Supporting Decarbonization Strategies of Local Energy Systems by De-Risking Investments in Renewables: A Case Study on Pantelleria Island
Abstract
:1. Introduction
1.1. Literature Review
1.2. Gaps and Contributions
- A new module for the OSeMOSYS framework to handle the need of dispatchable generation in energy islands;
- A scenario analysis approach to overcome community engagement unpredictability and prioritize new RES power plants’ realization.
2. Materials and Methods
2.1. Modelling Framework
- (a)
- The minimum and maximum overall capacity of each technology in every year;
- (b)
- The minimum and maximum capacity addition of each technology in every year;
- (c)
- The minimum and maximum activity of each technology, both in every year and over the entire simulation period.
2.2. Energy Model
2.2.1. Reference Energy System
2.2.2. Commodity Demand and Supply
2.2.3. Technologies Specifications, Costs, and Constraints
2.2.4. Time Representation
2.3. Scenario Settings
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Acronym | Full Name |
BAU | Business As Usual |
BIO_EXTR | Biomass Extraction |
BIO_PP | Biomass Power Plant |
DESALT | Desalters |
DIESEL_IMP | Diesel Import |
DIESEL_PP | Diesel Power Plant |
DIST_GRID | Distribution Grid |
EL_STO | Electrochemical Storage |
EV | Electric Vehicle |
FOWT | Floating Offshore Wind Turbines |
GAS_IMP | Gasoline Import |
LP | Linear Programming |
LPG | Liquified Petroleum Gases |
LPG_IMP | Liquified Petroleum Gases Import |
MILP | Mixed-Integer Linear Programming |
PV | Photovoltaic |
PV_CENTR | Centralized PV power plant |
RES | Renewable Energy Sources |
V-RES | Variable Renewable Energy Sources |
WAT_STO | Water Storage |
WEC | Wave Energy Converters |
WT | Onshore Wind Turbines |
References
- Schmidt, T.S. Low-carbon investment risks and de-risking. Nat. Clim. Chang. 2014, 4, 237–239. [Google Scholar] [CrossRef]
- Roby, H.; Dibb, S. Future pathways to mainstreaming community energy. Energy Policy 2019, 135, 111020. [Google Scholar] [CrossRef]
- Schiera, D.S.; Minuto, F.D.; Bottaccioli, L.; Borchiellini, R.; Lanzini, A. Analysis of Rooftop Photovoltaics Diffusion in Energy Community Buildings by a Novel GIS- and Agent-Based Modeling Co-Simulation Platform. IEEE Access 2019, 7, 93404–93432. [Google Scholar] [CrossRef]
- European Parliament; European Council. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources (Recast) (Text with EEA Relevance). Off. J. Eur. Union 2018, 328, 82–209. [Google Scholar]
- European Commission. Memorandum of Understanding Implementing the Valletta Political Declaration On Clean Energy for European Union Islands Hereafter “The Memorandum of Split”; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Mirakyan, A.; De Guio, R. Integrated energy planning in cities and territories: A review of methods and tools. Renew. Sustain. Energy Rev. 2013, 22, 289–297. [Google Scholar] [CrossRef]
- Neves, A.R.; Leal, V. Energy sustainability indicators for local energy planning: Review of current practices and derivation of a new framework. Renew. Sustain. Energy Rev. 2010, 14, 2723–2735. [Google Scholar] [CrossRef]
- United Nations. Agenda 21. In Proceedings of the United Nations Conference on Environment & Development, Rio de Janeiro, Brazil, 3–14 June 1992. [Google Scholar]
- Liu, Y.; Yu, S.; Zhu, Y.; Wang, D.; Liu, J. Modeling, planning, application and management of energy systems for isolated areas: A review. Renew. Sustain. Energy Rev. 2018, 82, 460–470. [Google Scholar] [CrossRef]
- Engelken, M.; Römer, B.; Drescher, M.; Welpe, I. Transforming the energy system: Why municipalities strive for energy self-sufficiency. Energy Policy 2016, 98, 365–377. [Google Scholar] [CrossRef]
- Halicioglu, F. An econometric study of CO2 emissions, energy consumption, income and foreign trade in Turkey. Energy Policy 2009, 37, 1156–1164. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, S.C.; Timilsina, G.R. A review of energy system models. Int. J. Energy Sect. Manag. 2010, 4, 494–518. [Google Scholar] [CrossRef]
- Ringkjøb, H.K.; Haugan, P.M.; Solbrekke, I.M. A review of modelling tools for energy and electricity systems with large shares of variable renewables. Renew. Sustain. Energy Rev. 2018, 96, 440–459. [Google Scholar] [CrossRef]
- Lund, H.; Arler, F.; Østergaard, P.A.; Hvelplund, F.; Connolly, D.; Mathiesen, B.V.; Karnøe, P. Simulation versus optimisation: Theoretical positions in energy system modelling. Energies 2017, 10, 840. [Google Scholar] [CrossRef]
- Viti, S.; Lanzini, A.; Minuto, F.D.; Caldera, M.; Borchiellini, R. Techno-economic comparison of buildings acting as Single-Self Consumers or as energy community through multiple economic scenarios. Sustain. Cities Soc. 2020, 61, 102342. [Google Scholar] [CrossRef]
- Dagoumas, A.S.; Koltsaklis, N.E. Review of models for integrating renewable energy in the generation expansion planning. Appl. Energy 2019, 242, 1573–1587. [Google Scholar] [CrossRef]
- IEA-ETSAP. Markal. Available online: https://iea-etsap.org/index.php/etsap-tools/model-generators/markal (accessed on 30 October 2020).
- Van der Voort, E. The EFOM 12C energy supply model within the EC modelling system. Omega 1982, 10, 507–523. [Google Scholar] [CrossRef]
- Loulou, R.; Goldstein, G.; Kanudia, A.; Remme, U. Documentation for the TIMES Model Part I: TIMES Concepts and Theory. 2016. Available online: https://iea-etsap.org/docs/Documentation_for_the_TIMES_Model-Part-I_July-2016.pdf (accessed on 22 November 2021).
- Wiese, F.; Bramstoft, R.; Koduvere, H.; Pizarro Alonso, A.; Balyk, O.; Kirkerud, J.G.; Tveten, Å.G.; Bolkesjø, T.F.; Münster, M.; Ravn, H. Balmorel open source energy system model. Energy Strateg. Rev. 2018, 20, 26–34. [Google Scholar] [CrossRef]
- Messner, S.; Strubegger, M. User’s Guide for MESSAGE III; IIASA: Laxenburg, Austria, 1995. [Google Scholar]
- Henke, H.T.J. The Open Source Energy Model Base for the European Union (OSEMBE). Master’s Thesis, KTH School of Industrial Engineering and Management, Stockholm, Sweden, 2017. [Google Scholar]
- KTH Royal Institute of Technology, OSeMOSYS Documentation. 2021. Available online: https://osemosys.readthedocs.io/_/downloads/en/latest/pdf/ (accessed on 3 December 2021).
- Cosmi, C.; Macchiato, M.; Mangialmele, L.; Marmo, G.; Pietrapertosa, F.; Salvia, M. Environmental and economic effects of renewable energy sources use on a local case study. Energy Policy 2003, 31, 443–457. [Google Scholar] [CrossRef]
- Comodi, G.; Cioccolanti, L.; Gargiulo, M. Municipal scale scenario: Analysis of an Italian seaside town with MarkAL-TIMES. Energy Policy 2012, 41, 303–315. [Google Scholar] [CrossRef]
- Howells, M.I.; Alfstad, T.; Victor, D.G.; Goldstein, G.; Remme, U. A model of household energy services in a low-income rural African village. Energy Policy 2005, 33, 1833–1851. [Google Scholar] [CrossRef]
- Fuso Nerini, F.; Dargaville, R.; Howells, M.; Bazilian, M. Estimating the cost of energy access: The case of the village of Suro Craic in Timor Leste. Energy 2015, 79, 385–397. [Google Scholar] [CrossRef]
- Timmons, D.; Dhunny, A.Z.; Elahee, K.; Havumaki, B.; Howells, M.; Khoodaruth, A.; Lema-Driscoll, A.K.; Lollchund, M.R.; Ramgolam, Y.K.; Rughooputh, S.D.D.V.; et al. Cost minimization for fully renewable electricity systems: A Mauritius case study. Energy Policy 2019, 133, 110895. [Google Scholar] [CrossRef]
- Riva, F.; Gardumi, F.; Tognollo, A.; Colombo, E. Soft-linking energy demand and optimisation models for local long-term electricity planning: An application to rural India. Energy 2019, 166, 32–46. [Google Scholar] [CrossRef]
- Timmerman, J.; Deckmyn, C.; Vandevelde, L.; Van Eetvelde, G. Techno-economic energy models for low carbon business parks. Chem. Eng. Trans. 2013, 35, 571–576. [Google Scholar] [CrossRef]
- Welsch, M.; Howells, M.; Hesamzadeh, M.R.; Ó Gallachóir, B.; Deane, P.; Strachan, N.; Bazilian, M.; Kammen, D.M.; Jones, L.; Strbac, G.; et al. Supporting security and adequacy in future energy systems: The need to enhance long-term energy system models to better treat issues related to variability. Int. J. Energy Res. 2015, 39, 377–396. [Google Scholar] [CrossRef]
- Pavičević, M.; Mangipinto, A.; Nijs, W.; Lombardi, F.; Kavvadias, K.; Jiménez Navarro, J.P.; Colombo, E.; Quoilin, S. The potential of sector coupling in future European energy systems: Soft linking between the Dispa-SET and JRC-EU-TIMES models. Appl. Energy 2020, 267, 115100. [Google Scholar] [CrossRef]
- Lopion, P.; Markewitz, P.; Robinius, M.; Stolten, D. A review of current challenges and trends in energy systems modeling. Renew. Sustain. Energy Rev. 2018, 96, 156–166. [Google Scholar] [CrossRef]
- Leibowicz, B.D. The cost of policy uncertainty in electric sector capacity planning: Implications for instrument choice. Electr. J. 2018, 31, 33–41. [Google Scholar] [CrossRef]
- Dreier, D.; Howells, M. Osemosys-pulp: A stochastic modeling framework for long-term energy systems modeling. Energies 2019, 12, 1382. [Google Scholar] [CrossRef] [Green Version]
- Guevara, E.; Babonneau, F.; Homem-de-Mello, T.; Moret, S. A machine learning and distributionally robust optimization framework for strategic energy planning under uncertainty. Appl. Energy 2020, 271, 115005. [Google Scholar] [CrossRef]
- Gernaat, D.E.H.J.; de Boer, H.S.; Dammeier, L.C.; van Vuuren, D.P. The role of residential rooftop photovoltaic in long-term energy and climate scenarios. Appl. Energy 2020, 279, 115705. [Google Scholar] [CrossRef]
- Krause, J.; Thiel, C.; Tsokolis, D.; Samaras, Z.; Rota, C.; Ward, A.; Prenninger, P.; Coosemans, T.; Neugebauer, S.; Verhoeve, W. EU road vehicle energy consumption and CO2 emissions by 2050—Expert-based scenarios. Energy Policy 2020, 138, 111224. [Google Scholar] [CrossRef]
- Howells, M.; Rogner, H.; Strachan, N.; Heaps, C.; Huntington, H.; Kypreos, S.; Hughes, A.; Silveira, S.; DeCarolis, J.; Bazillian, M.; et al. OSeMOSYS: The Open Source Energy Modeling System. An introduction to its ethos, structure and development. Energy Policy 2011, 39, 5850–5870. [Google Scholar] [CrossRef]
- Gardumi, F.; Welsch, M.; Howells, M.; Colombo, E. Representation of balancing options for variable renewables in long-term energy system models: An application to OSeMOSYS. Energies 2019, 12, 2366. [Google Scholar] [CrossRef] [Green Version]
- Welsch, M.; Howells, M.; Bazilian, M.; DeCarolis, J.F.; Hermann, S.; Rogner, H.H. Modelling elements of Smart Grids—Enhancing the OSeMOSYS (Open Source Energy Modelling System) code. Energy 2012, 46, 337–350. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Projected Costs of Generating Electricity—2015 Edition; IEA: Paris, France, 2015; p. 215. [Google Scholar]
- Delarue, E.; Morris, J.; Prinn, R.G.; Reilly, J.M. Renewables Intermittency: Operational Limits and Implications for Long-Term Energy System Models; MIT Joint Program on the Science and Policy of Global Change: Cambridge, MA, USA, 2015. [Google Scholar]
- GitHub—riccardonovo/OSeMOSYS_Pyomo. Available online: https://github.com/riccardonovo/OSeMOSYS_Pyomo (accessed on 23 November 2021).
- IBM ILOG CPLEX Optimization Studio|IBM. Available online: https://www.ibm.com/products/ilog-cplex-optimization-studio (accessed on 23 November 2020).
- OpenStreetMap Contributors. Available online: https://www.openstreetmap.org/ (accessed on 10 January 2022).
- Clean Energy for EU Islands; Energy Center Lab; Comune di Pantelleria; Parco Nazionale Isola di Pantelleria; S.MED.E. Pantelleria S.p.A.; SOFIP S.p.A.; APS Resilea; Cantina Basile. Agenda per la Transizione Energetica Isola di Pantelleria; Pantelleria Zero: Pantalleira, Italy, 2020. [Google Scholar]
- Virdis, M.R.; Gaeta, M. Impatti Energetici e Ambientali dei Combustibili nel Riscaldamento Residenziale; ENEA: Rome, Italy, 2017; ISBN 978-88-8286-350-0. [Google Scholar]
- Open Data—Analisi e Statistiche Energetiche e Minerarie—Ministero della Transizione Ecologica. Available online: https://dgsaie.mise.gov.it/open-data (accessed on 24 March 2021).
- Capacity4dev. Sustainable Energy Handbook. Available online: https://europa.eu/capacity4dev/public-energy/wiki/sustainable-energy-handbook (accessed on 20 October 2020).
- Henke, H.; Howells, M.; Shivakumar, A. The Base for a European Engagement Model—An Open Source Electricity Model of Seven Countries around the Baltic Sea. In Proceedings of the 15 International Conference of Young Scientists on Energy Issues (CYSENI), Kaunas, Lithuania, 23–25 May 2018. [Google Scholar]
- European Centre for Medium Range Weather Forecasts. ERA5. Available online: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 (accessed on 20 October 2020).
- International Renewable Energy Agency (IRENA). Future of Solar Photovoltaic; IRENA: Abu Dhabi, United Arab Emirates, 2019; ISBN 978-92-9260-156-0. [Google Scholar]
- Pozzi, N.; Bracco, G.; Passione, B.; Sirigu, S.A.; Mattiazzo, G. PeWEC: Experimental validation of wave to PTO numerical model. Ocean Eng. 2018, 167, 114–129. [Google Scholar] [CrossRef]
- Sirigu, S.A.; Foglietta, L.; Giorgi, G.; Bonfanti, M.; Cervelli, G.; Bracco, G.; Mattiazzo, G. Techno-Economic Optimisation for a Wave Energy Converter via Genetic Algorithm. J. Mar. Sci. Eng. 2020, 8, 482. [Google Scholar] [CrossRef]
- International Renewable Energy Agency (IRENA). Wave Energy—Technology Brief; IRENA: Abu Dhabi, United Arab Emirates, 2014. [Google Scholar]
- Aeolos 60kW Wind Turbine—Aeolos Wind Energy. Available online: https://www.windturbinestar.com/60kw-wind-turbine.html (accessed on 20 October 2020).
- International Electrotechnical Commission. IEC 61400-1:2019 RLV Wind Energy Generation Systems—Part 1: Design Requirements; International Electrotechnical Commission: Geneva, Switzerland, 2019. [Google Scholar]
- International Renewable Energy Agency. Future of Wind; IRENA: Abu Dhabi, United Arab Emirates, 2019; ISBN 978-92-9260-155-3. [Google Scholar]
- Floatgen. Demonstration and Benchmarking of a Floating Wind Turbine System for Power Generation in Atlantic Deep Waters. Available online: https://floatgen.eu/en/demonstration-and-benchmarking-floating-wind-turbine-system-power-generation-atlantic-deep-waters (accessed on 20 October 2020).
- Cole, W.; Frazier, A.W. Cost Projections for Utility-Scale Battery Storage Cost Projections for Utility-Scale Battery Storage; Technical Report NREL/TP-6A20-7322; NREL: Golden, CO, USA, 2019.
- Zakeri, B.; Cross, S.; Dodds, P.E.; Gissey, G.C. Policy options for enhancing economic profitability of residential solar photovoltaic with battery energy storage. Appl. Energy 2021, 290, 116697. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Global EV Outlook 2020: Entering the Decade of Electric Drive? OECD Publishing: Paris, France, 2020. [Google Scholar] [CrossRef]
- Automobile Club d’Italia ACI. Studi e Ricerche—Open Data. Available online: http://www.aci.it/laci/studi-e-ricerche/dati-e-statistiche/open-data.html (accessed on 6 April 2021).
- Lerede, D.; Bustreo, C.; Gracceva, F.; Lechón, Y.; Savoldi, L. Analysis of the effects of electrification of the road transport sector on the possible penetration of nuclear fusion in the long-term european energy mix. Energies 2020, 13, 3634. [Google Scholar] [CrossRef]
- Eurostat Energy Balance Sheets—June 2021 Edition. Available online: https://ec.europa.eu/eurostat/web/energy/data/energy-balances (accessed on 10 January 2022).
- Anand, P.; Cheong, D.; Sekhar, C.; Santamouris, M.; Kondepudi, S. Energy saving estimation for plug and lighting load using occupancy analysis. Renew. Energy 2019, 143, 1143–1161. [Google Scholar] [CrossRef]
- Gabrielli, P.; Gazzani, M.; Martelli, E.; Mazzotti, M. Optimal design of multi-energy systems with seasonal storage. Appl. Energy 2018, 219, 408–424. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission—The European Green Deal. 2019. Available online: https://ec.europa.eu/info/publications/communication-european-green-deal_en (accessed on 6 April 2021).
Technology/Storage Facility | CC/CCS | 2020 | 2035 | 2050 | FC | 2020 | 2035 | 2050 |
---|---|---|---|---|---|---|---|---|
EL_STO | [EUR/kW] | 525 | 320 | 250 | - | - | - | - |
[EUR/kWh] | 160 | 100 | 80 | - | - | - | - | |
BIO_PP | [EUR/kW] | 4580 | 4580 | 4580 | [EUR/kW/y] | 40 | 40 | 40 |
DIESEL_PP | [EUR/kW] | 1020 | 1020 | 1020 | [EUR/kW/y] | - | - | - |
PV_CENTR | [EUR/kW] | 1070 | 470 | 290 | [EUR/kW/y] | 20 | 20 | 20 |
WEC | [EUR/kW] | 4070 | 2890 | 1500 | [EUR/kW/y] | 85 | 65 | 50 |
WT | [EUR/kW] | 1330 | 900 | 740 | [EUR/kW/y] | 70 | 70 | 70 |
FOWT | [EUR/kW] | 3880 | 2100 | 1870 | [EUR/kW/y] | 200 | 200 | 200 |
Fuel | VC | All Years |
---|---|---|
BIO_EXTR | [EUR/kg] | 0.151 |
DIESEL_IMP | [EUR/l] | 1.012 |
GAS_IMP | [EUR/l] | 0.955 |
LPG_IMP | [EUR/l] | 0.631 |
Season (s) | Months | Day Type (d) | Type | Daily Time Bracket (t) | Hours |
---|---|---|---|---|---|
1 | Jan–Mar | 1 | Weekday | 1 | 0–6 |
2 | Apr–May | 2 | Weekend | 2 | 6–10 |
3 | Jun–Aug | 3 | 10–14 | ||
4 | Sep–Oct | 4 | 14–18 | ||
5 | Nov–Dec | 5 | 18–24 |
Variable | Scenario Set | 2020 | 2035 | 2050 |
---|---|---|---|---|
Per capita distributed PV 1 (kW/person) | Low PV | 0.04 | 0.04 | 0.04 |
Medium PV | 0.04 | 0.26 | 0.31 | |
High PV | 0.04 | 0.50 | 0.62 | |
EV sales share (-) | Low EV | 2.8% | 2.8% | 2.8% |
Medium EV | 2.8% | 22.0% | 40.9% | |
High EV | 2.8% | 45.0% | 85.5% |
Parameter | Tech. | Unit | 2020 | 2035 | 2050 |
---|---|---|---|---|---|
Distributed PV | PV | EUR/kWPV | 2140 | 920 | 570 |
EES | EUR/kWPV | 1350 | 800 | 630 | |
EV diffusion | ICEV | EUR/vehicle | 26,240 | 26,240 | 26,240 |
EV | EUR/vehicle | 48,450 | 43,610 | 40,170 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novo, R.; Minuto, F.D.; Bracco, G.; Mattiazzo, G.; Borchiellini, R.; Lanzini, A. Supporting Decarbonization Strategies of Local Energy Systems by De-Risking Investments in Renewables: A Case Study on Pantelleria Island. Energies 2022, 15, 1103. https://doi.org/10.3390/en15031103
Novo R, Minuto FD, Bracco G, Mattiazzo G, Borchiellini R, Lanzini A. Supporting Decarbonization Strategies of Local Energy Systems by De-Risking Investments in Renewables: A Case Study on Pantelleria Island. Energies. 2022; 15(3):1103. https://doi.org/10.3390/en15031103
Chicago/Turabian StyleNovo, Riccardo, Francesco Demetrio Minuto, Giovanni Bracco, Giuliana Mattiazzo, Romano Borchiellini, and Andrea Lanzini. 2022. "Supporting Decarbonization Strategies of Local Energy Systems by De-Risking Investments in Renewables: A Case Study on Pantelleria Island" Energies 15, no. 3: 1103. https://doi.org/10.3390/en15031103
APA StyleNovo, R., Minuto, F. D., Bracco, G., Mattiazzo, G., Borchiellini, R., & Lanzini, A. (2022). Supporting Decarbonization Strategies of Local Energy Systems by De-Risking Investments in Renewables: A Case Study on Pantelleria Island. Energies, 15(3), 1103. https://doi.org/10.3390/en15031103