---|---|---|---|---|---|---|---|
Cd | Cr | Pb | Ni | Hg | Cu | Zn | ||
Spruce [mg × kg−1] | 12.70 | <0.01 | 6.20 | 0.09 | 1.10 | - | 0.07 | 0.31 |
Forest biomass [mg × D.M−3] | 12.25 | 0.0003 | 0.001 | 0.01 | - | 0.0001 | 0.45 | - |
Permissible max. values 1 [mg × D.M−3] | 6.50–12.5 | 0.40 | 0.50 | 0.50 | - | 0.06 | 0.50 | - |
Distribution of Particle Size Biomass Fly Ashes | Grain Fractions | Percentage [%] |
---|---|---|
Wood waste (79%) and straw (21%) | 50–56 µm | 36.3 |
Wood waste (80%) and coconut shells (20%) | 56–63 µm | 48.6 |
Eucalyptus bark with forest biomass | <2 µm | 12 |
>2 µm <50 µm | 76 | |
>50 µm <2 mm | 12 |
Type of Biomass Burned | The Dose Applied to Soil | Benefits of the Fly Ash Used |
---|---|---|
Spring barley | 32 t × ha−1 | Change in soil reaction from slightly acidic (pH = 6.5) to alkaline (pH = 8.6). The alkaline reaction lasted approximately 4 months after the application of the powdery material to the soil. Increase in the phosphorus content in the soil from 138 to 274 P mg × kg−1. Increase in magnesium content from 22 to 44 Mg mg × kg−1. |
30 t × ha−1 | Increase of available potassium concentration from 160 to 2067 K mg × kg−1. | |
16 t × ha−1 | Increasing the amount of magnesium from 22 to 37 Mg mg × kg−1. | |
Rapeseed straw | >8 t × ha−1 | Change in soil magnesium abundance from low to medium class. |
8 t × ha−1 | Change in soil pH from 6.5 to 7.5. Increase in the concentration of available phosphorus by 43%. In contrast, potassium by 235% compared to the control sample (160 K mg × kg−1). | |
1 t × ha−1, 2 t × ha−1 | Increase in the concentration of available phosphorus by 24% and 27%, respectively. | |
0.75 t × ha−1, 1 t × ha−1 | Increasing the absorbable potassium in the soil by 22.5% and 40%. | |
Wood chips, willow, straw | 10.5 t × ha−1 | Change in pH from 5.20 to 5.74. The decrease in hydrolytic acidity by an average of 0.58 me × 100 g−1 of soil compared to non-fertilized soil. Increasing the degree of saturation of the complex with alkaline compounds by approximately 12%. Change in potassium from medium to very high in soil. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odzijewicz, J.I.; Wołejko, E.; Wydro, U.; Wasil, M.; Jabłońska-Trypuć, A. Utilization of Ashes from Biomass Combustion. Energies 2022, 15, 9653. https://doi.org/10.3390/en15249653
Odzijewicz JI, Wołejko E, Wydro U, Wasil M, Jabłońska-Trypuć A. Utilization of Ashes from Biomass Combustion. Energies. 2022; 15(24):9653. https://doi.org/10.3390/en15249653
Chicago/Turabian StyleOdzijewicz, Joanna Irena, Elżbieta Wołejko, Urszula Wydro, Mariola Wasil, and Agata Jabłońska-Trypuć. 2022. "Utilization of Ashes from Biomass Combustion" Energies 15, no. 24: 9653. https://doi.org/10.3390/en15249653
APA StyleOdzijewicz, J. I., Wołejko, E., Wydro, U., Wasil, M., & Jabłońska-Trypuć, A. (2022). Utilization of Ashes from Biomass Combustion. Energies, 15(24), 9653. https://doi.org/10.3390/en15249653