The Multifunctional Nuclear Magnetic Flowmeter for Control to the Consumption and Condition of Coolant in Nuclear Reactors
Abstract
:1. Introduction
2. Nuclear Magnetic Resonance Method
3. The Design of a Nuclear Magnetic Flowmeter-Relaxometer and Measuring Method
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Agafonova, N.D.; Egorov, M.Y.; Sergeev, V.; Gotovskii, M.A.; Kruglikov, P.A.; Lebedev, M.E.; Sudakov, A.V.; Fedorovich, E.D.; Fokin, B.S. Heat-and-Mass Transfer Intensification in Saturated-Steam Generators in NPP with VVER as a Means for Increasing Efficiency and Reliability. Sov. At. Energy 2018, 123, 154–158. [Google Scholar] [CrossRef]
- Treshcheva, M.; Anikina, I.; Sergeev, V.; Skulkin, S.; Treshchev, D.; Anikina, I. Selection of Heat Pump Capacity Used at Thermal Power Plants under Electricity Market Operating Conditions. Energies 2021, 14, 226. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Wang, J.; Lu, Z. Optimal Operation for Integrated Electricity–Heat System with Improved Heat Pump and Storage Model to Enhance Local Energy Utilization. Energies 2020, 13, 6729. [Google Scholar] [CrossRef]
- Alekseev, P.N.; Gagarinskii, A.Y.; Kalugin, M.A.; Kukharkin, N.E.; Semchenkov, Y.M.; Sidorenko, V.A.; Subbotin, S.A.; Teplov, P.S.; Fomichenko, P.A.; Asmolov, V.G. On a Strategy for the Development of Nuclear Power in Russia. Sov. At. Energy 2019, 126, 207–212. [Google Scholar] [CrossRef]
- Klinov, D.A.; Gulevich, A.V.; Kagramanyan, V.S.; Dekusar, V.M.; Usanov, V.I. Development of Sodium-Cooled Fast Reactors Under Modern Conditions: Challenges and Stimuli. Sov. At. Energy 2019, 125, 143–148. [Google Scholar] [CrossRef]
- Ashurko, Y.M.; Gulevich, A.V.; Klinov, D.A.; Vasil’Ev, B.A.; Vasyaev, A.V.; Marova, E.V.; Shepelev, S.F. Gen-IV Reactor Systems Criteria Implementation in BN-1200. At. Energy 2019, 125, 351–358. [Google Scholar] [CrossRef]
- Dong, Z.; Liu, M.; Jiang, D.; Huang, X.; Zhang, Y.; Zhang, Z. Automatic Generation Control of Nuclear Heating Reactor Power Plants. Energies 2018, 11, 2782. [Google Scholar] [CrossRef] [Green Version]
- Bobyl, A.; Malyshkin, V.; Dolzhenko, V.; Grabovets, A.; Chernoivanov, V. Scientific activity in the problems of technical and economic modeling of solar stations. An example of unstable climatic conditions. IOP Conf. Ser. Earth Environ. Sci. 2019, 390, 012047. [Google Scholar] [CrossRef]
- Sergeev, V.; Anikina, I.; Kalmykov, K. Using Heat Pumps to Improve the Efficiency of Combined-Cycle Gas Turbines. Energies 2021, 14, 2685. [Google Scholar] [CrossRef]
- Elistratov, V.; Diuldin, M.V.; Denisov, R.S. Justification of project and operation modes of hybrid energy complexes for arctic conditions. IOP Conf. Ser. Earth Environ. Sci. 2018, 180, 012006. [Google Scholar] [CrossRef]
- Temiz, M.; Dincer, I. Development of an HTR-Type nuclear and bifacial PV solar based integrated system to meet the needs of energy, food and fuel for sustainable indigenous cities. Sustain. Cities Soc. 2021, 74, 103198. [Google Scholar] [CrossRef]
- Lee, K.-H.; Kim, M.-G.; Lee, J.I.; Lee, P.-S. Recent Advances in Ocean Nuclear Power Plants. Energies 2015, 8, 11470–11492. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Ju, P.; Song, X.; Xie, C.; Zhong, W. Interaction and Coordination among Nuclear Power Plants, Power Grids and Their Protection Systems. Energies 2016, 9, 306. [Google Scholar] [CrossRef] [Green Version]
- Gulevich, A.V.; Dekusar, V.M.; Chebeskov, A.N.; Kuchinov, V.P.; Voloshin, N.P. Possibility of Fast-Reactor Exportation Under an International Nuclear Non-Proliferation Regime. Sov. At. Energy 2020, 127, 192–195. [Google Scholar] [CrossRef]
- Semenikhin, A.V.; Saunin, Y.V.; Ryasnyi, S.I. Method of determining the reliability of real-time in-reactor monitoring of VVER. Sov. At. Energy 2018, 124, 8–13. [Google Scholar] [CrossRef]
- Abramov, L.V.; Baklanov, A.V.; Bakhmet’Ev, A.M.; Bylov, I.A.; Vasyuchenkov, A.A.; Gusev, D.O.; Kiselev, V.V. OKBM Afrikantov Experience in Developing Methods and Computer Codes for Reliability Analysis and Probabilistic Safety Analysis of Nuclear Installations. Sov. At. Energy 2020, 129, 98–102. [Google Scholar] [CrossRef]
- Filimonov, P.E.; Semchenkov, Y.M.; Malyshev, V.V.; Dolgopolov, N.Y.; Povarov, V.P.; Gusev, I.N. VVER-1200 tests in No. 6 unit of the Novovoronezh NPP during operation in a daily load schedule. Sov. At. Energy 2021, 129, 113–121. [Google Scholar] [CrossRef]
- Rowinski, M.K.; White, T.J.; Zhao, J. Small and Medium sized Reactors (SMR): A review of technology. Renew. Sustain. Energy Rev. 2015, 44, 643–656. [Google Scholar] [CrossRef]
- Temiz, M.; Dincer, I. Enhancement of a nuclear power plant with a renewable based multigenerational energy system. Int. J. Energy Res. 2021, 45, 12396–12412. [Google Scholar] [CrossRef]
- Dong, Z.; Li, B.; Li, J.; Guo, Z.; Huang, X.; Zhang, Y.; Zhang, Z. Flexible control of nuclear cogeneration plants for balancing intermittent renewables. Energy 2021, 221, 119906. [Google Scholar] [CrossRef]
- Franke, T.; Agostinetti, P.; Aiello, G.; Avramidis, K.; Bachmann, C.; Bruschi, A.; Federici, G.; Garavaglia, S.; Granucci, G.; Grossetti, G.; et al. Review of the Innovative H&CD Designs and the Impact of Their Configurations on the Performance of the EU DEMO Fusion Power Plant Reactor. IEEE Trans. Plasma Sci. 2018, 46, 1633–1640. [Google Scholar] [CrossRef] [Green Version]
- Looney, R.; Priede, J. Concept of a next-generation electromagnetic phase-shift flowmeter for liquid metals. Flow Meas. Instrum. 2018, 65, 128–135. [Google Scholar] [CrossRef] [Green Version]
- Velt, I.D. Method of liquid metal level measurement. Probl. At. Sci. Technol. Ser. Thermonucl. Fusion 2015, 38, 22–25. [Google Scholar] [CrossRef]
- Dayev, Z.; Latyshev, L. Application of the multichanneling principle for solution of the problems related to increase of substance flowmeter accuracy. Flow Meas. Instrum. 2017, 56, 18–22. [Google Scholar] [CrossRef]
- Patrone, P.N.; Cooksey, G.; Kearsley, A. Dynamic Measurement of Nanoflows: Analysis and Theory of an Optofluidic Flowmeter. Phys. Rev. Appl. 2019, 11, 034025. [Google Scholar] [CrossRef] [Green Version]
- Arkharov, I.A.; Kakorin, I.D. A Method for the Evaluation of the Flow Rate of Cryogenic Two-Phase Flows in Venturi Flowmeters Without Separation. Meas. Tech. 2020, 63, 549–558. [Google Scholar] [CrossRef]
- Gu, Y.-F.; Zhao, Y.; Lv, R.-Q.; Yang, Y. Theory and structure of a modified optical fiber turbine flowmeter. Flow Meas. Instrum. 2016, 50, 178–184. [Google Scholar] [CrossRef] [Green Version]
- Shaaban, S. Design and optimization of a novel flowmeter for liquid hydrogen. Int. J. Hydrogen Energy 2017, 42, 14621–14632. [Google Scholar] [CrossRef]
- Iii, W.C.K.; Mays, D.C. Information Content of Wastewater Flowmeter Data before and during a Surcharge. J. Environ. Eng. 2018, 144, 05018004. [Google Scholar] [CrossRef]
- Davydov, V.V.; Dudkin, V.I.; Velichko, E.N.; Karseev, A.Y. Fiber-optic system for simulating accidents in the cooling circuits of a nuclear power plant. J. Opt. Technol. (A Transl. Opt. Zhurnal) 2015, 82, 132–135. [Google Scholar] [CrossRef]
- Gol’Din, V.Y.; Pestryakova, G.A. Advantages of a fast reactor with an advanced active zone in comparison to the BREST-300 reactor project. Math. Model. Comput. Simul. 2014, 6, 239–247. [Google Scholar] [CrossRef]
- Ivanov, V.K.; Chekin, S.Y.; Menyajlo, A.N.; Maksioutov, M.; Tumanov, K.; Kashcheeva, P.; Lovachev, S.; Adamov, E.; Lopatkin, A. “Radiotoxicity” of some radionuclides of the spent nuclear fuel from WWER and BREST reactors in different storage time periods, evaluated with ICRP models. Radiat. Risk 2018, 27, 8–27. [Google Scholar] [CrossRef]
- Ivanov, V.K.; Adamov, E.O.; Spirin, E.V.; Solomatin, V.M.; Chekin, S.Y.; Menyajlo, A.N. Evaluation of optimal amount of americium that should be extracted from spent nuclear fuel of the BREST-OD-300 reactor for transmutation to ensure radiological equivalence of radioactive waste and natural uranium. Radiat. Risk 2020, 29, 5–17. [Google Scholar] [CrossRef]
- Ignatiev, V.V.; Kormilitsyn, M.V.; Kormilitsyna, L.A.; Semchenkov, Y.M.; Fedorov, Y.; Feinberg, O.S.; Kryukov, O.V.; Khaperskaya, A.V. Molten-Salt Reactor for Nuclear Fuel Cycle Closure on All Actinides. Sov. At. Energy 2019, 125, 279–283. [Google Scholar] [CrossRef]
- Velt, I.D.; Mikhailova, Y.V. Magnetic flowmeter of molten metals. Meas. Tech. 2013, 56, 283–288. [Google Scholar] [CrossRef]
- Im, S.H.; Kim, K.Y.; Park, G.S. A Study on the Effect of Excitation Coil System to Improve Measurement Accuracy of Electromagnetic Flowmeter on the Ship. Trans. Korean Inst. Electr. Eng. 2021, 70, 1460–1466. [Google Scholar] [CrossRef]
- Dasgupta, S. Flow distortion effect on electromagnetic flowmeter and mitigation using magnetic flux manipulation. Tech. Mess. 2021, 88, 508–518. [Google Scholar] [CrossRef]
- Yao, X.; Li, X. Numerical Study on Magnetic Field Characteristics of Electromagnetic Flowmeter with Small Excitation Module. In Proceedings of the 5th International Conference on Control Engineering and Artificial Intelligence, Sanya, China, 14–16 January 2021; Association for Computing Machinery (ACM): New York, NY, USA, 2021; pp. 86–89. [Google Scholar]
- Beck, K.J.; Barfuss, S.L.; Sharp, Z.B.; Moon, T.K. An alternative analysis method for evaluating electromagnetic flowmeter performance. AWWA Water Sci. 2021, 3, e1242. [Google Scholar] [CrossRef]
- Su, M.; Jiao, X.; Li, J.; Wu, S.; Wu, T. Accuracy and Reliability Analysis of Pipe Irrigation Metering Device for Sandy Water Source. Water 2021, 13, 947. [Google Scholar] [CrossRef]
- Baghdasaryan, D.; Albrecht, M.; Shahnazaryan, M.; Rosahl, S. Real-Time Ultrasound Doppler Enhances Precision in Image-Guided Approaches to the Cerebellopontine Angle. World Neurosurg. 2017, 107, 482–487. [Google Scholar] [CrossRef]
- Tetsuro, N.; Kiyoshi, N.; Shinich, Y. Fundamental study of the pulsed-NMR blood flowmeter. Jpn. J. Med. Electron. Biol. Eng. 1984, 22, 172–173. [Google Scholar]
- Harpen, M.D. Indicator dilution approach to NMR signal-flow curves. Phys. Med. Biol. 1985, 30, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Strosin, R.G.; Battocletti, J.H.; Sances, A.; Knox, T.A. Evaluation of Reactive Hyperemia in the Human Limb by Doppler Ultrasound & Nuclear Magnetic Resonance. J. Clin. Eng. 1988, 13, 433–442. [Google Scholar] [CrossRef]
- Boccalon, H. Study of vasomotility in man using plethysmography and flowmetry. Arch. Mal. Coeur Vaiss. 1990, 83, 43–50. [Google Scholar]
- Tessier, J.J.; Packer, K.J. The characterization of multiphase fluid transport in a porous solid by pulsed gradient stimulated echo nuclear magnetic resonance. Phys. Fluids 1998, 10, 75–85. [Google Scholar] [CrossRef]
- Ong, J.; Oyeneyin, M.; Coutts, E.; MacLean, I. In Well Nuclear Magnetic Resonance (NMR) Multiphase Flowmeter in the Oil and Gas Industry. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 26–29 September 2004; Society of Petroleum Engineers (SPE): Abu Dhabi, United Arab Emirates, 2004. [Google Scholar]
- Caprihan, A.; Fukushima, E. Flow measurements by NMR. Phys. Rep. 1990, 198, 195–235. [Google Scholar] [CrossRef]
- Fukushima, E. Nuclear Magnetic Resonance as a Tool to Study Flow. Annu. Rev. Fluid Mech. 1999, 31, 95–123. [Google Scholar] [CrossRef]
- Suryan, G. Nuclear resonance in flowing liquids. Proc. Math. Sci. 1951, 33, 107. [Google Scholar] [CrossRef]
- Battocletti, J.H.; Halbach, R.E.; Salles-Cunha, S.X.; Sances, A., Jr. The NMR blood flowmeter-theory and history. Med. Phys. 1981, 8, 435–443. [Google Scholar] [CrossRef]
- Singer, J.R. Blood Flow Rates by Nuclear Magnetic Resonance Measurements. Science 1959, 130, 1652–1653. [Google Scholar] [CrossRef]
- Vander, H.W.R.; Genthe, W.K.; Battocletti, J.H.; McCormick, W.S.; Snowball, H.M. NMR applied to flow measurement. Instrum. Technol. 1968, 15, 53–58. [Google Scholar]
- Elkins, C.J.; Alley, M.T. Magnetic resonance velocimetry: Applications of magnetic resonance imaging in the measurement of fluid motion. Exp. Fluids 2007, 43, 823–858. [Google Scholar] [CrossRef]
- Ankuda, M.; Orobei, I.; Zharski, S. The adaptive temporal NMR flowmeter. In Proceedings of the 2016 Open Conference of Electrical, Electronic and Information Sciences (eStream), Vilnius, Lithuania, 19 April 2016; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2016; pp. 1–4. [Google Scholar]
- Rabba, A.S.; Madani, S.S.; Zeghlache, M.L. Deciphering Intrinsic Fluid in a Low Salinity Sandstone Reservoir to Optimize Reservoir Management Development Strategies. In Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, United Arab Emirates, 7–10 November 2016; Society of Petroleum Engineers (SPE): Abu Dhabi, United Arab Emirates, 2016. [Google Scholar]
- Zargar, M.; Johns, M.L.; Aljindan, J.M.; Noui-Mehidi, M.N.; O’Neill, K.T. Nuclear Magnetic Resonance Multiphase Flowmeters: Current Status and Future Prospects. SPE Prod. Oper. 2021, 36, 423–436. [Google Scholar] [CrossRef]
- Aydin, E.; Makinwa, K.A. A Low-Field Portable Nuclear Magnetic Resonance (NMR) Microfluidic Flowmeter. In Proceedings of the 21th International Conference on Solid-State Sensors, Actuators and Microsystems, Transducers 2021, Virtual, 20–25 June 2021; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2021; pp. 1020–1023. [Google Scholar]
- Kartalović, N.M.; Djekic, S.; Nikezić, D.P.; Ramadani, U.R. Possibility of application nuclear magnetic resonance for measurement of fluid-flow. Nucl. Technol. Radiat. Prot. 2021, 36, 168–173. [Google Scholar] [CrossRef]
- Tayler, A.B.; Holland, D.J.; Sederman, A.J.; Gladden, L.F. Exploring the Origins of Turbulence in Multiphase Flow Using Compressed Sensing MRI. Phys. Rev. Lett. 2012, 108, 264505. [Google Scholar] [CrossRef]
- Fridjonsson, E.O.; Stanwix, P.L.; Johns, M.L. Earth’s field NMR flow meter: Preliminary quantitative measurements. J. Magn. Reson. 2014, 245, 110–115. [Google Scholar] [CrossRef]
- Deng, F.; Xiong, C.; Chen, S.; Chen, G.; Wang, M.; Liu, H.; Zhang, J.; Lei, Q.; Cao, G.; Xu, D.; et al. A method and device for online magnetic resonance multiphase flow detection. Pet. Explor. Dev. 2020, 47, 855–866. [Google Scholar] [CrossRef]
- Deng, F.; Xiao, L.; Wang, M.; Tao, Y.; Kong, L.; Zhang, X.; Liu, X.; Geng, D. Online NMR Flowing Fluid Measurements. Appl. Magn. Reson. 2016, 47, 1239–1253. [Google Scholar] [CrossRef]
- Deng, F.; Xiao, L.; Liu, H.; An, T.; Wang, M.; Zhang, Z.; Xu, W.; Cheng, J.; Xie, Q.; Anferov, V. Effects and Corrections for Mobile NMR Measurement. Appl. Magn. Reson. 2013, 44, 1053–1065. [Google Scholar] [CrossRef]
- Deng, F.; Xiao, L.; Liao, G.; Zong, F.; Chen, W. A New Approach of Two-Dimensional the NMR Relaxation Measurement in Flowing Fluid. Appl. Magn. Reson. 2014, 45, 179–192. [Google Scholar] [CrossRef]
- Deng, F.; Xiao, L.; Chen, W.; Liu, H.; Liao, G.; Wang, M.; Xie, Q. Rapid determination of fluid viscosity using low-field two-dimensional NMR. J. Magn. Reson. 2014, 247, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.; Chen, G.; Wang, M.; Xu, D.; Chen, S.; Zhang, X.; Xiong, C.; Zhang, J.; Lei, Q.; Shi, J.; et al. Magnetic Resonance Multi-Phase Flowmeter & Fluid Analyzer. In Proceedings of the SPE Asia Pacific Oil & Gas Conference and Exhibition 2020, Virtual, 17–19 November 2020; Society of Petroleum Engineers (SPE): Abu Dhabi, United Arab Emirates, 2020. [Google Scholar]
- O’Neill, K.T.; Brancato, L.; Stanwix, P.L.; Fridjonsson, E.O.; Johns, M.L. Two-phase oil/water flow measurement using an Earth’s field nuclear magnetic resonance flow meter. Chem. Eng. Sci. 2019, 202, 222–237. [Google Scholar] [CrossRef]
- Marusina, M.; Bazarov, B.A.; Galaidin, P.A.; Marusin, M.P.; Silaev, A.A.; Zakemovskaya, E.Y.; Mustafaev, Y.N. Design of a Gradient System for a Multiphase Flowmeter. Meas. Tech. 2014, 57, 580–586. [Google Scholar] [CrossRef]
- D’Yachenko, S.V.; Zhernovoi, A.I. The Langevin formula for describing the magnetization curve of a magnetic liquid. Tech. Phys. 2016, 61, 1835–1837. [Google Scholar] [CrossRef]
- Rakhmatullin, I.; Efimov, S.; Tyurin, V.; Gafurov, M.; Al-Muntaser, A.; Varfolomeev, M.; Klochkov, V. Qualitative and Quantitative Analysis of Heavy Crude Oil Samples and Their SARA Fractions with 13C Nuclear Magnetic Resonance. Processes 2020, 8, 995. [Google Scholar] [CrossRef]
- Gizatullin, B.; Gafurov, M.R.; Vakhin, A.V.; Rodionov, A.; Mamin, G.V.; Orlinskii, S.; Mattea, C.; Stapf, S. Native Vanadyl Complexes in Crude Oil as Polarizing Agents for In Situ Proton Dynamic Nuclear Polarization. Energy Fuels 2019, 33, 10923–10932. [Google Scholar] [CrossRef]
- Neronov, Y.; Seregin, N.N. Determination of the difference in shielding by protons in water and hydrogen and an estimate of the absolute shielding by protons in water. Meas. Tech. 2013, 55, 1287–1293. [Google Scholar] [CrossRef]
- Abragam, A.; Bouffard, V.; Roinel, Y. Concentration, relaxation, and phonon bottleneck of paramagnetic centers: A new experimental method of study. J. Magn. Reson. 1976, 22, 53–63. [Google Scholar] [CrossRef]
- Gizatullin, B.; Gafurov, M.; Rodionov, A.; Mamin, G.; Mattea, C.; Stapf, S.; Orlinskii, S. Proton–Radical Interaction in Crude Oil—A Combined NMR and EPR Study. Energy Fuels 2018, 32, 11261–11268. [Google Scholar] [CrossRef]
- Davydov, V.V. Some specific features of the NMR study of fluid flows. Opt. Spectrosc. 2016, 121, 18–24. [Google Scholar] [CrossRef]
- Davydov, V.V. Control of the longitudinal relaxation timeT 1 of a flowing liquid in NMR flowmeters. Sov. Phys. J. 1999, 42, 822–825. [Google Scholar] [CrossRef]
- Marusina, M.; Bazarov, B.A.; Galaidin, P.A.; Silaev, A.A.; Marusin, M.P.; Zakemovskaya, E.Y.; Gilev, A.G.; Alekseev, A.V. A Magnetic System Based on Permanent Magnets for a Flowmeter of Multiphase Fluid Media. Meas. Tech. 2014, 57, 461–465. [Google Scholar] [CrossRef]
- Zhernovoi, A. A direct method of determining the water content in water-oil emulsions. Chem. Technol. Fuels Oils 2006, 42, 142–143. [Google Scholar] [CrossRef]
- Leshe, A. Nuclear Induction; Veb Deustscher Verlag Der Wissenschaften: Berlin, Germany, 1963; 864p. [Google Scholar]
- Abragam, A. The Principles of Nuclear Magnetism; Oxford at the Clarendon Press: Oxford, UK, 1961; 646p. [Google Scholar]
- Giulotto, L.; Lanzi, G.; Tosca, L. Nuclear Relaxation and Molecular Association in Liquids. J. Chem. Phys. 1956, 24, 632–633. [Google Scholar] [CrossRef]
- Davydov, V.V.; Dudkin, V.I.; Karseev, A.Y. Formation of the nutation line in NMR measuring systems with flowing samples. Tech. Phys. Lett. 2015, 41, 355–358. [Google Scholar] [CrossRef]
- Davydov, V.V.; Dudkin, V.I.; Karseev, A.Y. A Compact Nuclear Magnetic Relaxometer for the Express Monitoring of the State of Liquid and Viscous Media. Meas. Tech. 2014, 57, 912–918. [Google Scholar] [CrossRef]
- Davydov, V.V.; Dudkin, V.I.; Karseev, A.Y. Feasibility of Using Nuclear Magnetic Spectroscopy for Rapid Monitoring of Liquid Media. J. Appl. Spectrosc. 2015, 82, 794–800. [Google Scholar] [CrossRef]
Nuclear Isotope | Magnetic Moment μ | Spin Nucleus I | Gyromagnetic Ratio γ MHz/T | Sensitivity (Relative Intensity of the NMR Signal to the Isotope of the 13C Nucleus) | Natural Content % |
---|---|---|---|---|---|
1H | 2.7928 | 1/2 | 42.57637513 | 5.87 × 103 | 99.989 |
2H | 0.8574 | 1 | 6.560085 | 5.52 × 10−3 | 0.0155 |
7Li | 3.2564 | 3/2 | 16.561322 | 1.59 × 103 | 92.41 |
11B | 2.6886 | 3/2 | 13.675834 | 7.77 × 102 | 80.11 |
13C | 0.7024 | 1/2 | 10.707945 | 1.0 | 1.07 |
15N | −0.2851 | 1 | 4.333247 | 2.25 × 10−3 | 0.368 |
19F | 2.6266 | 1/2 | 40.106214 | 4.89 × 103 | 100.0 |
23Na | 2.2176 | 3/2 | 11.277214 | 5.45 × 102 | 100.0 |
29Si | −0.5552 | 1/2 | 8.496837 | 2.16 | 4.68 |
31P | 1.1316 | 1/2 | 17.253987 | 3.91 × 103 | 100.0 |
33S | 0.6438 | 3/2 | 3.283846 | 1.01 × 10−1 | 0.76 |
35Cl | 0.8218 | 3/2 | 4.192008 | 7.69 | 75.78 |
37Cl | 0.6841 | 3/2 | 3.489402 | 8.87 | 24.22 |
55Mn | 3.4677 | 5/2 | 10.567234 | 1.05 × 101 | 100 |
65Cu | 2.3845 | 3/2 | 12.134765 | 8.76 | 31.1 |
75As | 1.4394 | 3/2 | 7.342051 | 1.49 × 102 | 100.0 |
77Se | 0.5350 | 1/2 | 8.187478 | 3.15 | 7.61 |
81Br | 2.2696 | 3/2 | 11.532617 | 6.27 | 49.4 |
115In | 5.5006 | 9/2 | 9.331453 | 2.18 × 103 | 4.5 |
119Sn | −1.0473 | 1/2 | 16.025042 | 2.66 | 8.59 |
195Pt | 0.6095 | 1/2 | 9.326623 | 2.07 × 101 | 33.83 |
199Hg | 0.5058 | 1/2 | 7.740854 | 9.89 | 13.18 |
210Pb | 0.5822 | 1/2 | 8.908461 | 1.18 × 101 | 22.11 |
209Bi | 4.0796 | 9/2 | 6.657445 | 1.07 × 101 | 100 |
Measurement Number | The Developed Device | Electromagnetic Flowmeter WATERFLUX 3050 |
---|---|---|
1 | 0.0212 ± 0.0002 m3/s | 0.0211 ± 0.0002 m3/s |
2 | 0.0244 ± 0.0002 m3/s | 0.0243 ± 0.0002 m3/s |
3 | 0.0285 ± 0.0002 m3/s | 0.0286 ± 0.0002 m3/s |
4 | 0.0326 ± 0.0003 m3/s | 0.0327 ± 0.0003 m3/s |
5 | 0.0402 ± 0.0004 m3/s | 0.0401 ± 0.0004 m3/s |
6 | 0.0476 ± 0.0005 m3/s | 0.0477 ± 0.0005 m3/s |
7 | 0.0508 ± 0.0005 m3/s | 0.0510 ± 0.0005 m3/s |
8 | 0.0563 ± 0.0005 m3/s | 0.0565 ± 0.0005 m3/s |
9 | 0.0577 ± 0.0006 m3/s | 0.0579 ± 0.0006 m3/s |
10 | 0.0601 ± 0.0006 m3/s | 0.0603 ± 0.0006 m3/s |
11 | 0.0626 ± 0.0006 m3/s | 0.0629 ± 0.0006 m3/s |
T, K | The Developed Device | Industrial NMR Relaxometer Minispec mq 20 M | ||
---|---|---|---|---|
T1, s | T2, s | T1, s | T2, s | |
288.1 | 1.0291 ± 0.0091 | 0.6551 ± 0.0062 | 1.0284 ± 0.0031 | 0.6536 ± 0.0018 |
293.2 | 1.0643 ± 0.0092 | 0.6614 ± 0.0063 | 1.0627 ± 0.0032 | 0.6585 ± 0.0018 |
303.2 | 1.1396 ± 0.0105 | 0.6755 ± 0.0064 | 1.1402 ± 0.0034 | 0.6731 ± 0.0019 |
317.6 | 1.2135 ± 0.0115 | 0.6846 ± 0.0066 | 1.2118 ± 0.0036 | 0.6824 ± 0.0020 |
323.2 | 1.2527 ± 0.0117 | 0.6946 ± 0.0067 | 1.2514 ± 0.0037 | 0.6951 ± 0.0021 |
333.5 | 1.3438 ± 0.0122 | 0.7164 ± 0.0069 | 1.3443 ± 0.0040 | 0.7143 ± 0.0021 |
338.6 | 1.3873 ± 0.0125 | 0.7308 ± 0.0071 | 1.3869 ± 0.0041 | 0.7284 ± 0.0022 |
343.4 | 1.4451 ± 0.0134 | 0.7465 ± 0.0073 | 1.4443 ± 0.0043 | 0.7474 ± 0.0022 |
348.2 | 1.6218 ± 0.0147 | 0.7669 ± 0.0075 | 1.6225 ± 0.0048 | 0.7646 ± 0.0023 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davydov, R.; Davydov, V.; Myazin, N.; Dudkin, V. The Multifunctional Nuclear Magnetic Flowmeter for Control to the Consumption and Condition of Coolant in Nuclear Reactors. Energies 2022, 15, 1748. https://doi.org/10.3390/en15051748
Davydov R, Davydov V, Myazin N, Dudkin V. The Multifunctional Nuclear Magnetic Flowmeter for Control to the Consumption and Condition of Coolant in Nuclear Reactors. Energies. 2022; 15(5):1748. https://doi.org/10.3390/en15051748
Chicago/Turabian StyleDavydov, Roman, Vadim Davydov, Nikita Myazin, and Valentin Dudkin. 2022. "The Multifunctional Nuclear Magnetic Flowmeter for Control to the Consumption and Condition of Coolant in Nuclear Reactors" Energies 15, no. 5: 1748. https://doi.org/10.3390/en15051748
APA StyleDavydov, R., Davydov, V., Myazin, N., & Dudkin, V. (2022). The Multifunctional Nuclear Magnetic Flowmeter for Control to the Consumption and Condition of Coolant in Nuclear Reactors. Energies, 15(5), 1748. https://doi.org/10.3390/en15051748