Effect of Manufacturing Inaccuracies on the Wake Past Asymmetric Airfoil by PIV
Abstract
:1. Introduction
Some Recent Literature Concerning This Problem
2. Materials and Methods
2.1. Three-Dimensional Printer
2.2. Three-Dimensional Scanner
2.3. Model
2.4. Wind Tunnel
2.5. Particle Image Velocimetry
2.6. Lift Force Measurement
3. Results and Discussion
3.1. Zero Angle of Attack—Average Velocities
3.2. Balance Measurement of Lift Coefficient
3.3. Rough Estimation of Drag Coefficient
3.4. The Wake Width and Centerline
3.5. Turbulent Kinetic Energy
3.6. TKE by Length-Scale of Fluctuations
3.7. Spatial Correlation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Large Angle of Attack
References
- Frisch, U.; Kolmogorov, A.N. Turbulence: The legacy of AN Kolmogorov; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- AIAA. Guide for the Verification and Validation of Computational Fluid Dynamics Simulations; G-077; AIAA: Reston, VA, USA, 1998. [Google Scholar] [CrossRef]
- Drela, M. Airfoil Tools. Available online: http://airfoiltools.com. (accessed on 20 April 2021).
- Moreno-Oliva, V.I.; Román-Hernández, E.; Torres-Moreno, E.; Dorrego-Portela, J.R.; Avendaño Alejo, M.; Campos-García, M.; Sánchez-Sánchez, S. Measurement of quality test of aerodynamic profiles in wind turbine blades using laser triangulation technique. Energy Sci. Eng. 2019, 7, 2180–2192. [Google Scholar] [CrossRef] [Green Version]
- Drela, M. XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils. In Proceedings of the Low Reynolds Number Aerodynamics, Notre Dame, IA, USA, 5–7 June 1989; Volume 54, pp. 1–12. [Google Scholar] [CrossRef]
- Ravikovich, Y.; Kholobtsev, D.; Arkhipov, A.; Shakhov, A. Influence of geometric deviations of the fan blade airfoil on aerodynamic and mechanical integrity. J. Phys. Conf. Ser. 2021, 1891, 012042. [Google Scholar] [CrossRef]
- Klimko, M.; Okresa, D. Measurements in the VT 400 air turbine. Acta Polytech. 2016, 56, 118. [Google Scholar] [CrossRef] [Green Version]
- Uher, J.; Milcak, P.; Skach, R.; Fenderl, D.; Zitek, P.; Klimko, M. Experimental and Numerical Evaluation of Losses From Turbine Hub Clearance Flow. Turbo Expo Power Land Sea Air 2019, 2B, 9. [Google Scholar] [CrossRef]
- Winstroth, J.; Seume, J.R. On the influence of airfoil deviations on the aerodynamic performance of wind turbine rotors. J. Phys. Conf. Ser. 2016, 753, 022058. [Google Scholar] [CrossRef] [Green Version]
- Alsoufi, M.S.; Elsayed, A.E. Surface Roughness Quality and Dimensional Accuracy—A Comprehensive Analysis of 100% Infill Printed Parts Fabricated by a Personal/Desktop Cost-Effective FDM 3D Printer. Mater. Sci. Appl. 2018, 09, 11–40. [Google Scholar] [CrossRef] [Green Version]
- Inkinen, S.; Hakkarainen, M.; Albertsson, A.; Södergøard, A. From lactic acid to poly(lactic acid) (PLA): Characterization and analysis of PLA and Its precursors. Biomacromolecules 2011, 12, 523–532. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, H.; Gu, F.; Ma, Y. Phase unwrapping algorithm based on multi-frequency fringe projection and fringe background for fringe projection profilometry. Meas. Sci. Technol. 2015, 26. [Google Scholar] [CrossRef]
- Li, F.; Stoddart, D.; Zwierzak, I. A Performance Test for a Fringe Projection Scanner in Various Ambient Light Conditions. Procedia CIRP 2017, 62, 400–404. [Google Scholar] [CrossRef]
- GOM. GOM Acceptance Test—Process Description, Acceptance Test according to the Guideline VDI/VDE 2634 Part 3; Engl. VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik: Düsseldorf, Germnay, 2014. [Google Scholar]
- Mendricky, R. Determination of measurement accuracy of optical 3D scanners. MM Sci. J. 2016, 2016, 1565–1572. [Google Scholar] [CrossRef] [Green Version]
- Vagovský, J.; Buranský, I.; Görög, A. Evaluation of measuring capability of the optical 3D scanner. Procedia Eng. 2015, 100, 1198–1206. [Google Scholar] [CrossRef] [Green Version]
- Du, W.; Zhao, Y.; He, Y.; Liu, Y. Design, analysis and test of a model turbine blade for a wave basin test of floating wind turbines. Renew. Energy 2016, 97, 414–421. [Google Scholar] [CrossRef]
- GOM. ATOS Core. Available online: https://www.gom.com/en/products/3d-scanning/atos-core (accessed on 20 April 2021).
- Krein, M.; Šmulian, V. On Regularly Convex Sets in the Space Conjugate to a Banach Space. Ann. Math. 1940, 41, 556–583. [Google Scholar] [CrossRef]
- Yanovych, V.; Duda, D.; horáček, V.; Uruba, V. Research of a wind tunnel parameters by means of cross-section analysis of air flow profiles. AIP Conf. Proc. 2019, 2189. [Google Scholar] [CrossRef]
- Yanovych, V.; Duda, D. Structural deformation of a running wind tunnel measured by optical scanning. Stroj. Cas. 2020, 70, 181–196. [Google Scholar] [CrossRef]
- Duda, D.; Yanovych, V.; Uruba, V. An experimental study of turbulent mixing in channel flow past a grid. Processes 2020, 8, 1355. [Google Scholar] [CrossRef]
- Tropea, C.; Yarin, A.; Foss, J.F. Springer Handbook of Experimental Fluid Mechanics; Springer: Berlin/Heidelberg, Germany, 2007; p. 1557. [Google Scholar]
- Duda, D.; Uruba, V. Spatial Spectrum From Particle Image Velocimetry Data. ASME J. Nucl. Rad. Sci. 2019, 5, 030912. [Google Scholar] [CrossRef]
- Von Kármán, T. Aerodynamics. In McGraw-Hill Paperbacks: Science, Mathematics and Engineering; McGraw-Hill: New York, NY, USA, 1963. [Google Scholar]
- Drela, M. Low-Reynolds Number Airfoil Design for the MIT Daedalus Prototype: A Case Study. J. Aircr. 1988, 25, 724–732. [Google Scholar] [CrossRef]
- Drela, M.; Giles, M. Viscous-Inviscid Analysis of Transonic and Low Reynolds Number Airfoils. AIAA J. 1987, 25, 1347–1355. [Google Scholar] [CrossRef]
- Terra, W.; Sciacchitano, A.; Scarano, F. Aerodynamic drag of a transiting sphere by large-scale tomographic-PIV. Exp. Fluids 2017, 58. [Google Scholar] [CrossRef] [Green Version]
- Terra, W.; Sciacchitano, A.; Scarano, F. Drag analysis from PIV data in speed sports. Procedia Eng. 2016, 147, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Ragni, D.; Oudheusden, B.W.; Scarano, F. Non-intrusive aerodynamic loads analysis of an aircraft propeller blade. Exp. Fluids 2011, 51, 361–371. [Google Scholar] [CrossRef] [Green Version]
- Oudheusden, B.W. PIV-based pressure measurement. Meas. Sci. Technol. 2013, 24, 032001. [Google Scholar] [CrossRef]
- Antonia, R.A.; Rajagopalan, S. Determination of drag of a circular cylinder. AIAA J. 1990, 28, 1833–1834. [Google Scholar] [CrossRef]
- Zhou, Y.; Alam, M.M.; Yang, H.; Guo, H.; Wood, D. Fluid forces on a very low Reynolds number airfoil and their prediction. Int. J. Heat Fluid Flow 2011, 32, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Mohebi, M.; Wood, D.H.; Martinuzzi, R.J. The turbulence structure of the wake of a thin flat plate at post-stall angles of attack. Exp. Fluids 2017, 58. [Google Scholar] [CrossRef]
- Duda, D.; Yanovych, V.; Uruba, V. Wake Width: Discussion of Several Methods How to Estimate It by Using Measured Experimental Data. Energies 2021, 14, 4712. [Google Scholar] [CrossRef]
- Eames, I.; Jonsson, C.; Johnson, P.B. The growth of a cylinder wake in turbulent flow. J. Turbul. 2011, 12, N39. [Google Scholar] [CrossRef]
- Romano, G.P. Large and small scales in a turbulent orifice round jet: Reynolds number effects and departures from isotropy. Int. J. Heat Fluid Flow 2020, 83. [Google Scholar] [CrossRef]
- Lumley, J.L.; Newman, G. The return to isotropy of homogeneous turbulence. J. Fluid Meach. 1977, 82, 161–178. [Google Scholar] [CrossRef] [Green Version]
- Simonsen, A.J.; Krogstad, P.o. Turbulent stress invariant analysis: Clarification of existing terminology. Phys. Fluids 2005, 17, 088103. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.; Lumley, J.L. The return to isotropy of homogeneous turbulence. J. Fluid Meach. 2001, 436, 59–84. [Google Scholar] [CrossRef]
- Duda, D.; Bém, J.; Yanovych, V.; Pavlíček, P.; Uruba, V. Secondary flow of second kind in a short channel observed by PIV. Eur. J. Mech. B/Fluids 2020, 79, 444–453. [Google Scholar] [CrossRef]
- Bém, J.; Duda, D.; Kovařík, J.; Yanovych, V.; Uruba, V. Visualization of secondary flow in a corner of a channel. AIP Conf. Proc. 2019, 2189, 020003-1-6. [Google Scholar] [CrossRef]
- Kundu, P.; Cohen, I.; Dowling, D. Fluid Mechanics, 6th ed.; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Duda, D.; Uruba, V. PIV of air flow over a step and discussion of fluctuation decompositions. AIP Conf. Proc. 2018, 2000, 020005. [Google Scholar] [CrossRef]
- Agrawal, A. Measurement of spectrum with particle image velocimetry. Exp. Fluids 2005, 39, 836–840. [Google Scholar] [CrossRef]
- Agrawal, A.; Prasad, A. Properties of vortices in the self-similar turbulent jet. Exp. Fluids 2002, 33, 565–577. [Google Scholar] [CrossRef]
- Duda, D.; La Mantia, M.; Skrbek, L. Streaming flow due to a quartz tuning fork oscillating in normal and superfluid He 4. Phys. Rev. B 2017, 96. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. Dissipation of Energy in the Locally Isotropic Turbulence. Proc. R. Soc. A Math. Phys. Eng. Sci. 1991, 434, 15–17. [Google Scholar] [CrossRef]
- Jiang, M.T.; Law, A.W.K.; Lai, A.C.H. Turbulence characteristics of 45 inclined dense jets. Environ. Fluid Mech. 2018, 1–28. [Google Scholar] [CrossRef]
- Barenghi, C.F.; Sergeev, Y.A.; Baggaley, A.W. Regimes of turbulence without an energy cascade. Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harun, Z.; Abbas, A.A.; Lotfy, E.R.; Khashehchi, M. Turbulent structure effects due to ordered surface roughness. Alex. Eng. J. 2020, 59, 4301–4314. [Google Scholar] [CrossRef]
- Bourgoin, M.; Baudet, C.; Kharche, S.; Mordant, N.; Vandenberghe, T.; Sumbekova, S.; Stelzenmuller, N.; Aliseda, A.; Gibert, M.; Roche, P.; et al. Investigation of the small-scale statistics of turbulence in the Modane S1MA wind tunnel. CEAS Aeronaut. J. 2018, 9, 269–281. [Google Scholar] [CrossRef]
- Kraichnan, R.H. Inertial ranges in two-dimensional turbulence. Phys. Fluids 1967, 10, 1417–1423. [Google Scholar] [CrossRef] [Green Version]
- Schulz-DuBois, E.O.; Rehberg, I. Structure Function in Lieu of Correlation Function. Appl. Phys. 1981, 24, 323–329. [Google Scholar] [CrossRef]
- Kubíková, T. The air flow around a milling cutter investigated experimentally by particle image velocimetry. AIP Conf. Proc. 2021, 2323, 030006-1-8. [Google Scholar] [CrossRef]
- Azevedo, R.; Roja-Solórzano, L.R.; Bento Leal, J. Turbulent structures, integral length scale and turbulent kinetic energy (TKE) dissipation rate in compound channel flow. Flow Meas. Instrum. 2017, 57, 10–19. [Google Scholar] [CrossRef]
Unit | CAD | A | B | C | |
---|---|---|---|---|---|
Chord length c | mm | ||||
Profile thickness—maximum inscribed circle | mm | ||||
Profile thickness—caliper along y-axis | mm | ||||
Blockage ratio | % |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duda, D.; Yanovych, V.; Tsymbalyuk, V.; Uruba, V. Effect of Manufacturing Inaccuracies on the Wake Past Asymmetric Airfoil by PIV. Energies 2022, 15, 1227. https://doi.org/10.3390/en15031227
Duda D, Yanovych V, Tsymbalyuk V, Uruba V. Effect of Manufacturing Inaccuracies on the Wake Past Asymmetric Airfoil by PIV. Energies. 2022; 15(3):1227. https://doi.org/10.3390/en15031227
Chicago/Turabian StyleDuda, Daniel, Vitalii Yanovych, Volodymyr Tsymbalyuk, and Václav Uruba. 2022. "Effect of Manufacturing Inaccuracies on the Wake Past Asymmetric Airfoil by PIV" Energies 15, no. 3: 1227. https://doi.org/10.3390/en15031227
APA StyleDuda, D., Yanovych, V., Tsymbalyuk, V., & Uruba, V. (2022). Effect of Manufacturing Inaccuracies on the Wake Past Asymmetric Airfoil by PIV. Energies, 15(3), 1227. https://doi.org/10.3390/en15031227