Evaluation of the Pavement Geothermal Energy Harvesting Technologies towards Sustainability and Renewable Energy
Abstract
:1. Introduction
2. Methodology
2.1. Data Collection
2.1.1. Databases and Resources
2.1.2. Keywords
2.2. Data Refining
3. Data Analysis
3.1. Yearly Publication Distribution
3.2. Publication Distribution by Journals
3.3. Publication Distribution by Locations
3.4. Publication Distribution by Approaches and Techniques
3.5. Keywords Bibliometric Mapping and Analyses
4. Common Thermal Energy Harvesting Technologies
4.1. Path Solar Collectors (PSCs)
4.2. Thermoelectric Generator (TEG) System
4.2.1. Theory and Principles
- V is the voltage,
- is the Seebeck coefficient, which describes the magnitude of electron fluxes due to a temperature variation across that material,
- and are the temperatures at the hot and cold ends of the thermoelectric materials,
- is the power.
- and are the amounts of heat absorbed and released by the hot and cold TEG sides.
- is the current.
- is the TEG internal resistance.
4.2.2. TEG Applications on Pavements
4.3. Pyroelectric Materials System
5. Future Directions
- The output electric voltage is one of the most essential parameters that can be used to judge any developed technology. Therefore, increasing the power output is of the utmost importance. TEGs’ power generating efficiency can be enhanced by increasing the temperature gradient between the hot and cold sides. Thus, heat collector plates should be insulated, and different designs and materials of heat collectors should be investigated. On the other hand, PCM should be employed to increase the heat sink’s efficiency, which can help to provide a low temperature to the TEG’s cold side. Further, future studies should focus more on studying the effects of increasing the number of TEG modules under different configurations.
- More studies on the PSC system should be conducted to enhance its efficiency. This can be achieved by investigating different fluids to be circulated in the pipe system since only water and air were investigated. Furthermore, insulation systems have not been employed yet to prevent heat leakage during the fluid circulating process.
- Integrated systems should be investigated more, especially those involvging PSC and TEG systems. TEG systems have some limitations in the winter season, such as that it cannot be used as a de-icing system; on the other hand, the PSC system required external power to operate the pump. Thus, integrating these systems may help to increase efficiency.
- Long-term investigations of the effects, efficiency, and maintenance requirements of these technologies are needed to ensure that these systems are sustainable, workable, and commercialized.
- Pavement durability and performance should be investigated after implementing these harvesting technologies under real traffic loads to evaluate the stress concentrations among the pavement components.
- Most of the previous studies focused solely on implementing thermal harvesting technologies from asphalt pavement, while studies regarding concrete pavement are limited and insufficient. Thus, we recommend the study of the potential of harvesting thermal energy from concrete pavement.
- The thermal conductivity of both concrete and asphalt pavement should be enhanced by modifying the mixture content by adding specific materials which have the ability to increase the pavement’s thermal properties.
6. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, J.; Chen, Y.; Ji, G.; Wang, Z. Residential carbon dioxide emissions at the urban scale for county-level cities in China: A comparative study of nighttime light data. J. Clean. Prod. 2018, 180, 198–209. [Google Scholar] [CrossRef]
- Baz, K.; Cheng, J.; Xu, D.; Abbas, K.; Ali, I.; Ali, H.; Fang, C. Asymmetric impact of fossil fuel and renewable energy consumption on economic growth: A nonlinear technique. Energy 2021, 226, 120357. [Google Scholar] [CrossRef]
- Lei, R.; Feng, S.; Danjou, A.; Broquet, G.; Wu, D.; Lin, J.C.; O’Dell, C.W.; Lauvaux, T. Fossil fuel CO2 emissions over metropolitan areas from space: A multi-model analysis of OCO-2 data over Lahore, Pakistan. Remote Sens. Environ. 2021, 264, 112625. [Google Scholar] [CrossRef]
- Ou, J.; Liu, X.; Li, X.; Li, M.; Li, W. Evaluation of NPP-VIIRS nighttime light data for mapping global fossil fuel combustion CO2 emissions: A comparison with DMSP-OLS nighttime light data. PLoS ONE 2015, 10, e0138310. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.; Wu, Y.; Zhou, L.; Sun, Q.; Yu, X.; Zhu, L.; Zhang, X.; Fang, Q.; Yang, X.; Yang, J.; et al. Trade-off between vegetation CO2 sequestration and fossil fuel-related CO2 emissions: A case study of the Guangdong-Hong Kong-Macao Greater Bay Area of China. Sustain. Cities Soc. 2021, 74, 103195. [Google Scholar] [CrossRef]
- Meng, X.; Han, J.; Huang, C. An improved vegetation adjusted nighttime light urban index and its application in quantifying spatiotemporal dynamics of carbon emissions in China. Remote Sens. 2017, 9, 829. [Google Scholar] [CrossRef] [Green Version]
- Saiz-Rodríguez, J.A.; Salazar-Briones, C.; Ruiz-Gibert, J.M.; Moctezuma, A.M.; Lomeli-Banda, M.A. An analysis of urban heat island and flood-prone areas for green space planning using GIS. Proc. Inst. Civ. Eng.—Urban Des. Plan. 2021, 174, 47–62. [Google Scholar]
- Sharma, R.; Hooyberghs, H.; Lauwaet, D.; De Ridder, K. Urban heat island and future climate change—Implications for Delhi’s heat. J. Urban Health 2019, 96, 235–251. [Google Scholar] [CrossRef]
- Hirano, Y.; Yoshida, Y. Assessing the effects of CO2 reduction strategies on heat islands in urban areas. Sustain. Cities Soc. 2016, 26, 383–392. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report; Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V.P., Zhai, A., Pirani, S.L., Connors, C., Péan, S., Berger, N., Ca, R.Y., Eds.; Cambridge University Press: Cambridge, UK, 2021; in press. [Google Scholar]
- Okampo, E.J.; Nwulu, N. Optimisation of renewable energy powered reverse osmosis desalination systems: A state-of-the-art review. Renew. Sustain. Energy Rev. 2021, 140, 110712. [Google Scholar] [CrossRef]
- Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Seyboth, K.; Matschoss, P.; Kadner, S.; Zwickel, T.; Eickemeier, P.; Hansen, G.; Schlömer, S.; et al. (Eds.) IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation; Prepared by Working Group III of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Zeng, S.; Liu, Y.; Liu, C.; Nan, X. A review of renewable energy investment in the BRICS countries: History, models, problems and solutions. Renew. Sustain. Energy Rev. 2017, 74, 860–872. [Google Scholar] [CrossRef]
- Nautiyal, H.; Varun. Progress in renewable energy under clean development mechanism in India. Renew. Sustain. Energy Rev. 2012, 16, 2913–2919. [Google Scholar] [CrossRef]
- Ahmed, F.; Siwar, C.; Begum, R.A. Water resources in Malaysia: Issues and challenges. J. Food Agric. Environ. 2014, 12, 1100–1104. [Google Scholar]
- de Miranda, R.B.; Mauad, F.F. Influence of sedimentation on hydroelectric power generation: Case study of a Brazilian reservoir. J. Energy Eng. 2015, 141, 4014016. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, F.; Zhao, H. Thermoelectric, piezoelectric and photovoltaic harvesting technologies for pavement engineering. Renew. Sustain. Energy Rev. 2021, 151, 111522. [Google Scholar] [CrossRef]
- Gholikhani, M.; Roshani, H.; Dessouky, S.; Papagiannakis, A.T. A critical review of roadway energy harvesting technologies. Appl. Energy 2020, 261, 114388. [Google Scholar] [CrossRef]
- Beeby, S.P.; Tudor, M.J.; White, N.M. Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 2006, 17, R175. [Google Scholar] [CrossRef]
- Rowe, D.M.; Morgan, D.V.; Kiely, J.H. Miniature low-power/high-voltage thermoelectric generator. Electron. Lett. 1989, 25, 166–168. [Google Scholar] [CrossRef]
- Hande, A.; Polk, T.; Walker, W.; Bhatia, D. Indoor solar energy harvesting for sensor network router nodes. Microprocess. Microsyst. 2007, 31, 420–432. [Google Scholar] [CrossRef]
- Hossain, M.F.T.; Dessouky, S.; Biten, A.B.; Montoya, A.; Fernandez, D. Harvesting solar energy from asphalt pavement. Sustainability. 2021, 13, 12807. [Google Scholar] [CrossRef]
- Chiarelli, A.; Al-Mohammedawi, A.; Dawson, A.R.; García, A. Construction and configuration of convection-powered asphalt solar collectors for the reduction of urban temperatures. Int. J. Therm. Sci. 2017, 112, 242–251. [Google Scholar] [CrossRef]
- Yin, F.; Arámbula-Mercado, E.; Epps Martin, A.; Newcomb, D.; Tran, N. Long-term ageing of asphalt mixtures. Road Mater. Pavement Des. 2017, 18 (Suppl. 1), 2–27. [Google Scholar] [CrossRef]
- Menapace, I.; Yiming, W.; Masad, E. Chemical analysis of surface and bulk of asphalt binders aged with accelerated weathering tester and standard aging methods. Fuel 2017, 202, 366–379. [Google Scholar] [CrossRef]
- Yinfei, D.; Shengyue, W.; Jian, Z. Cooling asphalt pavement by a highly oriented heat conduction structure. Energy Build. 2015, 102, 187–196. [Google Scholar] [CrossRef]
- Kim, D.; Kim, Y.R. Development of Stress Sweep Rutting (SSR) test for permanent deformation characterization of asphalt mixture. Constr. Build. Mater. 2017, 154, 373–383. [Google Scholar] [CrossRef]
- Salama, H.K.; Chatti, K. Evaluation of fatigue and rut damage prediction methods for asphalt concrete pavements subjected to multiple axle loads. Int. J. Pavement Eng. 2011, 12, 25–36. [Google Scholar] [CrossRef]
- Akbari, H.; Kolokotsa, D. Three decades of urban heat islands and mitigation technologies research. Energy Build. 2016, 133, 834–842. [Google Scholar] [CrossRef]
- Gilbert, H.E.; Rosado, P.J.; Ban-Weiss, G.; Harvey, J.T.; Li, H.; Mandel, B.H.; Millstein, D.; Mohegh, A.; Saboori, A.; Levinson, R.M. Energy and environmental consequences of a cool pavement campaign. Energy Build. 2017, 157, 53–77. [Google Scholar] [CrossRef] [Green Version]
- Anting, N.; Din, M.F.M.; Iwao, K.; Ponraj, M.; Jungan, K.; Yong, L.Y.; Siang, A.J.L.M. Experimental evaluation of thermal performance of cool pavement material using waste tiles in tropical climate. Energy Build. 2017, 142, 211–219. [Google Scholar] [CrossRef]
- Zhu, X.; Yu, Y.; Li, F. A review on thermoelectric energy harvesting from asphalt pavement: Configuration, performance and future. Constr. Build. Mater. 2019, 228, 116818. [Google Scholar] [CrossRef]
- Briner, R.B.; Denyer, D. Systematic review and evidence synthesis as a practice and scholarship tool. In Oxford Handbook of Evidence-Based Management: Companies, Classrooms and Research; Rousseau, D.M., Ed.; Oxford University Press: Oxford, UK, 2012; pp. 112–129. [Google Scholar]
- Alaloul, W.S.; Qureshi, A.H.; Musarat, M.A.; Saad, S. Evolution of close-range detection and data acquisition technologies towards automation in construction progress monitoring. J. Build. Eng. 2021, 43, 102877. [Google Scholar] [CrossRef]
- Baarimah, A.O.; Alaloul, W.S.; Liew, M.S.; Kartika, W.; Al-Sharafi, M.A.; Musarat, M.A.; Alawag, A.M.; Qureshi, A.H. A Bibliometric Analysis and Review of Building Information Modelling for Post-Disaster Reconstruction. Sustainability 2022, 14, 393. [Google Scholar] [CrossRef]
- de Oliveira, O.J.; da Silva, F.F.; Juliani, F.; Barbosa, L.C.F.M.; Nunhes, T.V. Bibliometric method for mapping the state-of-the-art and identifying research gaps and trends in literature: An essential instrument to support the development of scientific projects. In Scientometrics Recent Advances; IntechOpen: London, UK, 2019. [Google Scholar]
- MacDonald, J. Systematic approaches to a successful literature review. J. Can. Health Libr. Assoc. 2013, 34, 46–47. [Google Scholar] [CrossRef] [Green Version]
- Nightingale, A. A guide to systematic literature reviews. Surgery 2009, 27, 381–384. [Google Scholar] [CrossRef]
- Jesson, J.; Matheson, L.; Lacey, F.M. (Eds.) Doing Your Literature Review: Traditional and Systematic Techniques; SAGE Publications: London, UK, 2012; ISBN 9781446242391. [Google Scholar]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. Science mapping software tools: Review, analysis, and cooperative study among tools. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 1382–1402. [Google Scholar] [CrossRef]
- De Rezende, L.B.; Blackwell, P.; Pessanha Gonçalves, M.D. Research focuses, trends, and major findings on project complexity: A bibliometric network analysis of 50 years of project complexity research. Proj. Manag. J. 2018, 49, 42–56. [Google Scholar] [CrossRef]
- Zou, P.X.W.; Sunindijo, R.Y.; Dainty, A.R.J. A mixed methods research design for bridging the gap between research and practice in construction safety. Saf. Sci. 2014, 70, 316–326. [Google Scholar] [CrossRef]
- Johnson, R.B.; Onwuegbuzie, A.J. Mixed methods research: A research paradigm whose time has come. Educ. Res. 2004, 33, 14–26. [Google Scholar] [CrossRef] [Green Version]
- Egger, M.; Dickersin, K.; Smith, G.D. Problems and limitations in conducting systematic reviews. In Systematic Reviews in Health Care: Meta-Analysis in Context; Egger, M., Smith, G.D., Altman, D.G., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2001; pp. 43–68. [Google Scholar]
- Tashakkori, A. Sage Handbook of Mixed Methods in Social & Behavioral Research; SAGE Publications: London, UK, 2021. [Google Scholar]
- Holden, G.; Rosenberg, G.; Barker, K. Tracing thought through time and space: A selective review of bibliometrics in social work. Soc. Work Health Care 2005, 41, 1–34. [Google Scholar] [CrossRef]
- Harden, A.; Thomas, J. Mixed methods and systematic reviews: Examples and emerging issues. In SAGE Handbook of Mixed Methods in Social and Behavioral Research, 2nd ed.; SAGE Publications: London, UK, 2010; pp. 749–774. [Google Scholar]
- Oraee, M.; Hosseini, M.R.; Papadonikolaki, E.; Palliyaguru, R.; Arashpour, M. Collaboration in BIM-based construction networks: A bibliometric-qualitative literature review. Int. J. Proj. Manag. 2017, 35, 1288–1301. [Google Scholar] [CrossRef]
- Braun, A.B.; da Silva Trentin, A.W.; Visentin, C.; Thomé, A. Sustainable remediation through the risk management perspective and stakeholder involvement: A systematic and bibliometric view of the literature. Environ. Pollut. 2019, 255, 113221. [Google Scholar] [CrossRef]
- Mongeon, P.; Paul-Hus, A. The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics 2016, 106, 213–228. [Google Scholar] [CrossRef]
- Hosseini, M.R.; Martek, I.; Zavadskas, E.K.; Aibinu, A.A.; Arashpour, M.; Chileshe, N. Critical evaluation of off-site construction research: A Scientometric analysis. Autom. Constr. 2018, 87, 235–247. [Google Scholar] [CrossRef]
- Li, S.; Fang, Y.; Wu, X. A systematic review of lean construction in Mainland China. J. Clean. Prod. 2020, 257, 120581. [Google Scholar] [CrossRef]
- Huang, L.; Kelly, S.; Lv, K.; Giurco, D. A systematic review of empirical methods for modelling sectoral carbon emissions in China. J. Clean. Prod. 2019, 215, 1382–1401. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Linnenluecke, M.K.; Marrone, M.; Singh, A.K. Conducting systematic literature reviews and bibliometric analyses. Aust. J. Manag. 2020, 45, 175–194. [Google Scholar] [CrossRef]
- Zhong, B.; Wu, H.; Li, H.; Sepasgozar, S.; Luo, H.; He, L. A scientometric analysis and critical review of construction related ontology research. Autom. Constr. 2019, 101, 17–31. [Google Scholar] [CrossRef]
- Zhong, B.; Wu, H.; Ding, L.; Love, P.E.D.; Li, H.; Luo, H.; Jiao, L. Mapping computer vision research in construction: Developments, knowledge gaps and implications for research. Autom. Constr. 2019, 107, 102919. [Google Scholar] [CrossRef]
- Walubita, L.F.; Sohoulande Djebou, D.C.; Faruk, A.N.M.; Lee, S.I.; Dessouky, S.; Hu, X. Prospective of societal and environmental benefits of piezoelectric technology in road energy harvesting. Sustainability 2018, 10, 383. [Google Scholar] [CrossRef] [Green Version]
- Roshani, H.; Dessouky, S.; Montoya, A.; Papagiannakis, A.T. Energy harvesting from asphalt pavement roadways vehicle-induced stresses: A feasibility study. Appl. Energy 2016, 182, 210–218. [Google Scholar] [CrossRef]
- Pospelova, I.Y.; Pospelova, M.Y.; Kornilov, D.A. Smart energy coating for independent power generation in pavement and machine elements. IOP Conf. Ser. Mater. Sci. Eng. 2019, 632, 12018. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, B.; Tao, J.; Liu, Z. Smart pavement sensor based on thermoelectricity power. In Proceedings of the Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2010, San Diego, CA, USA, 7–11 March 2010; International Society for Optics and Photonics: Bellingham, WA, USA, 2010; Volume 7647, p. 76470X. [Google Scholar]
- Di Maria, V.; Rahman, M.; Collins, P.; Dondi, G.; Sangiorgi, C. Urban Heat Island Effect: Thermal response from different types of exposed paved surfaces. Int. J. Pavement Res. Technol. 2013, 6, 414. [Google Scholar]
- Liu, Z.; Yang, A.; Gao, M.; Jiang, H.; Kang, Y.; Zhang, F.; Fei, T. Towards feasibility of photovoltaic road for urban traffic-solar energy estimation using street view image. J. Clean. Prod. 2019, 228, 303–318. [Google Scholar] [CrossRef]
- Bai, Y.; Jantunen, H.; Juuti, J. Energy harvesting research: The road from single source to multisource. Adv. Mater. 2018, 30, 1707271. [Google Scholar] [CrossRef] [Green Version]
- Pei, J.; Zhou, B.; Lyu, L. e-Road: The largest energy supply of the future? Appl. Energy 2019, 241, 174–183. [Google Scholar] [CrossRef]
- Xu, L.; Wang, J.; Xiao, F.; Ei-badawy, S.; Awed, A. Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses. Appl. Energy 2021, 281, 116077. [Google Scholar] [CrossRef]
- Guo, L.; Lu, Q. Potentials of piezoelectric and thermoelectric technologies for harvesting energy from pavements. Renew. Sustain. Energy Rev. 2017, 72, 761–773. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, J.; Xiao, F.; Amirkhanian, S.; Wang, J.; Xu, Z. Impacts of multiple-polymer components on high temperature performance characteristics of airfield modified binders. Constr. Build. Mater. 2017, 134, 694–702. [Google Scholar] [CrossRef]
- Piao, C.-H.; Teng, Q.; Wu, X.-Y.; Lu, S. Study of Energy Harvesting System Based on the Seebeck Effect. In Proceedings of the International Conference on Advances in Science and Technology (ICAST), Pattaya, Thailand, 15–16 February 2014; pp. 45–50. [Google Scholar]
- Bobes-Jesus, V.; Pascual-Muñoz, P.; Castro-Fresno, D.; Rodriguez-Hernandez, J. Asphalt solar collectors: A literature review. Appl. Energy 2013, 102, 962–970. [Google Scholar] [CrossRef]
- Yu, X.; Hurley, M.T.; Li, T.; Lei, G.; Pedarla, A.; Puppala, A.J. Experimental feasibility study of a new attached hydronic loop design for geothermal heating of bridge decks. Appl. Therm. Eng. 2020, 164, 114507. [Google Scholar] [CrossRef]
- Wang, H.; Jasim, A.; Chen, X. Energy harvesting technologies in roadway and bridge for different applications—A comprehensive review. Appl. Energy 2018, 212, 1083–1094. [Google Scholar] [CrossRef]
- Johnsson, J.; Adl-Zarrabi, B. A numerical and experimental study of a pavement solar collector for the northern hemisphere. Appl. Energy 2020, 260, 114286. [Google Scholar] [CrossRef]
- Motamedi, Y.; Makasis, N.; Arulrajah, A.; Horpibulsuk, S.; Narsilio, G. Thermal performance of the ground in geothermal pavements. E3S Web Conf. 2020, 205, 06015. [Google Scholar] [CrossRef]
- Arulrajah, A.; Ghorbani, B.; Narsilio, G.; Horpibulsuk, S.; Leong, M. Thermal performance of geothermal pavements constructed with demolition wastes. Geomech. Energy Environ. 2021, 28, 100253. [Google Scholar] [CrossRef]
- Chiarelli, A.; Dawson, A.R.; García, A. Pavement temperature mitigation by the means of geothermally and solar heated air. Geothermics 2017, 68, 9–19. [Google Scholar] [CrossRef]
- García, A.; Partl, M.N. How to transform an asphalt concrete pavement into a solar turbine. Appl. Energy 2014, 119, 431–437. [Google Scholar] [CrossRef]
- Mirzanamadi, R.; Hagentoft, C.; Johansson, P. Coupling a Hydronic Heating Pavement to a Horizontal Ground Heat Exchanger for harvesting solar energy and heating road surfaces. Renew. Energy 2020, 147, 447–463. [Google Scholar] [CrossRef]
- Sedgwick, R.H.D.; Patrick, M.A. The use of a ground solar collector for swimming pool heating. In Proceedings of the International Solar Energy Society Congress, Brighton, UK, 23–28 August 1981. [Google Scholar]
- Hasebe, M.; Kamikawa, Y.; Meiarashi, S. Thermoelectric generators using solar thermal energy in heated road pavement. In Proceedings of the International Conference on Thermoelectrics (ICT), Vienna, Austria, 6–10 August 2006; pp. 697–700. [Google Scholar] [CrossRef]
- Baumgärtel, S.; Schweighofer, J.A.V.; Rohn, J.; Luo, J. The performance of geothermal passive heating and cooling for asphalt and concrete pavement. Dev. Built Environ. 2021, 7, 100051. [Google Scholar] [CrossRef]
- Goldsmid, H.J. Introduction to Thermoelectricity; Springer: Berlin/Heidelberg, Germany, 2010; Volume 121. [Google Scholar]
- Besancon, R. The Encyclopedia of Physics; Springer Science & Business Media: Boston, MA, USA, 2013. [Google Scholar]
- Longtin, J.P.; Thermoelectrically Powered Sensing for Nuclear Power Plants. Stony Brook University, Stony Brook, NY. 2016. Available online: http://long2.eng.sunysb.edu/NEUP.html (accessed on 1 January 2022).
- Uchida, K.; Adachi, H.; Kikkawa, T.; Kirihara, A.; Ishida, M.; Yorozu, S.; Maekawa, S.; Saitoh, E. Thermoelectric generation based on spin Seebeck effects. Proc. IEEE 2016, 104, 1946–1973. [Google Scholar] [CrossRef] [Green Version]
- Teltayev, B.; Aitbayev, K. Modeling of temperature field in flexible pavement. Indian Geotech. J. 2015, 45, 371–377. [Google Scholar] [CrossRef]
- Zabihi, N.; and Saafi, M. Recent developments in the energy harvesting systems from road infrastructures. Sustainability. 2020, 12, 6738. [Google Scholar] [CrossRef]
- Ongel, A.; Harvey, J. Analysis of 30 Years of Pavement Temperatures Using the Enhanced Integrated Climate Model (EICM); Draft Report Prepared for the California Department of Transportation; University of California: Berkeley, CA, USA, 2004. [Google Scholar]
- Du, Z.; Jiang, C.; Yuan, J.; Xiao, F.; Wang, J. Low temperature performance characteristics of polyethylene modified asphalts—A review. Constr. Build. Mater. 2020, 264, 120704. [Google Scholar] [CrossRef]
- Tahami, A.; Gholikhani, M.; Dessouky, S. A Novel Thermoelectric Approach to Energy Harvesting from Road Pavement. In Proceedings of the International Conference on Transportation and Development 2020, Seattle, WA, USA, 26–29 May 2020; pp. 309–318. Available online: http://www.asce-ictd.org/ (accessed on 2 January 2022).
- Tahami, S.A.; Gholikhani, M.; Nasouri, R.; Dessouky, S.; Papagiannakis, A.T. Developing a new thermoelectric approach for energy harvesting from asphalt pavements. Appl. Energy 2019, 238, 786–795. [Google Scholar] [CrossRef]
- Sharuddin, M.S.; Yusop, A.; Sadhiqin, A.; Isira, M.; Khamil, K.N. Effect of Different Condition on Voltage Generation and Thermal Gradient from Road Pavement Using Thermoelectric Generator. J. Kejuruter. 2020, 32, 415–422. [Google Scholar]
- Tahami, A.; Gholiakhani, M.; Dessouky, S.; Montoya, A.; Papagiannakis, A.T.; Fuentes, L.; Walubita, L.F. Evaluation of a roadway thermoelectric energy harvester through FE analysis and laboratory tests. Int. J. Sustain. Eng. 2021, 14, 1016–1032. [Google Scholar] [CrossRef]
- Sharuddin, M.S.; Yusop, A.M.; Isir, A.S.M.; Khamil, K.N. Performance analysis of DC-DC converters for road pavement thermoelectric system. In Proceedings of the Mechanical Engineering Research Day 2019, Durian Tunggal, Malaysia, 31 July 2019. [Google Scholar]
- Datta, U.; Dessouky, S.; Papagiannakis, A.T. Thermal Energy Harvesting from Asphalt Roadway Pavement. In Proceedings of the 1st GeoMEast International Congress and Exhibition, Egypt 2017 on Sustainable Civil Infrastructures, Sharm Elsheikh, Egypt, 15–19 July 2017; pp. 272–286. [Google Scholar] [CrossRef]
- Datta, U.; Dessouky, S.; Papagiannakis, A.T. Harvesting thermoelectric energy from asphalt pavements. Transp. Res. Rec. J. Transp. Res. Board 2017, 2628, 12–22. [Google Scholar] [CrossRef]
- Tahami, S.A.; Gholikhani, M.; Dessouky, S. Thermoelectric Energy Harvesting System for Roadway Sustainability. Transp. Res. Rec. J. Transp. Res. Board 2020, 2674, 135–145. [Google Scholar] [CrossRef]
- Jiang, W.; Xiao, J.; Yuan, D.; Lu, H.; Xu, S.; Huang, Y. Design and experiment of thermoelectric asphalt pavements with power-generation and temperature-reduction functions. Energy Build. 2018, 169, 39–47. [Google Scholar] [CrossRef]
- Jiang, W.; Yuan, D.; Xu, S.; Hu, H.; Xiao, J.; Sha, A.; Huang, Y. Energy harvesting from asphalt pavement using thermoelectric technology. Appl. Energy 2017, 205, 941–950. [Google Scholar] [CrossRef]
- Nasaruddin, A.N.; Tuan, T.B.; Tahir, M.M. Finite element analysis of the thermal response test for road thermoelectric energy harvesting system (RTEHs). In Proceedings of the Mechanical Engineering Research Day 2019, Durian Tunggal, Malaysia, 31 July 2019; pp. 193–195. Available online: http://www3.utem.edu.my/care/proceedings/merd19/pdf/p193-215.pdf (accessed on 28 December 2021).
- Khamil, K.N.; Mohd Sabri, M.F.; Md Yusop, A.; Mohd Sa’at, F.A.Z.; Isa, A.N. High cooling performances of H-shape heat sink for thermoelectric energy harvesting system (TEHs) at asphalt pavement. Int. J. Energy Res. 2021, 45, 3242–3256. [Google Scholar] [CrossRef]
- Park, P.; Choi, G.S.; Rohani, E.; Song, I. Optimization of thermoelectric system for pavement energy harvesting. In Proceedings of the International Conference on Asphalt Pavements, ISAP 2014, Raleigh, NC, USA, 1–5 June 2014; pp. 1827–1838. [Google Scholar] [CrossRef]
- Khamil, K.N.; Mohd Sabri, M.F.; Yusop, A.M. Thermoelectric energy harvesting system (TEHs) at asphalt pavement with a subterranean cooling method. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 1–17. [Google Scholar] [CrossRef]
- Khamil, K.N.; Sabri, M.F.M.; Yusop, A.M.; Sharuddin, M.S. An evaluation of TEC and TEG characterization for a road thermal energy harvesting. In Proceedings of the 6th International Conference on Sustainable Energy Engineering and Application, ICSEEA 2018, Tangerang, Indonesia, 1–2 November 2018; pp. 86–91. [Google Scholar] [CrossRef]
- Lee, J.J.; Kim, D.H.; Lee, S.T.; Lim, J.K. Fundamental study of energy harvesting using thermoelectric effect on concrete structure in road. Adv. Mater. Res. 2014, 1044–1045, 332–337. [Google Scholar] [CrossRef]
- Int, I.; Res, J.P.; Wu, G.; Yu, X.B. Thermal Energy Harvesting System to Harvest Thermal Energy Across Pavement Structure. In Proceedings of the 2012 IEEE Energytech, Cleveland, OH, USA, 29–31 May 2012. [Google Scholar]
- Shaaban, K.; Abdel-Warith, K.; Haddock, J. Using pavements to generate electricity. Procedia Comput. Sci. 2019, 151, 124–131. [Google Scholar] [CrossRef]
- Septiadi, W.N.; Murti, M.R.; Arliyandi; Pristha Arvikadewi, I.G.A.; Putu Yuda Pramana Putra, I. Output voltage characteristic in system lighting road based on heat pipe and thermoelectric. E3S Web Conf. 2018, 67, 02058. [Google Scholar] [CrossRef]
- Aggarwal, M.D.; Batra, A.K.; Guggilla, P.; Edwards, M.E.; Penn, B.G.; Currie, J.R., Jr. Pyroelectric Materials for Uncooled Infrared Detectors: Processing, Properties, and Applications; Report NASA/TM—2010–216373; NASA MSFC: Huntsville, AL, USA, 2010. [Google Scholar]
- Gupta, S. Introduction to ferroelectrics and related materials. In Ferroelectric Materials for Energy Harvesting and Storage; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–41. [Google Scholar]
- Kittel, C.; McEuen, P.; McEuen, P. Introduction to Solid State Physics; John Wiley & Sons, Ltd.: New York, NY, USA, 1996; Volume 8. [Google Scholar]
- Yan, Y.; Cho, K.H.; Maurya, D.; Kumar, A.; Kalinin, S.; Khachaturyan, A.; Priya, S. Giant energy density in [1]-textured Pb (Mg1/3Nb2/3) O3-PbZrO3-PbTiO3 piezoelectric ceramics. Appl. Phys. Lett. 2013, 102, 042903. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.Y.; Martin, L.W.; Byrnes, S.J.; Conry, T.E.; Basu, S.R.; Paran, D.; Reichertz, L.; Ihlefeld, J.; Adamo, C.; Melville, A.; et al. Photovoltaic effects in BiFeO3. Appl. Phys. Lett. 2009, 95, 62909. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.Y.; Seidel, J.; Byrnes, S.J.; Shafer, P.; Yang, C.-H.; Rossell, M.D.; Yu, P.; Chu, Y.-H.; Scott, J.F.; Ager, J.W., III; et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 2010, 5, 143–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Lin, D.; Chen, Z.; Cheng, Z.; Wang, J.; Li, C.; Xu, Z.; Huang, Q.; Liao, X.; Chen, L.-Q.; et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat. Mater. 2018, 17, 349–354. [Google Scholar] [CrossRef]
- Gupta, S.; Belianinov, A.; Baris Okatan, M.; Jesse, S.; Kalinin, S.V.; Priya, S. Fundamental limitation to the magnitude of piezoelectric response of⟨001⟩ pc textured K0.5Na0.5NbO3 ceramic. Appl. Phys. Lett. 2014, 104, 172902. [Google Scholar] [CrossRef]
- Narayan, B.; Malhotra, J.S.; Pandey, R.; Yaddanapudi, K.; Nukala, P.; Dkhil, B.; Senyshyn, A.; Ranjan, R. Electrostrain in excess of 1% in polycrystalline piezoelectrics. Nat. Mater. 2018, 17, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Pandey, V.; Kotnala, R.K.; Pandey, D. Direct evidence for multiferroic magnetoelectric coupling in 0.9 BiFeO3–0.1 BaTiO3. Phys. Rev. Lett. 2008, 101, 247602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, M.; Wang, J.; Hu, J.-M.; Wang, J.; Ma, J.; Li, H.-B.; Shen, Y.; Lin, Y.-H.; Chen, L.-Q.; Nan, C.-W. Optimizing direct magnetoelectric coupling in Pb (Zr, Ti) O3/Ni multiferroic film heterostructures. Appl. Phys. Lett. 2015, 106, 72901. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Gupta, A.; Chatterjee, R. Enhanced magnetoelectric coefficient (α) in the modified Bi FeO3–Pb T O3 system with large La substitution. Appl. Phys. Lett. 2008, 93, 22902. [Google Scholar] [CrossRef]
- Guzmán-Verri, G.G.; Littlewood, P.B. Why is the electrocaloric effect so small in ferroelectrics? APL Mater. 2016, 4, 64106. [Google Scholar] [CrossRef] [Green Version]
- Sebald, G.; Lefeuvre, E.; Guyomar, D. Pyroelectric energy conversion: Optimization principles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 538–551. [Google Scholar] [CrossRef] [PubMed]
- Cuadras, A.; Gasulla, M.; Ferrari, V. Thermal energy harvesting through pyroelectricity. Sens. Actuators A Phys. 2010, 158, 132–139. [Google Scholar] [CrossRef]
- Malmonge, L.F.; Malmonge, J.A.; Sakamoto, W.K. Study of pyroelectric activity of PZT/PVDF-HFP composite. Mater. Res. 2003, 6, 469–473. [Google Scholar] [CrossRef]
- Dietze, M.; Es-Souni, M. Structural and functional properties of screen-printed PZT–PVDF-TrFE composites. Sens. Actuators A Phys. 2008, 143, 329–334. [Google Scholar] [CrossRef]
- Wen, S.; Chung, D.D.L. Pyroelectric behavior of cement-based materials. Cem. Concr. Res. 2003, 33, 1675–1679. [Google Scholar] [CrossRef]
- Xie, J.; Mane, X.P.; Green, C.W.; Mossi, K.M.; Leang, K.K. Performance of thin piezoelectric materials for pyroelectric energy harvesting. J. Intell. Mater. Syst. Struct. 2010, 21, 243–249. [Google Scholar] [CrossRef]
- Batra, A.K.; Bhattacharjee, S.; Chilvery, A.K.; Aggarwal, M.D.; Edwards, M.E.; Bhalla, A.S. Simulation of energy harvesting from roads via pyroelectricity. J. Photonics Energy 2011, 1, 014001. [Google Scholar] [CrossRef]
- Tao, J.; Hu, J. Energy harvesting from pavement via polyvinylidene fluoride: Hybrid piezo-pyroelectric effects. J. Zhejiang Univ. Sci. A 2016, 17, 502–511. [Google Scholar] [CrossRef] [Green Version]
Database | Keywords | Duration | Publications |
---|---|---|---|
Web of Science (WoS) | TS = ((Thermoelectric OR geothermal) AND energy AND (road OR asphalt OR highway OR pavement)) | 2006–August 2021 | 193 |
Scopus | TITLE-ABS-KEY ((Thermoelectric OR geothermal) AND energy AND (road * OR asphalt OR highway OR pavement)) | 2006–August 2021 | 460 |
ScienceDirect | Title, abstract, keywords: ((Thermoelectric OR geothermal) AND energy AND (road OR asphalt OR highway OR pavement)) | 2006–August 2021 | 60 |
Total | 713 |
Database | Exclusions | ||||
---|---|---|---|---|---|
Collected Data | Common Papers | Other Languages | Superficial Scan | Deep Scan | |
WOS | 193 | 0 | 11 | 107 | 40 |
Scopus | 460 | 119 | 27 | 273 | 31 |
SD | 60 | 54 | 0 | 3 | 1 |
Total Removed | 0 | 173 | 38 | 383 | 72 |
Total Remaining | 713 | 540 | 502 | 119 | 47 |
Author Keyword | Links | Occurrences | Average Publications per Year |
---|---|---|---|
Energy harvesting | 15 | 20 | 2018 |
Thermoelectric | 12 | 15 | 2018 |
Asphalt pavement | 5 | 7 | 2019 |
Pavement | 8 | 6 | 2017 |
Piezoelectric | 7 | 6 | 2018 |
Paper Type | Software | Climatic Zone | Heat Collector | Heat Source | Pipe Length (m) | Pipe Diameter | Pipes Spacing (m) | Area m2 | Heat Collector Location | Output Power/Voltage | Surface Temperature Reduction | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Experimental and numerical | HyRoSim | Temperate | Ethylene glycol-water mixture circulated in cross-linked polyethylene | Sun | 140 | 20 mm | 0.050 | 70 | 62 mm | 245 kWh/m2 | 10 °C | [73] |
Numerical | COMSOL 5.3 | Temperate | 42% propylene glycol-water mixture circulated in pipe | Heat flux | 198 | 19 mm | 0.305 | 55.51 | 89 mm | 126 kWh/m2/year | - | [78] |
Experimental | - | Temperate | Water circulated in PE-XA pipe | Summer Tin < 20; winter Tin = 10 °C | 27 | 25 mm | 0.010 | 4 | 40 mm | 980 W/m2 | Above 2 °C (Winter); below 20 °C (summer) | [81] |
Experimental and numerical | Fluent | Subtropical | Water circulated in copper pipe | Infrared lamp | - | 20 mm | 0.010 | 0.09 | 70 mm | 750 w/m2 | - | [75] |
Experimental | - | Subtropical | Water circulated in high-density polyethylene (HDPE) piping | Hot water | 360 | 0.025 m | 0.600 | 200 | 500 mm | - | - | [74] |
Experimental and numerical | Autodesk CFD | Temperate | Air moved through a stainless-steel pipe | Infrared heating element | - | 65 mm | - | 0.329 | 100 mm | - | 6 °C reduction (summer); 2.1 °C increment (winter) | [76] |
Experimental | - | Temperate | Air moved through a steel pipe | 3 × 6 | 9 mm | 0.001 V; 0.002 H | 0.135 | - | - | 10% reduction | [77] |
Paper Type | Software | Modeling Method | Heat Collector | PCM | No. of TEGs | Cold Source | Cold Source Insulation | Heat Collector Insulation | Ref. |
---|---|---|---|---|---|---|---|---|---|
Experimental + Numerical | ABAQUS | Transient | Copper plate, 0.15 mm thickness | Yes | 2 | Aluminum heat sink filled with PCM | Yes | No | [90] |
Experimental | - | - | TEG hot side (direct contact) | No | Three configurations; (a) single model (1), (b) cascade module on module (2), (c) cascade side by side (2) | Aluminum heat sink | No | No | [104] |
Experimental | - | - | Aluminum vapor chamber | No | 3 setups; 1 TEGs; 2 TEGs; 3 TEGs | Aluminum heat sink filled with water | Yes | Yes | [98] |
Experimental + Numerical | ABAQUS | Transient | L-shape copper plate | Yes | 2 | Aluminum heat sink filled with PCM | Yes | Yes | [91] |
Experimental | - | - | copper and aluminum | No | Three setups; (a) 4 × 1, (b) 2 × 2, (c) 1 × 4 | (a) No cooling, (b) aluminum heat sink, (c) water tank | No | Yes | [92] |
Experimental | - | - | Aluminum vapor chambers | No | 3 | Water tank attached to vapor chamber and heat sinks | Yes | No | [99] |
Experimental + Numerical | ABAQUS | Transient | Copper plate, 0.15 mm thickness | Yes | 2 | Aluminum heat sink filled with PCM | Yes | No | [93] |
Numerical | COMSOL Multiphysics | Transient | Aluminum plate | No | 1 | Aluminum plate connected to aluminum rod | Yes | Yes | [100] |
Experimental | - | - | TEG hot side (direct contact) | No | 1 | cooling sink | No | No | [105] |
Experimental + Numerical | COMSOL Multiphysics | Transient | Aluminum plate | No | 2 | Aluminum plate attached to 2 aluminum rods | Yes | No | [101] |
Experimental | - | - | Aluminum bars | No | Four TEGs (A, B, C, D); 1 each run | Cold reservoir | Yes | Yes | [102] |
Experimental | - | - | Four straight heat pipes | No | 8 | Aluminum heat sink | No | No | [108] |
Experimental | - | - | Copper plate | No | 2 | Water tank | Yes | No | [94] |
Experimental + Numerical | ABAQUS | Steady state | Z-shape copper plate | No | (a) Two of 64 mm × 64mm; (b)Four 40mm × 40mm | Aluminum heat sink filled with water | No | Yes | [95] |
Experimental + Numerical | ABAQUS | Steady state | (a) Copper, (b) Aluminum, (c) and Steel (different shapes) | No | (a) Two of 64 mm× 64mm; (b)Four 40mm × 40mm | Aluminum heat sink filled with water | No | Yes | [96] |
Experimental | - | - | Direct sun | No | 1 | Aluminum plate and rod | Yes | No | [106] |
Experimental + Numerical | COMSOL Multiphysics | - | Aluminum plate | No | 2 | Aluminum plate attached to cooling element cylindrical rod or a flat bar | Yes | No | [103] |
Experimental + Numerical | ABAQUS | Steady-state heat | Copper plate | Yes | (a) 1 TEG, (b) 2 TEGs, (c) 3 TEGs, (d) 4 TEGs (one side), (e) 4 TEGs (two TEGs per side) | Aluminum heat sink filled with PCM | Yes | Yes | [97] |
Experimental + Numerical | ANSYS/FLOTRAN | - | Water moves in a pipe network | No | 19 | Cold water passed through a heat exchanger | Yes | Yes | [79] |
Experimental | - | - | TEG hot side (direct contact) | No | 1 | Unbound aggregates | Yes | Yes | [107] |
Heat Source | Location of the Heat Collector | The Highest Temperature on the Surface | Temperature Difference °C | Output Power/Voltage | Pavement Type | Field Test | Ref. | ||
Solar radiation simulator | 3 cm | 55 | Design A: 15.1; Design B: 18.3 | Design A: 24.95 mWatt; Design B: 27.35 mWatt | Asphalt | No | [90] | ||
Heater | 0 | TEC-12705 configuration (b): 51.2; TEC-12708 configuration (b): 60.1; APH-127-10-25-S configuration (b): 61.335; TEG1-PB-12611-6.0 configuration (b): 54.3 | TEC-12705 configuration (b): 23.6; TEC-12708 configuration (b): 27.6; APH-127-10-25-S configuration (b): 29.8; TEG1-PB-12611-6.0 configuration (b): 19.4 | TEC-12705 configuration (b): 1.5; TEC-12708 configuration (b): 1.9; APH-127-10-25-S configuration (b): 2.4; TEG1-PB-12611-6.0 configuration (b): 0.26 | No pavement | no | [104] | ||
Iodine–tungsten lamp (lab); Sun (field) | 2–3 | 75.5 | 30 | 0.564 v | Asphalt | Yes | [98] | ||
Sun (field) | 2–3 | 62 | 32.5 | 34.3 mW | Asphalt | Yes | [91] | ||
Two 100 W bulbs | 2 | - | 9 | 0.29 v | Asphalt | No | [92] | ||
500 W iodine–tungsten lamp (lab); sun (field) | 2 | - | 34.7 | 0.74 v | Asphalt | Yes | [99] | ||
Solar radiation simulator | 3 | 55 | Design A: 15.12; Design B: 17, Design C: 19.73, Design D: 18.28 | Design A: 24.59; Design B: 27.19, Design C: 30.41, Design D: 27.94 | Asphalt | No | [93] | ||
Solar irradiance | 0.3 | 48 | 11 | N/A | Asphalt | NO | [100] | ||
Halogen lamp | 0 | 60 | 29 | 0.065 v | Concrete | No | [105] | ||
LED light (lab), Sun (field) | 0 | 61.12 | 23 | 0.95 v | Asphalt | Yes | [101] | ||
Hot reservoir | - | - | A: 2.4; B: 16.7; C: 14.2; D: 16.5 | A: 1.6; B: 6.9; C: 1.9; D: 1.5 mW | - | No | [102] | ||
LED lamp (lab), sun (field) | NA | 84.6 | 49.3 | 11.9 v | Asphalt | Yes | [108] | ||
100 W incandescent light bulb (lab), sun (field) | - | - | - | DC1577A with MPPT: 4.2 mW; ECT310 without MPPT: 0.7 mW | Asphalt | Yes | [94] | ||
Heated water tub | 2 | 52.3 | 7.6 | (a) 8 mW, (b) 11 mW | Asphalt | Yes | [95] | ||
Heated water tub | 2 | 52.3 | 7.6 | 14.3 mW | Asphalt | Yes | [96] | ||
Filament lamp | 0 (Asphalt pavement surface) | 70 | 20 | 0.5 v; 300mW | Asphalt | No | [106] | ||
Halogen lamp (lab); Sun (field) | 0 (Asphalt pavement surface) | 61.45 | 8.99 | 0.35 v | Asphalt | Yes | [103] | ||
Solar simulator | 2 | 65 | 47 | 47.14 mW | Asphalt | No | [97] | ||
Hot water heated by gas boiler | 7 | 60 | 35 | 3.6 W | Asphalt | No | [79] | ||
Full spectrum lamp | 5 | 61 | 15 | 63 mW/m2 (Asphalt); 39 mW/m2 (concrete) | (a) Asphalt, (b) concrete | No | [107] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Qadami, E.H.H.; Mustaffa, Z.; Al-Atroush, M.E. Evaluation of the Pavement Geothermal Energy Harvesting Technologies towards Sustainability and Renewable Energy. Energies 2022, 15, 1201. https://doi.org/10.3390/en15031201
Al-Qadami EHH, Mustaffa Z, Al-Atroush ME. Evaluation of the Pavement Geothermal Energy Harvesting Technologies towards Sustainability and Renewable Energy. Energies. 2022; 15(3):1201. https://doi.org/10.3390/en15031201
Chicago/Turabian StyleAl-Qadami, Ebrahim Hamid Hussein, Zahiraniza Mustaffa, and Mohamed E. Al-Atroush. 2022. "Evaluation of the Pavement Geothermal Energy Harvesting Technologies towards Sustainability and Renewable Energy" Energies 15, no. 3: 1201. https://doi.org/10.3390/en15031201
APA StyleAl-Qadami, E. H. H., Mustaffa, Z., & Al-Atroush, M. E. (2022). Evaluation of the Pavement Geothermal Energy Harvesting Technologies towards Sustainability and Renewable Energy. Energies, 15(3), 1201. https://doi.org/10.3390/en15031201