Logarithmic Mean Divisia Index Decomposition Based on Kaya Identity of GHG Emissions from Agricultural Sector in Baltic States
Abstract
:1. Introduction
2. Background
3. Methods and Used Data
- GHG emissions from crop use, including land use, the addition of synthetic nitrogen and organic (manure, sewage sludge, and compost) fertilizers, pesticides and wastes to soils, and agricultural waste management, etc.;
- Livestock emissions from cattle belching and manure management.
4. Results
4.1. GHG Emissions Trends from Agriculture
4.2. GHG Emissions Trends from Animal Husbandry
4.2.1. From Enteric Fermentation
4.2.2. From Manure Management
4.3. GHG Emissions Trends from Crop Husbandry
4.3.1. From Managed Agricultural Soils
4.3.2. From Liming
4.3.3. From Urea Application
4.4. Decomposition Results
4.5. Results of a Multivariate Regression Analysis of Agricultural GHG Emission Factors
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ritchie, H.; Roser, M. CO2 and Greenhouse Gas Emissions. Our World in Data. 2020. Available online: https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions (accessed on 8 January 2022).
- Turetsky, M.R.; Abbott, B.W.; Jones, M.C.; Anthony, K.W.; Olefeldt, D.; Schuur, E.A.G.; Grosse, G.; Kuhry, P.; Hugelius, G.; Koven, C.; et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 2020, 13, 138–143. [Google Scholar] [CrossRef]
- Dabkienė, V.; Baležentis, T.; Štreimikienė, D. Calculation of the carbon footprint for family farms using the Farm Accountancy Data Network: A case from Lithuania. J. Clean. Prod. 2020, 262, 121509. [Google Scholar] [CrossRef]
- Gołasa, P.; Wysokiński, M.; Bieńkowska-Gołasa, W.; Gradziuk, P.; Golonko, M.; Gradziuk, B.; Gromada, A. Sources of greenhouse gas emissions in agriculture, with particular emphasis on emissions from energy used. Energies 2021, 14, 3784. [Google Scholar] [CrossRef]
- Li, T.; Baležentis, T.; Makutėnienė, D.; Streimikiene, D.; Kriščiukaitienė, I. Energy-related CO2 emission in European Union agriculture: Driving forces and possibilities for reduction. Appl. Energy 2016, 180, 682–694. [Google Scholar] [CrossRef]
- Soto, I.; Barnes, A.; Balafoutis, A.; Beck, B.; Sánchez, B.; Vangeyte, J.; Gómez-Barbero, M. The Contribution of Precision Agriculture Technologies to Farm Productivity and the Mitigation of Greenhouse Gas Emissions in the EU; Publications Office of the European Union: Luxembourg, Luxembourg, 2019. [Google Scholar]
- Balafoutis, A.; Beck, B.; Fountas, S.; Vangeyte, J.; Wal, T.V.D.; Soto, I.; Eory, V. Precision agriculture technologies positively contributing to GHG emissions mitigation, farm productivity and economics. Sustainability 2017, 9, 1339. [Google Scholar] [CrossRef] [Green Version]
- Yan, Q.; Yin, J.; Baležentis, T.; Makutėnienė, D.; Štreimikienė, D. Energy-related GHG emission in agriculture of the European countries: An application of the Generalized Divisia Index. J. Clean. Prod. 2017, 164, 686–694. [Google Scholar] [CrossRef]
- Sosulski, T.; Szymańska, M.; Szara, E. Assessment of various practices of the mitigation of N2O emissions from the arable soils of Poland. Soil Sci. Annu. 2017, 68, 55. [Google Scholar] [CrossRef]
- Greenhouse Gas Emissions from Agriculture in Europe. Available online: https://www.eea.europa.eu/ims/greenhouse-gas-emissions-from-agriculture (accessed on 4 January 2022).
- Coderoni, S.; Esposti, R. CAP payments and agricultural GHG emissions in Italy. A farm-level assessment. Sci. Total Environ. 2018, 627, 427–437. [Google Scholar] [CrossRef]
- Xiao, S.; Dong, H.; Geng, Y.; Fujii, M.; Pan, H. Greenhouse gas emission mitigation potential from municipal solid waste treatment: A combined SD-LMDI model. Waste Manag. 2021, 120, 725–733. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, G.; Li, H.; Wang, L.; Wu, S.; Wu, W.; Meng, F. Mitigation of greenhouse gas emissions through optimized irrigation and nitrogen fertilization in intensively managed wheat–maize production. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Saldukaitė, L.; Šarauskis, E.; Lekavičienė, K.; Savickas, D. Predicting energy efficiency and greenhouse gases reduction potential under different tillage management and farm size scenarios for winter wheat production. Sustain. Energy Technol. Assess. 2020, 42, 100841. [Google Scholar] [CrossRef]
- Baležentis, T.; Makutėnienė, D. Dynamics and factors of greenhouse gas emissions related to energy use in agriculture in the European Union; Scientific Study. In Sustainable Agriculture and Non-Urbanized Regions Development; Leidybos Cetras: Akademija, Lithuania, 2017; pp. 44–112. [Google Scholar]
- Garnier, J.; Le Noë, J.; Marescaux, A.; Sanz-Cobena, A.; Lassaletta, L.; Silvestre, M.; Thieu, V.; Billen, G. Long-term changes in greenhouse gas emissions from French agriculture and livestock (1852–2014): From traditional agriculture to conventional intensive systems. Sci. Total Environ. 2019, 660, 1486–1501. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S.; Alsafadi, K.; Takács, I.; Harsányi, E. Contemporary changes of greenhouse gases emission from the agricultural sector in the EU-27. Geol. Ecol. Landsc. 2020, 4, 282–287. [Google Scholar] [CrossRef] [Green Version]
- Piwowar, A. Low-carbon agriculture in Poland: Theoretical and practical challenges. Pol. J. Environ. Stud. 2019, 28, 2785–2792. [Google Scholar] [CrossRef]
- MacLeod, M.J.; Hasan, M.R.; Robb, D.H.F.; Mamun-Ur-Rashid, M. Quantifying greenhouse gas emissions from global aquaculture. Sci Rep. 2020, 10, 11679. [Google Scholar] [CrossRef] [PubMed]
- Opio, C.; Gerber, P.; Mottet, A.; Falcucci, A.; Tempio, G.; MacLeod, M.; Vellinga, T.; Henderson, B.; Steinfeld, H. Greenhouse Gas Emissions from Ruminant Supply Chains–A Global Life Cycle Assessment; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- MacLeod, M.; Gerber, P.; Mottet, A.; Tempio, G.; Falcucci, A.; Opio, C.; Vellinga, T.; Henderson, B.; Steinfeld, H. Greenhouse Gas Emissions from Pig and Chicken Supply Chains–A Global Life Cycle Assessment; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Stepping up Europe’s 2030 Climate Ambition Investing in a Climate-Neutral Future for the Benefit of Our People. SWD/2020/176 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020SC0176 (accessed on 15 December 2021).
- Paris Agreement. United Nations. 2015. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 12 December 2021).
- Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Available online: https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf (accessed on 10 December 2021).
- Greenhouse Gas Emissions by Country and Sector (Infographic). Available online: https://www.europarl.europa.eu/news/en/headlines/society/20180301STO98928/greenhouse-gas-emissions-by-country-and-sector-infographic (accessed on 3 January 2022).
- Greenhouse Gas Emissions by Source Sector (Source: EEA). Eurostat. Available online: https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=env_air_gge&lang=en (accessed on 15 December 2021).
- European Commission. The Common Agricultural Policy at a Glance. Available online: https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/cap-glance_en (accessed on 3 January 2022).
- European Commission. 2030 Climate Target Plan. Available online: https://ec.europa.eu/clima/eu-action/european-green-deal/2030-climate-target-plan_en (accessed on 5 January 2022).
- Kelly, E.; Latruffe, L.; Desjeux, Y.; Ryan, M.; Uthes, S.; Diazabakana, A.; Finn, J. Sustainability indicators for improved assessment of the effects of agricultural policy across the EU: Is FADN the answer? Ecol. Indic. 2018, 89, 903–911. [Google Scholar] [CrossRef] [Green Version]
- Syp, A.; Osuch, D. Assessing Greenhouse Gas Emissions from Conventional Farms Based on the Farm Accountancy Data Network. Pol. J. Environ. Stud. 2018, 27, 1261–1268. [Google Scholar] [CrossRef]
- Eggleston, H.S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Hayama, Japan, 2006. [Google Scholar]
- Liu, Y.; Gao, Y. Measurement and impactor analysis of agricultural carbon emission performance in Changjiang economic corridor. Alex. Eng. J. 2022, 61, 873–881. [Google Scholar] [CrossRef]
- Ouda, S.; Zohry, A.E.H. Practices Contribute in Reducing the Emission of Greenhouse Gases. In Climate-Smart Agriculture; Springer: Cham, Switzerland, 2022; pp. 167–185. [Google Scholar]
- Panchasara, H.; Samrat, N.H.; Islam, N. Greenhouse gas emissions trends and mitigation measures in Australian agriculture sector—A review. Agriculture 2021, 11, 85. [Google Scholar] [CrossRef]
- Shakoor, A.; Shakoor, S.; Rehman, A.; Ashraf, F.; Abdullah, M.; Shahzad, S.M.; Farooq, T.H.; Ashraf, M.; Manzoor, M.A.; Altaf, M.M. Effect of animal manure, crop type, climate zone, and soil attributes on greenhouse gas emissions from agricultural soils—A global meta-analysis. J. Clean. Prod. 2021, 278, 124019. [Google Scholar] [CrossRef]
- Munidasa, S.; Eckard, R.; Sun, X.; Cullen, B.; McGill, D.; Chen, D.; Cheng, L. Challenges and opportunities for quantifying greenhouse gas emissions through dairy cattle research in developing countries. J. Dairy Res. 2021, 88, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Jantke, K.; Hartmann, M.J.; Rasche, L.; Blanz, B.; Schneider, U.A. Agricultural greenhouse gas emissions: Knowledge and positions of German farmers. Land 2020, 9, 130. [Google Scholar] [CrossRef]
- Ang, B.W.; Zhang, F.Q. A survey of index decomposition analysis in energy and environmental studies. Energy 2000, 2, 1149–1176. [Google Scholar] [CrossRef]
- Ang, B.W. Decomposition analysis for policymaking in energy: Which is the preferred method? Energy Policy 2004, 32, 1131–1139. [Google Scholar] [CrossRef]
- Ang, B.W.; Goh, T. Index decomposition analysis for comparing emission scenarios: Applications and challenges. Energy Econ. 2019, 83, 74–87. [Google Scholar] [CrossRef]
- Tu, M.; Li, Y.; Bao, L.; Wei, Y.; Orfila, O.; Li, W.; Gruyer, D. Logarithmic Mean Divisia Index Decomposition of CO2 Emissions from Urban Passenger Transport: An Empirical Study of Global Cities from 1960–2001. Sustainability 2019, 11, 4310. [Google Scholar] [CrossRef] [Green Version]
- Dolge, K.; Blumberga, D. Key Factors Influencing the Achievement of Climate Neutrality Targets in the Manufacturing Industry: LMDI Decomposition Analysis. Energies 2021, 14, 8006. [Google Scholar] [CrossRef]
- Ang, B.W.; Liu, F.L. A new energy decomposition method: Perfect in decomposition and consistent in aggregation. Energy 2001, 26, 537–548. [Google Scholar] [CrossRef]
- Kaya, Y. Impact of Carbon Dioxide Emission Control on GNP Growth: Interpretation of Proposed Scenarios; Intergovernmental Panel on Climate Change/Response Strategies Working Group: Paris, France, 1989. [Google Scholar]
- Yamaji, K.; Matsuhashi, R.; Nagata, Y.; Kaya, Y. A study on economic measures for CO2 reduction in Japan. Energy Policy 1993, 21, 123–132. [Google Scholar] [CrossRef]
- Kaya, Y.; Yokobori, K. Environment, Energy, and Economy: Strategies for Sustainability; UN University Press: Tokyo, Japan, 1997. [Google Scholar]
- Xiong, C.; Yang, D.; Huo, J. Spatial-temporal characteristics and LMDI-based impact factor decomposition of agricultural carbon emissions in Hotan Prefecture, China. Sustainability 2016, 8, 262. [Google Scholar] [CrossRef] [Green Version]
- Yun, T.I.A.N.; Zhang, J.B.; He, Y.Y. Research on spatial-temporal characteristics and driving factor of agricultural carbon emissions in China. J. Integr. Agric. 2014, 13, 1393–1403. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.C.; Fan, Y.; Wu, G.; Wei, Y.M. Using LMDI method to analyze the change of China’s industrial CO2 emissions from final fuel use: An empirical analysis. Energy Policy 2007, 35, 5892–5900. [Google Scholar] [CrossRef]
- Li, G.Z.; Li, Z.Z. Carbon emissions decomposition analysis on agricultural energy consumption–Based LMDI model. J. Agro Tech. Econ. 2010, 10, 66. [Google Scholar]
- Mai, L.; Ran, Q.; Wu, H. A LMDI decomposition analysis of carbon dioxide emissions from the electric power sector in Northwest China. Nat. Resour. Modeling 2020, 33, e12284. [Google Scholar] [CrossRef]
- World Bank Country and Lending Groups. The World Bank Group. Available online: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups (accessed on 12 December 2021).
- Eurostat. European Commission. Available online: http://ec.europa.eu/eurostat. (accessed on 10 November 2021).
- Juška, R.; Juškienė, V.; Ribikauskas, V.; Matulaitis, R. Estimation of GHG (CH4 and N2O) Emissions from Different Manure Management Systems. Final Report on the Agriculture, Food and Fisheries Research and Development Project; Institute of Animal Husbandry, Lithuanian University of Health Sciences: Baisogala, Lithuania, 2010. (In Lithuanian) [Google Scholar]
- Garnett, T. Livestock-related greenhouse gas emissions: Impacts and options for policy makers. Environ. Sci. Policy 2009, 12, 491–503. [Google Scholar] [CrossRef]
- Latvia’s National Inventory Report 1990–2018. Submission under UNFCCC and the Kyoto Protocol. Common Reporting Formats (CRF). 2020. Available online: https://unfccc.int/sites/default/files/resource/lva-2020-nir-11may20.pdf (accessed on 27 January 2022).
- Aleinikovienė, J.; Bogužas, V.; Bleizgys, R.; Armolaitis, K.; Feizienė, D.; Karčiauskienė, D.; Kriaučiūnienė, Z.; Tilvikienė, V.; Povilaitis, V.; Steponavičienė, V.; et al. Inventory of Greenhouse Gas Emissions in the Country’s Crop Sector; 2019 Final Report; Leidybos Centras: Akademija, Lithuania, 2019. (In Lithuanian) [Google Scholar]
- FAOSTAT: Fertilizers by Nutrient. Available online: https://www.fao.org/faostat/en/#data/RFN (accessed on 12 December 2021).
- Miceikiene, A.; Krikstolaitis, R.; Nausediene, A. An assessment of the factors affecting environmental pollution in agriculture in selected countries of Europe. Transform. Bus. Econ. 2021, 20, 93–110. [Google Scholar]
- Olivares, J.; Bedmar, E.J.; Sanjuán, J. Biological nitrogen fixation in the context of global change. Mol. Plant-Microbe Interact. 2013, 26, 486–494. [Google Scholar] [CrossRef] [Green Version]
- Hasler, K.; Bröring, S.; Omta, S.W.F.; Olfs, H.W. Life cycle assessment (LCA) of different fertilizer product types. Eur. J. Agron. 2015, 69, 41–51. [Google Scholar] [CrossRef]
- Meyer-Aurich, A.; Karatay, Y.N.; Nausediene, A.; Kirschke, D. Effectivity and cost efficiency of a tax on nitrogen fertilizer to reduce GHG emissions from agriculture. Atmosphere 2020, 11, 607. [Google Scholar] [CrossRef]
- Karatay, Y.N.; Nausediene, A.; Meyer-Aurich, A. Kosteneffizienz der THG-Minderung mit einer Stickstoffdüngersteuer unter Berücksichtigung der Risikoeinstellung von Landwirten. In GIL-Jahrestagung, Digitalisierung für Mensch, Umwelt und Tier; (In German). Gandorfer, M., Meyer-Aurich, A., Bernhardt, H., Maidl, F.X., Fröhlich, G., Floto, H., Eds.; Gesellschaft für Informatik e.V.: Bonn, Germany.
- Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 Establishing the Framework for Achieving Climate Neutrality and Amending Regulations (EC) No 401/2009 and (EU) 2018/1999 (‘European Climate Law’). Available online: http://data.europa.eu/eli/reg/2021/1119/oj (accessed on 11 December 2021).
- The European Green Deal. COM/2019/640 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1588580774040&uri=CELEX%3A52019DC0640 (accessed on 11 December 2021).
- European Commission. Eurostat Greenhouse Gas Emissions from Agriculture. Available online: https://ec.europa.eu/eurostat/databrowser/view/tai08/default/table?lang=en (accessed on 17 January 2022).
- Mačiulytė, J. The Reconstitution of the Lithuanian Rural Space Since the Restoration of its Independence. Ann. Geogr. 2006, 39, 5–14. (In Lithuanian) [Google Scholar]
Estonia | Latvia | Lithuania | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | Crop Husbandry | Growth | Animal Husbandry | Growth | Total Emissions | Growth | Crop Husbandry | Growth | Animal Husbandry | Growth | Total Emissions | Growth | Crop Husbandry | Growth | Animal Husbandry | Growth | Total Emissions | Growth |
Rate % | Rate % | Rate % | Rate % | Rate % | Rate % | Rate % | Rate % | Rate % | ||||||||||
1995 | 567.89 | 805.91 | 1373.8 | 793.06 | 1210.79 | 2003.84 | 1479.98 | - | 2815.46 | - | 4295.44 | - | ||||||
1996 | 526.76 | −7.24 | 745.07 | −7.55 | 1271.84 | −7.42 | 805.01 | 1.51 | 1158.39 | −4.33 | 1963.40 | −2.02 | 1743.46 | 17.80 | 2727.47 | −3.13 | 4470.93 | 4.09 |
1997 | 540.05 | 2.52 | 741.35 | −0.50 | 1281.39 | 0.75 | 815.80 | 1.34 | 1130.02 | −2.45 | 1945.82 | −0.90 | 1777.50 | 1.95 | 2730.70 | 0.12 | 4508.20 | 0.83 |
1998 | 586.49 | 8.60 | 717.62 | −3.20 | 1304.12 | 1.77 | 790.06 | −3.16 | 1051.55 | −6.94 | 1841.61 | −5.36 | 1764.21 | −0.75 | 2620.86 | −4.02 | 4385.06 | −2.73 |
1999 | 510.39 | −12.98 | 622.02 | −13.32 | 1132.41 | −13.17 | 743.25 | −5.92 | 909.97 | −13.46 | 1653.22 | −10.23 | 1710.56 | −3.04 | 2378.00 | −9.27 | 4088.56 | −6.76 |
2000 | 523.33 | 2.54 | 608.33 | −2.20 | 1131.67 | −0.07 | 762.90 | 2.64 | 915.53 | 0.61 | 1678.43 | 1.52 | 1716.85 | 0.37 | 2204.30 | −7.30 | 3921.15 | −4.09 |
2001 | 502.69 | −3.94 | 640.84 | 5.34 | 1143.53 | 1.05 | 821.01 | 7.62 | 968.44 | 5.78 | 1789.45 | 6.61 | 1686.76 | −1.75 | 2080.61 | −5.61 | 3767.36 | −3.92 |
2002 | 469.74 | −6.55 | 613.63 | −4.25 | 1083.37 | −5.26 | 800.58 | −2.49 | 960.71 | −0.80 | 1761.29 | −1.57 | 1773.93 | 5.17 | 2137.45 | 2.73 | 3911.38 | 3.82 |
2003 | 506.35 | 7.79 | 626.28 | 2.06 | 1132.63 | 4.55 | 846.25 | 5.70 | 958.65 | −0.21 | 1804.90 | 2.48 | 1783.08 | 0.52 | 2205.96 | 3.21 | 3989.03 | 1.99 |
2004 | 534.97 | 5.65 | 639.47 | 2.11 | 1174.44 | 3.69 | 803.17 | −5.09 | 927.44 | −3.26 | 1730.62 | −4.12 | 1802.06 | 1.06 | 2232.79 | 1.22 | 4034.85 | 1.15 |
2005 | 527.74 | −1.35 | 650.96 | 1.80 | 1178.7 | 0.36 | 841.36 | 4.75 | 952.44 | 2.70 | 1793.80 | 3.65 | 1831.86 | 1.65 | 2224.58 | −0.37 | 4056.44 | 0.54 |
2006 | 516.66 | −2.10 | 660.86 | 1.52 | 1177.52 | −0.10 | 833.22 | −0.97 | 960.22 | 0.82 | 1793.43 | −0.02 | 1779.93 | −2.83 | 2268.76 | 1.99 | 4048.70 | −0.19 |
2007 | 563.27 | 9.02 | 665.35 | 0.68 | 1228.63 | 4.34 | 873.68 | 4.86 | 1001.65 | 4.31 | 1875.32 | 4.57 | 1929.60 | 8.41 | 2273.56 | 0.21 | 4203.16 | 3.82 |
2008 | 620.82 | 10.22 | 666.43 | 0.16 | 1287.26 | 4.77 | 867.15 | −0.75 | 971.18 | −3.04 | 1838.34 | −1.97 | 1888.99 | −2.10 | 2212.13 | −2.70 | 4101.12 | −2.43 |
2009 | 561.87 | −9.50 | 666.56 | 0.02 | 1228.43 | −4.57 | 893.93 | 3.09 | 966.13 | −0.52 | 1860.04 | 1.18 | 2027.14 | 7.31 | 2170.85 | −1.87 | 4197.98 | 2.36 |
2010 | 569.32 | 1.33 | 686.45 | 2.98 | 1255.76 | 2.22 | 924.03 | 3.37 | 955.51 | −1.10 | 1879.55 | 1.05 | 2006.90 | −1.00 | 2142.98 | −1.28 | 4149.89 | −1.15 |
2011 | 581.66 | 2.17 | 694.76 | 1.21 | 1276.42 | 1.65 | 928.29 | 0.46 | 963.42 | 0.83 | 1891.71 | 0.65 | 2073.17 | 3.30 | 2118.81 | −1.13 | 4191.98 | 1.01 |
2012 | 634.95 | 9.16 | 722.46 | 3.99 | 1357.41 | 6.35 | 995.22 | 7.21 | 979.70 | 1.69 | 1974.92 | 4.40 | 2170.16 | 4.68 | 2100.20 | −0.88 | 4270.37 | 1.87 |
2013 | 629.55 | −0.85 | 759.88 | 5.18 | 1389.43 | 2.36 | 1021.49 | 2.64 | 1012.25 | 3.32 | 2033.73 | 2.98 | 2174.32 | 0.19 | 2069.82 | −1.45 | 4244.13 | −0.61 |
2014 | 663.48 | 5.39 | 771.75 | 1.56 | 1435.23 | 3.30 | 1062.61 | 4.03 | 1048.05 | 3.54 | 2110.66 | 3.78 | 2346.72 | 7.93 | 2114.30 | 2.15 | 4461.02 | 5.11 |
2015 | 687.51 | 3.62 | 746.32 | −3.30 | 1433.83 | −0.10 | 1110.40 | 4.50 | 1048.61 | 0.05 | 2159.01 | 2.29 | 2402.66 | 2.38 | 2127.32 | 0.62 | 4529.99 | 1.55 |
2016 | 659.51 | −4.07 | 727.44 | −2.53 | 1386.94 | −3.27 | 1117.15 | 0.61 | 1050.62 | 0.19 | 2167.76 | 0.41 | 2368.05 | −1.44 | 2047.00 | −3.78 | 4415.06 | −2.54 |
2017 | 690.47 | 4.69 | 740.55 | 1.80 | 1431.02 | 3.18 | 1124.02 | 0.61 | 1056.57 | 0.57 | 2180.59 | 0.59 | 2389.63 | 0.91 | 1984.62 | −3.05 | 4374.24 | −0.92 |
2018 | 679.32 | −1.61 | 741.16 | 0.08 | 1420.49 | −0.74 | 1079.37 | −3.97 | 1017.56 | −3.69 | 2096.93 | −3.84 | 2286.73 | −4.31 | 1944.41 | −2.03 | 4231.15 | −3.27 |
2019 | 749.79 | 10.37 | 747.06 | 0.80 | 1496.87 | 5.38 | 1179.72 | 9.30 | 1022.65 | 0.50 | 2202.37 | 5.03 | 2347.23 | 2.65 | 1898.27 | −2.37 | 4245.50 | 0.34 |
Country | GHG Emissions, Thousand Tonnes, in CO2 Equivalent | Rate of Growth, % 2019/1995 | Average Annual Growth Rate, % | Standard Deviation, Thousand Tonnes | Mean, Thousand Tonnes | CV | |
---|---|---|---|---|---|---|---|
1995 | 2019 | ||||||
Estonia | 1373.80 | 1496.87 | 9.0 | 0.36 | 118.5 | 1280.53 | 0.09 |
Latvia | 2003.84 | 2202.37 | 9.9 | 0.39 | 162.4 | 1921.23 | 0.08 |
Lithuania | 4295.44 | 4245.50 | −1.2 | −0.05 | 200.3 | 4203.71 | 0.05 |
Country | GHG Emissions, Thousand Tonnes, in CO2 Equivalent | Rate of Growth, % 2019/1995 | Average Annual Growth Rate, % | Standard Deviation, Thousand Tonnes | Mean, Thousand Tonnes | CV | |
---|---|---|---|---|---|---|---|
1995 | 2019 | ||||||
Estonia | 647.16 | 546.22 | −15.6 | −0.70 | 42.8 | 531.5 | 0.08 |
Latvia | 978.97 | 850.12 | −13.2 | −0.59 | 69.3 | 812.7 | 0.09 |
Lithuania | 2170.51 | 1483.12 | −31.7 | −1.57 | 187.9 | 1721.3 | 0.11 |
Country | GHG Emissions, Thousand Tonnes, in CO2 Equivalent | Rate of Growth, % 2019/1995 | Average Annual Growth Rate, % | Standard Deviation, Thousand Tonnes | Mean, Thousand Tonnes | CV | |
---|---|---|---|---|---|---|---|
1995 | 2019 | ||||||
Estonia | 158.75 | 200.84 | 26.5 | 0.98 | 31.9 | 164.9 | 0.19 |
Latvia | 231.82 | 172.53 | −25.6 | −1.22 | 14.4 | 195.2 | 0.07 |
Lithuania | 644.95 | 415.15 | −35.6 | −1.82 | 57.1 | 511.9 | 0.11 |
Country | GHG Emissions, Thousand Tonnes, in CO2 Equivalent | Rate of Growth, % 2019/1995 | Average Annual Growth Rate, % | Standard Deviation, Thousand Tonnes | Mean, Thousand Tonnes | CV | |
---|---|---|---|---|---|---|---|
1995 | 2019 | ||||||
Estonia | 563.66 | 734.2 | 30.3 | 1.11 | 74.0 | 572.5 | 0.13 |
Latvia | 791.15 | 1124.85 | 42.2 | 1.48 | 120.2 | 899.0 | 0.13 |
Lithuania | 1469.21 | 2318.62 | 57.8 | 1.92 | 265.6 | 1940.7 | 0.14 |
Country | GHG Emissions, Thousand Tonnes, in CO2 Equivalent | Rate of Growth, % 2019/1995 | Average Annual Growth Rate, % | Standard Deviation, Thousand Tonnes | Mean, Thousand Tonnes | CV | |
---|---|---|---|---|---|---|---|
1995 | 2019 | ||||||
Estonia | 3.59 | 15.46 | 330.6 | 6.27 | 7.2 | 11.3 | 0.64 |
Latvia | 1.24 | 44.63 | 3499.2 | 16.10 | 12.1 | 10.6 | 1.14 |
Lithuania | 4.03 | 12.42 | 208.2 | 4.80 | 4.7 | 10.7 | 0.44 |
Country | GHG Emissions, Thousand Tonnes, in CO2 Equivalent | Rate of Growth, % 2019/1995 | Average Annual Growth Rate, % | Standard Deviation, Thousand Tonnes | Mean, Thousand Tonnes | CV | |
---|---|---|---|---|---|---|---|
1995 | 2019 | ||||||
Estonia | 0.64 | 0.13 | −79.7 | −6.43 | 0.4 | 0.4 | 1.03 |
Latvia | 0.67 | 10.24 | 1428.4 | 12.03 | 3.0 | 3.8 | 0.81 |
Lithuania | 6.74 | 16.19 | 140.2 | 3.72 | 7.8 | 19.1 | 0.41 |
Estonia | Latvia | Lithuania | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | Crop–Animal Husbandry GHG Intensity, kg CO2 eq/PPG | Agricultural Structure, PPG/PPG | Agricultural Labour Productivity, PPG/AWU | Employment Labour of the Agriculture, Thousand AWU | Total Change of GHG Emissions from Agriculture, Thousand Tonnes | Crop–Animal Husbandry GHG Intensity, kg CO2 eq/PPG | Agricultural Structure, PPG/PPG | Agricultural Labour Productivity, PPG/AWU | Employment Labour of the Agriculture, Thousand AWU | Total Change of GHG Emissions from Agriculture, Thousand Tonnes | Crop–Animal Husbandry GHG Intensity, kg CO2 eq/PPG | Agricultural Structure, PPG/PPG | Agricultural Labour Productivity, PPG/AWU | Employment Labour of the Agriculture, Thousand AWU | Total Change of GHG Emissions from Agriculture, Thousand Tonnes |
1996 | −64.69 | 1.56 | 5.45 | −44.28 | −101.96 | 21.99 | 9.90 | −155.05 | 82.72 | −40.44 | −446.01 | −16.17 | 471.33 | 166.34 | 175.49 |
1997 | −8.11 | 1.11 | 26.14 | −9.59 | 9.55 | 43.94 | 9.76 | −152.78 | 81.51 | −17.58 | −330.66 | 21.84 | 175.69 | 170.40 | 37.27 |
1998 | 59.95 | −1.72 | −27.05 | −8.44 | 22.73 | −44.63 | 9.45 | 44.52 | −113.56 | −104.21 | 86.73 | 87.46 | 250.99 | −548.31 | −123.14 |
1999 | −48.12 | −49.43 | −46.32 | −27.84 | −171.71 | 226.91 | −107.53 | −187.33 | −120.44 | −188.39 | 130.46 | −1.71 | 29.03 | −454.28 | −296.50 |
2000 | −166.52 | 20.48 | 163.20 | −17.90 | −0.74 | −84.30 | −5.40 | 174.37 | −59.46 | 25.21 | −25.79 | 27.34 | 942.03 | −1111.00 | −167.41 |
2001 | −13.63 | −1.41 | 141.45 | −114.55 | 11.86 | −25.63 | 37.58 | 139.19 | −40.12 | 111.02 | 46.14 | 5.93 | 136.27 | −342.13 | −153.79 |
2002 | −28.45 | −18.74 | 29.95 | −42.92 | −60.16 | −133.93 | −68.83 | 200.46 | −25.86 | −28.16 | −280.83 | 26.82 | 183.85 | 214.18 | 144.02 |
2003 | 46.79 | 3.58 | 408.58 | −409.70 | 49.26 | 24.56 | −102.90 | 149.57 | −27.62 | 43.61 | −213.33 | −8.99 | 168.76 | 131.22 | 77.65 |
2004 | 31.52 | 5.67 | 21.97 | −17.35 | 41.81 | −176.80 | 25.41 | 94.76 | −17.65 | −74.28 | −293.54 | −83.14 | 908.49 | −485.99 | 45.82 |
2005 | −78.51 | 1.88 | 94.50 | −13.61 | 4.26 | −110.18 | −22.52 | 212.38 | −16.50 | 63.18 | −340.84 | −42.57 | 209.24 | 195.76 | 21.59 |
2006 | 28.64 | −4.37 | −11.35 | −14.10 | −1.18 | 36.76 | −2.23 | 177.15 | −212.05 | −0.37 | 232.32 | −70.02 | 16.27 | −186.30 | −7.74 |
2007 | −119.90 | 29.12 | 294.40 | −152.51 | 51.11 | −145.31 | 39.75 | 433.58 | −246.12 | 81.89 | −179.32 | 8.00 | 524.57 | −198.79 | 154.46 |
2008 | 109.00 | −36.10 | 52.82 | −67.09 | 58.63 | −98.47 | 58.54 | 150.83 | −147.89 | −36.98 | −371.93 | −80.18 | 540.97 | −190.90 | −102.04 |
2009 | −87.93 | −5.50 | 115.30 | −80.71 | −58.83 | 34.24 | 0.08 | 107.78 | −120.40 | 21.70 | 74.81 | −19.38 | 147.26 | −105.83 | 96.86 |
2010 | 65.69 | 12.50 | 127.24 | −178.10 | 27.33 | 47.82 | 16.31 | 102.29 | −146.91 | 19.51 | 284.23 | −21.18 | −204.81 | −106.33 | −48.09 |
2011 | −82.53 | −14.24 | 167.85 | −50.41 | 20.66 | 0.37 | −39.72 | −0.67 | 52.19 | 12.16 | −314.33 | −52.99 | 432.75 | −23.33 | 42.09 |
2012 | −2.77 | 11.99 | 139.38 | −67.61 | 80.99 | −252.74 | 26.74 | 394.48 | −85.27 | 83.21 | −517.05 | 32.78 | 486.21 | 76.45 | 78.39 |
2013 | −18.51 | −12.27 | 116.02 | −53.22 | 32.02 | 31.94 | −19.62 | 85.05 | −38.56 | 58.81 | 103.62 | −50.66 | −67.46 | −11.74 | −26.24 |
2014 | −52.86 | 34.92 | 82.89 | −19.15 | 45.80 | −4.95 | −9.28 | 259.05 | −167.89 | 76.93 | −153.58 | 21.24 | 198.60 | 150.63 | 216.89 |
2015 | −123.79 | 2.74 | 234.47 | −114.82 | −1.40 | −251.60 | 19.96 | 239.86 | 40.13 | 48.35 | −253.22 | −47.49 | 342.78 | 26.91 | 68.97 |
2016 | 212.99 | 5.75 | −267.02 | 1.39 | −46.89 | 185.18 | −13.16 | −117.79 | −45.48 | 8.75 | 72.83 | −110.68 | −17.36 | −59.71 | −114.93 |
2017 | −64.27 | 19.96 | 86.31 | 2.08 | 44.08 | −18.34 | −1.19 | 76.72 | −44.36 | 12.83 | −104.12 | −48.15 | 173.92 | −62.46 | −40.82 |
2018 | 114.63 | −32.03 | −76.19 | −16.93 | −10.53 | 177.33 | −58.88 | −78.39 | −123.73 | −83.66 | 296.08 | 12.68 | −353.07 | −98.79 | −143.09 |
2019 | −265.35 | 41.78 | 389.76 | −89.82 | 76.38 | −386.70 | 40.36 | 467.38 | −15.60 | 105.44 | −402.04 | 9.59 | 673.39 | −266.58 | 14.35 |
Total | −556.71 | 17.23 | 2269.75 | −1607.20 | 123.07 | −902.55 | −157.41 | 2817.44 | −1558.95 | 198.53 | −2899.38 | −399.65 | 6369.68 | −3120.59 | −49.94 |
Country | Coefficients | |||||
---|---|---|---|---|---|---|
GHG Emissions from Agriculture | Crop–Animal Husbandry GHG Intensity | Agricultural Structure | Agricultural Labour Productivity | F | R2 | |
Estonia | −1557.90 p < 0.01 | 469.64 p < 0.001 | 2098.25 p < 0.001 | 8.01 p < 0.001 | 89.88 p < 0.001 | 0.93 |
Latvia | 166.72 p = 0.701 | −55.98 p = 0.072 | 1728.31 p < 0.001 | 17.50 p < 0.01 | 36.39 p < 0.001 | 0.84 |
Lithuania | 14084.74 p < 0.001 | −800.71 p = 0.094 | −8276.69 p < 0.001 | −49.53 p < 0.05 | 8.252 p < 0.001 | 0.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makutėnienė, D.; Perkumienė, D.; Makutėnas, V. Logarithmic Mean Divisia Index Decomposition Based on Kaya Identity of GHG Emissions from Agricultural Sector in Baltic States. Energies 2022, 15, 1195. https://doi.org/10.3390/en15031195
Makutėnienė D, Perkumienė D, Makutėnas V. Logarithmic Mean Divisia Index Decomposition Based on Kaya Identity of GHG Emissions from Agricultural Sector in Baltic States. Energies. 2022; 15(3):1195. https://doi.org/10.3390/en15031195
Chicago/Turabian StyleMakutėnienė, Daiva, Dalia Perkumienė, and Valdemaras Makutėnas. 2022. "Logarithmic Mean Divisia Index Decomposition Based on Kaya Identity of GHG Emissions from Agricultural Sector in Baltic States" Energies 15, no. 3: 1195. https://doi.org/10.3390/en15031195
APA StyleMakutėnienė, D., Perkumienė, D., & Makutėnas, V. (2022). Logarithmic Mean Divisia Index Decomposition Based on Kaya Identity of GHG Emissions from Agricultural Sector in Baltic States. Energies, 15(3), 1195. https://doi.org/10.3390/en15031195