Thermal Performance Improvement for Different Strategies of Battery Thermal Management Systems Combined with Jute—A Comparison Study †
Abstract
:1. Introduction
2. Methodology and Development
2.1. Experimental Setup
2.2. Description of the Proposed Designs
2.2.1. Passive Cooling PCM-Assisted BTMS
2.2.2. Active Air Cooling BTMS
3. Thermal Performance of Jute Integration with PCM-Assisted Cooling System
3.1. Temperature Development
3.2. Uniformity
3.3. Efficiency
4. Thermal Performance of Jute Integration with Air Cooling Strategy
4.1. Temperature Development (Evolution)
4.2. Uniformity
4.3. Efficiency
5. Thermal Performance Comparison of Combining Jute into the (Active Cooling) Air-Based Cooling Strategy and (Passive Cooling) PCM-Assisted Cooling Strategy
5.1. Temperature Development
5.2. Uniformity
5.3. Efficiency
6. Experimental Uncertainty Analysis
7. Conclusion and Future Work
- Integrating jute fabrics with PCM (passive cooling strategy) achieved the desired effect on the battery thermal behavior and enhanced the cooling efficiency; temperature difference (ΔT) efficiency was enhanced by 60%. Furthermore, less PCM and nonenvironmental cooling material was used. Therefore, system weight reduction and environmental material enhancement were achieved.
- By adding jute to active cooling, high cooling efficiency was delivered with the wet jute in terms of maximal temperature, ΔT, and temperature uniformity; the latter improved by 3%. Merging jute into BTMS design would boost the opportunities for electric vehicles to work properly in hot environments.
- Comparing the integration of jute with active cooling (air-based) and passive cooling (PCM), the results indicated that uniformity efficiency with the PCM+jute technique was mostly not achieved, while it was enhanced with the active cooling strategy. Therefore, integrating jute into an active BTMS has great potential to improve BTMS cooling efficiency in terms of Tmax, ΔT, and uniformity together.
- Last but certainly not least, jute, as a novel, eco-friendly, weightless, cheap, available, and nontoxic material, was added to two strategies of BTMS. The setup was physically made and experimentally studied for the purpose of BTMS design optimization. This work will be extended in the future to the modeling stage and simulation. Jute fabric thermal properties will be studied more, and further investigation with analysis will be added to optimize battery thermal management environmentally.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muratori, M.; Alexander, M.; Arent, D.; Bazilian, M.; Cazzola, P.; Dede, E.M.; Farrell, J.; Gearhart, C.; Greene, D.; Jenn, A.; et al. The rise of electric vehicles—2020 status and future expectations. Prog. Energy 2021, 3, 022002. [Google Scholar] [CrossRef]
- Sanguesa, J.; Torres-Sanz, V.; Garrido, P.; Martinez, F.; Marquez-Barja, J. A Review on Electric Vehicles: Technologies and Challenges. Smart Cities 2021, 4, 372–404. [Google Scholar] [CrossRef]
- Yoshio, M.; Brodd, R.J.; Kozawa, A. Lithium-Ion Batteries; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Bandhauer, T.M.; Garimella, S.; Fuller, T.F. A Critical Review of Thermal Issues in Lithium-Ion Batteries. J. Electrochem. Soc. 2011, 158, R1. [Google Scholar] [CrossRef]
- He, J.; Youssef, R.; Hosen, S.; Akbarzadeh, M.; Van Mierlo, J.; Berecibar, M. A novel methodology to determine the specific heat capacity of lithium-ion batteries. J. Power Sources 2021, 520, 230869. [Google Scholar] [CrossRef]
- Youssef, R.; Hosen, S.; He, J.; Jaguemont, J.; Akbarzadeh, M.; De Sutter, L.; Van Mierlo, J.; Berecibar, M. Experimental and Numerical Study on the Thermal Behavior of a Large Lithium-Ion Prismatic Cell With Natural Air Convection. IEEE Trans. Ind. Appl. 2021, 57, 6475–6482. [Google Scholar] [CrossRef]
- Lin, J.; Liu, X.; Li, S.; Zhang, C.; Yang, S. A review on recent progress, challenges and perspective of battery thermal management system. Int. J. Heat Mass Transf. 2021, 167, 120834. [Google Scholar] [CrossRef]
- Ma, S.; Jiang, M.; Tao, P.; Song, C.; Wu, J.; Wang, J.; Deng, T.; Shang, W. Temperature effect and thermal impact in lithium-ion batteries: A review. Prog. Nat. Sci. 2018, 28, 653–666. [Google Scholar] [CrossRef]
- Youssef, R.; He, J.; Akbarzadeh, M.; Jaguemont, J.; De Sutter, L.; Berecibar, M.; Van Mierlo, J. Investigation of Thermal Behavior of Large Lithium-Ion Prismatic Cell in Natural Air Convection. In Proceedings of the 2020 9th International Conference on Renewable Energy Research and Application (ICRERA), Glasgow, UK, 27–30 September 2020; pp. 43–47. [Google Scholar] [CrossRef]
- Feng, X.; Ren, D.; He, X.; Ouyang, M. Mitigating Thermal Runaway of Lithium-Ion Batteries. Joule 2020, 4, 743–770. [Google Scholar] [CrossRef]
- Kim, J.; Oh, J.; Lee, H. Review on battery thermal management system for electric vehicles. Appl. Therm. Eng. 2019, 149, 192–212. [Google Scholar] [CrossRef]
- Jaguemont, J.; Van Mierlo, J. A comprehensive review of future thermal management systems for battery-electrified vehicles. J. Energy Storage 2020, 31, 101551. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Luo, L.; Fan, Y.; Du, Z. A review on thermal management of lithium-ion batteries for electric vehicles. Energy 2022, 238, 121652. [Google Scholar] [CrossRef]
- Thakur, A.K.; Prabakaran, R.; Elkadeem, M.; Sharshir, S.W.; Arıcı, M.; Wang, C.; Zhao, W.; Hwang, J.-Y.; Saidur, R. A state of art review and future viewpoint on advance cooling techniques for Lithium–ion battery system of electric vehicles. J. Energy Storage 2020, 32, 101771. [Google Scholar] [CrossRef]
- Liu, C.; Xu, D.; Weng, J.; Zhou, S.; Li, W.; Wan, Y.; Jiang, S.; Zhou, D.; Wang, J.; Huang, Q. Phase Change Materials Application in Battery Thermal Management System: A Review. Materials 2020, 13, 4622. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wei, K. Experimental and numerical study of a passive thermal management system using flat heat pipes for lithium-ion batteries. Appl. Therm. Eng. 2020, 166. [Google Scholar] [CrossRef]
- Kong, D.; Peng, R.; Ping, P.; Du, J.; Chen, G.; Wen, J. A novel battery thermal management system coupling with PCM and optimized controllable liquid cooling for different ambient temperatures. Energy Convers. Manag. 2020, 204, 112280. [Google Scholar] [CrossRef]
- Liu, H.; Wei, Z.; He, W.; Zhao, J. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review. Energy Convers. Manag. 2017, 150, 304–330. [Google Scholar] [CrossRef]
- Yang, W.; Zhou, F.; Zhou, H.; Wang, Q.; Kong, J. Thermal performance of cylindrical lithium-ion battery thermal management system integrated with mini-channel liquid cooling and air cooling. Appl. Therm. Eng. 2020, 175, 115331. [Google Scholar] [CrossRef]
- Deng, Y.; Feng, C.; Jiaqiang, E.; Zhu, H.; Chen, J.; Wen, M.; Yin, H. Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system: A review. Appl. Therm. Eng. 2018, 142, 10–29. [Google Scholar] [CrossRef]
- Xia, G.; Cao, L.; Bi, G. A review on battery thermal management in electric vehicle application. J. Power Sources 2017, 367, 90–105. [Google Scholar] [CrossRef]
- Yang, X.; Yan, Y.Y.; Mullen, D. Recent developments of lightweight, high performance heat pipes. Appl. Therm. Eng. 2012, 33, 1–14. [Google Scholar] [CrossRef]
- Zou, H.; Wang, W.; Zhang, G.; Qin, F.; Tian, C.; Yan, Y. Experimental investigation on an integrated thermal management system with heat pipe heat exchanger for electric vehicle. Energy Convers. Manag. 2016, 118, 88–95. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, B.; Xue, Q.; Sun, H.; Li, B.; Zou, H.; Yan, Y. Experimental investigation on EV battery cooling and heating by heat pipes. Appl. Therm. Eng. 2015, 88, 54–60. [Google Scholar] [CrossRef]
- Volkswagen E-Up! Air Cooled Battery, Featured in ViaVision Magazine|My Electric Car Forums n.d. Available online: https://www.myelectriccarforums.com/volkswagen-e-up-air-cooled-battery-featured-in-viavision-magazine/ (accessed on 17 June 2021).
- Zhao, G.; Wang, X.; Negnevitsky, M.; Zhang, H. A review of air-cooling battery thermal management systems for electric and hybrid electric vehicles. J. Power Sources 2021, 501, 230001. [Google Scholar] [CrossRef]
- Numerical Investigation of Thermal Behaviors in Lithium-Ion Battery Stack Discharge|Elsevier Enhanced Reader n.d. Available online: https://reader.elsevier.com/reader/sd/pii/S0306261914007053?token=28CCD1C09F370C552B30C563E03D4360789A389587DCD03455AF641EB4997591FB5E9493D6F3F3F6629A58C1933B719B&originRegion=eu-west-1&originCreation=20210623085040 (accessed on 23 June 2021).
- Akinlabi, A.H.; Solyali, D. Configuration, design, and optimization of air-cooled battery thermal management system for electric vehicles: A review. Renew. Sustain. Energy Rev. 2020, 125, 109815. [Google Scholar] [CrossRef]
- Na, X.; Kang, H.; Wang, T.; Wang, Y. Reverse layered air flow for Li-ion battery thermal management. Appl. Therm. Eng. 2018, 143, 257–262. [Google Scholar] [CrossRef]
- Chen, K.; Song, M.; Wei, W.; Wang, S. Structure optimization of parallel air-cooled battery thermal management system with U-type flow for cooling efficiency improvement. Energy 2018, 145, 603–613. [Google Scholar] [CrossRef]
- Wang, S.; Li, K.; Tian, Y.; Wang, J.; Wu, Y.; Ji, S. Improved thermal performance of a large laminated lithium-ion power battery by reciprocating air flow. Appl. Therm. Eng. 2019, 152, 445–454. [Google Scholar] [CrossRef]
- Xie, J.; Ge, Z.; Zang, M.; Wang, S. Structural optimization of lithium-ion battery pack with forced air cooling system. Appl. Therm. Eng. 2017, 126, 583–593. [Google Scholar] [CrossRef]
- Alipour, M.; Hassanpouryouzband, A.; Kizilel, R. Investigation of the Applicability of Helium-Based Cooling System for Li-Ion Batteries. Electrochem 2021, 2, 135–148. [Google Scholar] [CrossRef]
- Al-Zareer, M.; Dincer, I.; Rosen, M.A. Electrochemical modeling and performance evaluation of a new ammonia-based battery thermal management system for electric and hybrid electric vehicles. Electrochimica Acta 2017, 247, 171–182. [Google Scholar] [CrossRef]
- Siddique, A.R.M.; Mahmud, S.; Van Heyst, B. A comprehensive review on a passive (phase change materials) and an active (thermoelectric cooler) battery thermal management system and their limitations. J. Power Sources 2018, 401, 224–237. [Google Scholar] [CrossRef]
- Souayfane, F.; Fardoun, F.; Biwole, P.-H. Phase change materials (PCM) for cooling applications in buildings: A review. Energy Build. 2016, 129, 396–431. [Google Scholar] [CrossRef]
- Landini, S.; Leworthy, J.; O’donovan, T. A Review of Phase Change Materials for the Thermal Management and Isothermalisation of Lithium-Ion Cells. J. Energy Storage 2019, 25. [Google Scholar] [CrossRef]
- Bose, P.; Amirtham, V.A. A review on thermal conductivity enhancement of paraffinwax as latent heat energy storage material. Renew. Sustain. Energy Rev. 2016, 65, 81–100. [Google Scholar] [CrossRef]
- Verma, A.; Shashidhara, S.; Rakshit, D. A comparative study on battery thermal management using phase change material (PCM). Therm. Sci. Eng. Prog. 2019, 11, 74–83. [Google Scholar] [CrossRef]
- Hussain, A.; Abidi, I.H.; Tso, C.Y.; Chan, K.; Luo, Z.; Chao, C.Y. Thermal management of lithium ion batteries using graphene coated nickel foam saturated with phase change materials. Int. J. Therm. Sci. 2018, 124, 23–35. [Google Scholar] [CrossRef]
- Li, Y.; Du, Y.; Xu, T.; Wu, H.; Zhou, X.; Ling, Z.; Zhang, Z. Optimization of thermal management system for Li-ion batteries using phase change material. Appl. Therm. Eng. 2018, 131, 766–778. [Google Scholar] [CrossRef]
- Lyu, P.; Huo, Y.; Qu, Z.; Rao, Z. Investigation on the thermal behavior of Ni-rich NMC lithium ion battery for energy storage. Appl. Therm. Eng. 2020, 166, 114749. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, C.; Rao, Z. Experimental investigation on thermal management performance of electric vehicle power battery using composite phase change material. J. Clean. Prod. 2018, 201, 916–924. [Google Scholar] [CrossRef]
- Li, Y.; Wei, Z.; Xiong, B.; Vilathgamuwa, D.M. Adaptive Ensemble-Based Electrochemical-Thermal-Degradation State Estimation of Lithium-ion Batteries. IEEE Trans. Ind. Electron. 2021, 1. [Google Scholar] [CrossRef]
- Wu, J.; Wei, Z.; Liu, K.; Quan, Z.; Li, Y. Battery-Involved Energy Management for Hybrid Electric Bus Based on Expert-Assistance Deep Deterministic Policy Gradient Algorithm. IEEE Trans. Veh. Technol. 2020, 69, 12786–12796. [Google Scholar] [CrossRef]
- Youssef, R.; Hosen, S.; He, J.; Jaguemont, J.; De Sutter, L.; Van Mierlo, J.; Berecibar, M. Effect analysis on performance enhancement of a novel and environmental evaporative cooling system for lithium-ion battery applications. J. Energy Storage 2021, 37, 102475. [Google Scholar] [CrossRef]
- Shah, S.S.; Shaikh, M.N.; Khan, M.Y.; Alfasane, A.; Rahman, M.M.; Aziz, A. Present Status and Future Prospects of Jute in Nanotechnology: A Review. Chem. Rec. 2021, 21, 1631–1665. [Google Scholar] [CrossRef]
- Chattopadhyay, D.; Patel, B.H.; Chattopadhyay, D.P.; Patel, B.H. Imparting water repellency to jute fabric by nano paraffin and nano copper colloid treatment Functional finishing of textiles with natural resources. View project Imparting water repellency to jute fabric by nano paraffin and nano copper colloid treatment. n.d. Available online: https://www.researchgate.net/publication/308334126 (accessed on 15 November 2021).
- Jahan, A. The environmental and economic prospects of jute with a connection to social factors for achieving Sustainable Development. Independent Master thesis Advanced level, Uppsala University, Uppsala, Sweden, 2019. [Google Scholar]
- El Nemr, A. From natural to synthetic fibers. In Textiles: Types, Uses and Production Methods; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2012. [Google Scholar]
- Brend, D.E.C.; Eva, B.; Ignacio, M.; Pablo, D.; Jaime, G.; Valérie, D.E.V. Structural influence on the thermal behavior of jute fabrics treated with pcms. n.d. pp. 43–46. Available online: http://textile.webhost.uoradea.ro/Annals/Vol%20XIX-No%201-2018/Textile/Art.%20no.%20290-pag.%2043-46.pdf (accessed on 20 January 2022).
- Al-Sulaiman, F. Evaluation of the performance of local fibers in evaporative cooling. Energy Convers. Manag. 2002, 43, 2267–2273. [Google Scholar] [CrossRef]
- Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater. 2018, 10, 246–267. [Google Scholar] [CrossRef]
- Babapoor, A.; Azizi, M.; Karimi, G. Thermal management of a Li-ion battery using carbon fiber-PCM composites. Appl. Therm. Eng. 2015, 82, 281–290. [Google Scholar] [CrossRef]
- Yuen, M.; Chen, L. Heat-transfer measurements of evaporating liquid droplets. Int. J. Heat Mass Transf. 1978, 21, 537–542. [Google Scholar] [CrossRef]
- Moffat, R.J. Describing the uncertainties in experimental results. Exp. Therm. Fluid Sci. 1988, 1, 3–17. [Google Scholar] [CrossRef] [Green Version]
Item | Parameter Specification |
---|---|
Nominal capacity | 50 Ah |
Nominal voltage | 3.7 V |
Battery weight | 900 ± 25 g |
Battery dimension | 148 × 98 × 27 mm |
Properties | Value |
---|---|
Thermal conductivity | 2.32 W/m∙K |
Heat capacity | 1430 J/kg∙K |
Density | 1305 kg/m3 |
Melting temperature | 27–28 °C |
Latent heat | 150,000 J/kg |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youssef, R.; Hosen, M.S.; He, J.; AL-Saadi, M.; Van Mierlo, J.; Berecibar, M. Thermal Performance Improvement for Different Strategies of Battery Thermal Management Systems Combined with Jute—A Comparison Study. Energies 2022, 15, 873. https://doi.org/10.3390/en15030873
Youssef R, Hosen MS, He J, AL-Saadi M, Van Mierlo J, Berecibar M. Thermal Performance Improvement for Different Strategies of Battery Thermal Management Systems Combined with Jute—A Comparison Study. Energies. 2022; 15(3):873. https://doi.org/10.3390/en15030873
Chicago/Turabian StyleYoussef, Rekabra, Md Sazzad Hosen, Jiacheng He, Mohammed AL-Saadi, Joeri Van Mierlo, and Maitane Berecibar. 2022. "Thermal Performance Improvement for Different Strategies of Battery Thermal Management Systems Combined with Jute—A Comparison Study" Energies 15, no. 3: 873. https://doi.org/10.3390/en15030873
APA StyleYoussef, R., Hosen, M. S., He, J., AL-Saadi, M., Van Mierlo, J., & Berecibar, M. (2022). Thermal Performance Improvement for Different Strategies of Battery Thermal Management Systems Combined with Jute—A Comparison Study. Energies, 15(3), 873. https://doi.org/10.3390/en15030873