Fault Diagnosis of Rotor Broken Bar in Induction Motor Based on Successive Variational Mode Decomposition
Abstract
:1. Introduction
2. Analysis on the Fault Features of Broken Bar Faults
3. Fault Diagnosis Method Based on Successive Variational Mode Decomposition
3.1. Introduction to SVMD
3.2. SVMD Parameter Initialization and Fault Characteristic Signal Reconstruction
3.3. Fault Detection Based on Quadratic Regression
3.4. Fault Judgment Based on Quadratic Regression
4. Successive Variational Mode Decomposition Based Broken Bar Faults Diagnosis Process
5. Experimental Setup
5.1. Experimental Platform
5.2. Validation of Successive Variational Mode Decomposition Method
5.3. Fault Diagnosis
5.4. Quantification of Failure Severity
6. Conclusions
- In this paper, SVMD is used to decompose the starting current into multiple small-bandwidth signals, and the fault components are reconstructed to maximize the energy of the fault signal, which realizes the signal noise reduction and improves the accuracy and rapidity of decomposition;
- Based on the linear relationship between the fault frequency and time in the starting process, the fault diagnosis of broken rotor bar is realized by comparing the quadratic coefficients of quadratic fitting curve of instantaneous frequency square of the fault component;
- According to the feature that the energy of the right half of the fault component signal increases with the severity of the broken bar faults, the severity of the fault can be determined by the energy of the right half of the fault component;
- By analyzing the starting current without measuring the speed, the proposed method avoids the problem of the fault frequency in the frequency domain analysis method being submerged by the power frequency when the slip rate is low.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xie, Y.; Shan, X.T.; Guo, J.P. The relationship study between field changes and faulty condition in squirrel-cage induction motor with broken bars fault. Proc. CSEE 2017, 37, 4222–4231. [Google Scholar]
- Kliman, G.B.; Koegl, R.A.; Stein, J. Noninvasive detection of broken rotor bars in operating induction motors. IEEE Trans. Energy Convers. 1988, 3, 873–879. [Google Scholar] [CrossRef]
- Gu, F.; Wang, T.; Alwodai, A.; Tian, X.; Shao, Y.; Ball, A.D. A new method of accurate broken rotor bar diagnosis based on modulation signal bispectrum analysis of motor current signals. Mech. Syst. Signal Process. 2015, 50, 400–413. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.; Naikan, V.N.A. Detection of half broken rotor bar fault in VFD driven induction motor drive using motor square current MUSIC analysis. Mech. Syst. Signal Process. 2018, 110, 333–348. [Google Scholar] [CrossRef]
- Sun, L.; Xu, B. An improved method for discerning broken rotor bar fault and load oscillation in induction motors. Energies 2018, 11, 3130. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Bracamonte, J.E.; Ramirez-Cortes, J.M.; de Jesus Rangel-Magdaleno, J.; Gomez-Gil, P.; Peregrina-Barreto, H.; Alarcon-Aquino, V. An approach on MCSA-based fault detection using independent component analysis and neural networks. IEEE Trans. Instrum. Meas. 2019, 68, 1353–1361. [Google Scholar] [CrossRef]
- Burriel-Valencia, J.; Puche-Panadero, R.; Martinez-Roman, J.; Sapena-Bano, A.; Pineda-Sanchez, M. Cost-effective reduced envelope of the stator current via synchronous sampling for the diagnosis of rotor asymmetries in induction machines working at very low slip. Sensors 2019, 19, 3471. [Google Scholar] [CrossRef] [Green Version]
- Dias, C.G.; da Silva, L.C.; Alves, W.A.L. A histogram of oriented gradients approach for detecting broken bars in squirrel-cage induction motors. IEEE Trans. Instrum. Meas. 2020, 69, 6968–6981. [Google Scholar] [CrossRef]
- Burriel-Valencia, J.; Puche-Panadero, R.; Martinez-Roman, J.; Sapena-Bano, A.; Pineda-Sanchez, M. Fault diagnosis of induction machines in a transient regime using current sensors with an optimized slepian window. Sensors 2018, 18, 146. [Google Scholar] [CrossRef] [Green Version]
- Riera-Guasp, M.; Pineda-Sanchez, M.; Pérez-Cruz, J.; Puche-Panadero, R.; Roger-Folch, J.; Antonino-Daviu, J.A. Diagnosis of induction motor faults via Gabor analysis of the current in transient regime. IEEE Trans. Instrum. Meas. 2012, 61, 1583–1596. [Google Scholar] [CrossRef]
- Ayon-Sicaeros, R.A.; Cabal-Yepez, E.; Ledesma-Carrillo, L.M.; Hernandez-Gomez, G. Broken-rotor-bar detection through STFT and windowing functions. In Proceedings of the 2019 IEEE Sensors Applications Symposium (SAS), Sophia Antipolis, France, 1–5 March 2019. [Google Scholar]
- Pons-Llinares, J.; Riera-Guasp, M.; Antonino-Daviu, J.A.; Habetler, T.G. Pursuing optimal electric machines transient diagnosis: The adaptive slope transform. Mech. Syst. Signal Process. 2016, 80, 553–569. [Google Scholar] [CrossRef]
- Pons-Llinares, J.; Antonino-Daviu, J.A.; Riera-Guasp, M.; Pineda-Sanchez, M.; Climente-Alarcon, V. Induction motor diagnosis based on a transient current analytic wavelet transform via frequency B-splines. IEEE Trans. Ind. Electron. 2010, 58, 1530–1544. [Google Scholar] [CrossRef]
- Antonino-Daviu, J.A.; Riera-Guasp, M.; Folch, J.R.; Palomares, M.P.M. Validation of a new method for the diagnosis of rotor bar failures via wavelet transform in industrial induction machines. IEEE Trans. Ind. Appl. 2006, 42, 990–996. [Google Scholar] [CrossRef]
- Cabal-Yepez, E.; Garcia-Ramirez, A.G.; Romero-Troncoso, R.J.; Garcia-Perez, A.; Osornio-Rios, R.A. Reconfigurable monitoring system for time-frequency analysis on industrial equipment through STFT and DWT. IEEE Trans. Ind. Inform. 2012, 9, 760–771. [Google Scholar] [CrossRef]
- Martinez-Herrera, A.L.; Ledesma-Carrillo, L.M.; Lopez-Ramirez, M.; Salazar-Colores, S.; Cabal-Yepez, E.; Garcia-Perez, A. Gabor and the Wigner-Ville transforms for broken rotor bars detection in induction motors. In Proceedings of the 2014 International Conference on Electronics, Communications and Computers (CONIELECOMP), Cholula, Mexico, 26–28 February 2014. [Google Scholar]
- Rajagopalan, S.; Restrepo, J.A.; Aller, J.M.; Habetler, T.G.; Harley, R.G. Nonstationary motor fault detection using recent quadratic time–frequency representations. IEEE Trans. Ind. Appl. 2008, 44, 735–744. [Google Scholar] [CrossRef]
- Climente-Alarcon, V.I.C.E.N.T.E.; Antonino-Daviu, J.A.; Riera-Guasp, M.; Puche-Panadero, R.; Escobar, L. Application of the Wigner–Ville distribution for the detection of rotor asymmetries and eccentricity through high-order harmonics. Electr. Power Syst. Res. 2012, 91, 28–36. [Google Scholar] [CrossRef]
- Valles-Novo, R.; de Jesus Rangel-Magdaleno, J.; Ramirez-Cortes, J.M.; Peregrina-Barreto, H.; Morales-Caporal, R. Empirical mode decomposition analysis for broken-bar detection on squirrel cage induction motors. IEEE Trans. Instrum. Meas. 2014, 64, 1118–1128. [Google Scholar] [CrossRef]
- Valtierra-Rodriguez, M.; Amezquita-Sanchez, J.P.; Garcia-Perez, A.; Camarena-Martinez, D. Complete ensemble empirical mode decomposition on FPGA for condition monitoring of broken bars in induction motors. Mathematics 2019, 7, 783. [Google Scholar] [CrossRef] [Green Version]
- Soualhi, A.; El Yousfi, B.; Razik, H.; Wang, T. A Novel Feature Extraction Method for the Condition Monitoring of Bearings. Energies 2021, 14, 2322. [Google Scholar] [CrossRef]
- Gilles, J. Empirical wavelet transform. IEEE Trans. Signal Process. 2013, 61, 3999–4010. [Google Scholar] [CrossRef]
- Kedadouche, M.; Thomas, M.; Tahan, A.J.M.S. A comparative study between Empirical Wavelet Transforms and Empirical Mode Decomposition Methods: Application to bearing defect diagnosis. Mech. Syst. Signal Process. 2016, 81, 88–107. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process. 2013, 62, 531–544. [Google Scholar] [CrossRef]
- Zou, D.; Ge, X. A Broken Rotor Bar Fault Diagnosis Approach Based on Singular Value Decomposition and Variational Mode Decomposition. In Proceedings of the 2019 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Seogwipo, Korea, 8–10 May 2019. [Google Scholar]
- Bi, X.; Lin, J.; Tang, D.; Bi, F.; Li, X.; Yang, X.; Shen, P. VMD-KFCM algorithm for the fault diagnosis of diesel engine vibration signals. Energies 2020, 13, 228. [Google Scholar] [CrossRef] [Green Version]
- Nazari, M.; Sakhaei, S.M. Successive variational mode decomposition. Signal Process. 2020, 174, 107610. [Google Scholar] [CrossRef]
- Atta, M.E.E.D.; Ibrahim, D.K.; Gilany, M. Broken Bar Faults Detection under Induction Motor Starting Conditions Using the Optimized Stockwell Transform and Adaptive Time-Frequency Filter. IEEE Trans. Instrum. Meas. 2021, 70, 3518110. [Google Scholar]
The Motor Parameters | Value |
---|---|
Motor Power | 5.5 kW |
Voltage (rms) | 380 V |
No. of poles | 3 |
Number of stator slots | 36 |
Number of rotor bars | 28 |
Full load slip | 3% |
Initial Value | SVMD Time |
---|---|
0 | 6.717 s |
Randomly | 8.098 s |
fmax | 6.592 s |
Motor State | Mean | Standard Deviation |
---|---|---|
Healthy | 594 | 558 |
Half BRB | 4200 | 170 |
1 BRB | 4408 | 208 |
2 BRBs | 4268 | 107 |
3 BRBs | 4927 | 188 |
Motor State | Mean (μ) | Standard Deviation (σ) | Regions |
---|---|---|---|
Healthy | 0.0959 | 0.0247 | [0.02181, 0.17353] |
Half BRB | 0.1512 | 0.0389 | [0.02836, 0.27419] |
1 BRB | 1.5481 | 0.0848 | [1.29370, 1.80252] |
2 BRBs | 9.8031 | 0.3993 | [8.60501, 11.0013] |
3 BRBs | 20.957 | 1.2225 | [17.2902, 24.6255] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Yan, Y.; Hu, K.; Zhang, S.; Li, H.; Zhang, Z.; Shi, T. Fault Diagnosis of Rotor Broken Bar in Induction Motor Based on Successive Variational Mode Decomposition. Energies 2022, 15, 1196. https://doi.org/10.3390/en15031196
Liu X, Yan Y, Hu K, Zhang S, Li H, Zhang Z, Shi T. Fault Diagnosis of Rotor Broken Bar in Induction Motor Based on Successive Variational Mode Decomposition. Energies. 2022; 15(3):1196. https://doi.org/10.3390/en15031196
Chicago/Turabian StyleLiu, Xinyue, Yan Yan, Kaibo Hu, Shan Zhang, Hongjie Li, Zhen Zhang, and Tingna Shi. 2022. "Fault Diagnosis of Rotor Broken Bar in Induction Motor Based on Successive Variational Mode Decomposition" Energies 15, no. 3: 1196. https://doi.org/10.3390/en15031196
APA StyleLiu, X., Yan, Y., Hu, K., Zhang, S., Li, H., Zhang, Z., & Shi, T. (2022). Fault Diagnosis of Rotor Broken Bar in Induction Motor Based on Successive Variational Mode Decomposition. Energies, 15(3), 1196. https://doi.org/10.3390/en15031196