Investigating Wind Energy Potential in Tahiti, French Polynesia
Abstract
:1. Introduction
2. Materials and Methods
- -
- Faaa and Tautira (2008–2020);
- -
- Faaa, Tautira, Mahina, Afaahiti, Vairao and Papara (2016–2020).
2.1. Technical Analysis
2.2. Extrapolation of Wind Speed at Different Hub Height
2.3. Evaluation of the Wind Power Density (WPD)
3. Results
3.1. Climatology
3.2. The Weibull Distribution and Wind Power Density
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WPD | Wind power density |
MSE | Mean squared error |
CF | Capacity factor |
Probability density function | |
CDF | Cumulative density function |
References
- EDT. Available online: https://www.edt.pf/a-propos-dedt/ (accessed on 18 May 2021).
- Ademe. Available online: http://www.polynesie-francaise.ademe.fr/ (accessed on 18 May 2021).
- IRENA. Renewable Energy Statistics 2021; The International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2021. [Google Scholar]
- Alizes Energie. Available online: https://www.alizes-energie.nc (accessed on 2 February 2021).
- Unelco Engie. Available online: https://www.unelco.engie.com/profil/implantation (accessed on 2 February 2021).
- Mofor, L.; Isaka, M.; Wade, H.; Soakai, A. Pacific Lighthouses: Renewable Energy Roadmapping for Islands; IRENA: Bonn, Germany, 2013. [Google Scholar]
- Communiqué de Presse. 2015. Available online: http://www.vergnet.com/fr/news/vergnet-wind-turbines-withstand-cyclone-pam-in-vanuatu-2/ (accessed on 25 February 2021).
- Bilan Energetique de la Polynesie Francaise. Available online: https://www.service-public.pf/sde/lobservatoire-polynesien-des-energies-ope (accessed on 18 May 2021).
- Schéma Directeur des énergies Renouvelables. Carbone 4. 2012. Available online: https://www.carbone4.com/energies-renouvelables-la-polynesie-francaise-choisit-carbone-4 (accessed on 25 February 2021).
- Kamath, C. Understanding wind ramp events through analysis of historical data. In Proceedings of the IEEE PES T&D 2010, New Orleans, LA, USA, 19–22 April 2010; pp. 1–6. [Google Scholar]
- Qing, X. Statistical analysis of wind energy characteristics in Santiago island, Cape Verde. Renew. Energy 2018, 115, 448–461. [Google Scholar] [CrossRef]
- Dhiman, H.S.; Deb, D.; Guerrero, J.M. Hybrid machine intelligent SVR variants for wind forecasting and ramp events. Renew. Sustain. Energy Rev. 2019, 108, 369–379. [Google Scholar] [CrossRef]
- Dhiman, H.S.; Deb, D.; Balas, V.E. Supervised Machine Learning in Wind Forecasting and Remp Event Prediction; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Dhiman, H.S.; Deb, D. Machine intelligent and deep learning techniques for large training data in short-term wind speed and ramp event forecasting. Int. Trans. Electr. Energy Syst. 2021, 31, e12818. [Google Scholar] [CrossRef]
- Carta, J.A.; Ramirez, P.; Velazquez, S. A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands. Renew. Sustain. Energy Rev. 2009, 13, 933–955. [Google Scholar] [CrossRef]
- Blanchard, M.; Desrochers, G. Generation of autocorrelated wind speeds for energy conversion system studies. Sol. Energy 1984, 33, 571–579. [Google Scholar] [CrossRef]
- Ouammi, A.; Dagdougui, H.; Sacile, R.; Mimet, A. Monthly and seasonal assessment of wind energy characteristics at four monitored locations in Liguria region (Italy). Renew. Sustain. Energy Rev. 2010, 14, 1959–1968. [Google Scholar] [CrossRef]
- Oyedepo, S.O.; Adaramola, M.S.; Paul, S.S. Analysis of wind speed data and wind energy potential in three selected locations in south-east Nigeria. Int. J. Energy Environ. Eng. 2012, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Fazelpour, F.; Soltani, N.; Rosen, M.A. Wind resource assessment and wind power potential for the city of Ardabil, Iran. Int. J. Energy Environ. Eng. 2015, 6, 431–438. [Google Scholar] [CrossRef] [Green Version]
- Cortis, R.B.; Sigl, A.B.; Klein, J. Probabilities models of wind velocity magnitude and persistence. Sol. Energy 1978, 20, 483–493. [Google Scholar] [CrossRef]
- Bowden, G.J.; Barker, P.R.; Shestopal, V.O.; Twidell, J.W. The Weibull distribution function and wind power statistics. Wind Eng. 1983, 7, 85–98. [Google Scholar]
- Archer, C.L.; Jacobson, M.Z. Evaluation of global wind power. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Ucar A Balo, F. Evaluation of wind energy potential and electricity generation at six locations in Turkey. Appl. Energy 2009, 86, 1864–1872. [Google Scholar] [CrossRef]
- Irwin, J.S. A theoretical variation of the wind profile power-law exponent as a function of surface roughness and stability. Atmos. Environ. 1967 1979, 13, 191–194. [Google Scholar] [CrossRef]
- Gualtieri, G.; Secci, S. Wind shear coefficients, roughness length and energy yield over coastal locations in Southern Italy. Renew. Energy 2011, 36, 1081–1094. [Google Scholar] [CrossRef]
- Justus, C.G.; Hargraves, W.R.; Mikhail, A.; Graber, D. Methods for estimating wind speed frequency distributions. J. Appl. Meteorol. 1978, 17, 350–353. [Google Scholar] [CrossRef]
- Johnson, G.L. Wind Energy Systems? Prentice-Hall: Englewood Cliffs, NJ, USA, 1985; pp. 147–149. [Google Scholar]
- Hellman, G. Über die Bewegung der Luft in den untersten Schichten der Atmosphäre. Meteorol. Z. 1916, 34, 273–285. [Google Scholar]
- Sisterson, D.; Hicks, B.; Coulter, R.; Wesely, M. Difficulties in using power laws for wind energy assessment. Sol. Energy 1983, 31, 201–204. [Google Scholar] [CrossRef]
- Touma, J.S. Dependence of the Wind Profile Power Law on Stability for Various Locations. J. Air Pollut. Control Assoc. 1977, 27, 863–866. [Google Scholar] [CrossRef]
- Artig, R.; Jeffrey, H. 14th Wind Resource Analysis Program Report; Minnesota Department of Commerce: St Paul, MN, USA, 2002; Available online: https://www.cards.commerce.state.mn.us/CARDS/security/search.do?method=showPoup&documentId=%7B514B00F0-760D-4248-A5AB-5E188DC814B6%7D&documentTitle=35440&documentType=6 (accessed on 15 October 2021).
- Albani, A.; Ibrahim, M.Z. Wind Energy Potential and Power Law Indexes Assessment for Selected Near-Coastal Sites in Malaysia. Energies 2017, 10, 307. [Google Scholar] [CrossRef] [Green Version]
- Chang, T.J.; Wu, Y.T.; Hsu, H.Y.; Chu CR Liao, C.M. Assessment of wind characteristics and wind turbine characteristics in Taiwan. Renew. Energy 2003, 28, 851–871. [Google Scholar] [CrossRef]
- Celik, A.N. A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey. Renew. Energy 2004, 29, 593–604. [Google Scholar] [CrossRef]
- Shata, A.A.; Hanitsch, R. Electricity generation and wind potential assessment at Hurghada, Egypt. Renew. Energy 2008, 33, 141–148. [Google Scholar] [CrossRef]
- Laurent, V.; Maamaatuaiahutapu, K.; Brodien, I.; Lombardo, S.; Tardy, M.; Varney, P. Atlas Climatologique de la Polynesie Francaise, 2nd ed.; Meteo France, Delegation Interregionale de la Polynesie Francaise: Faa’a, French Polynesia, 2019; ISBN 9782111551916. [Google Scholar]
- Ilinca, A.; McCarthy, E.; Chaumel, J.L.; Rétiveau, J.L. Wind potential assessment of Quebec Province. Renew. Energy 2003, 28, 1881–1897. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Ishihara, T. Assessment of offshore wind energy potential using mesoscale model and geographic information system. Renew. Energy 2014, 69, 506–515. [Google Scholar] [CrossRef]
Station | Latitude (°) | Longitude (°) | Elevation (m) | Data Period |
---|---|---|---|---|
Mahina | −17.506 | −149.483 | 10 | 2016–2020 |
Faaa | −17.555 | −149.614 | 2 | 2008–2020 |
Tautira | −17.746 | −149.159 | 2 | 2008–2020 |
Afaahiti | −17.749 | −149.292 | 120 | 2016–2020 |
Papara | −17.775 | −149.461 | 8 | 2016–2020 |
Vairao | −17.806 | −149.293 | 2 | 2016–2020 |
Vergnet | EWT DW52 | Xant | Vestas V27 | |
---|---|---|---|---|
Rated power (kW) | 275 | 250 | 100 | 225 |
Hub height (m) | 60 | 50 | 38 | 33 |
Rotor diameter (m) | 32 | 52 | 21 | 27 |
Cut-in wind speed (m/s) | 3.5 | 2.5 | 3 | 3.5 |
Rated wind speed (m/s) | 12 | 8 | 11 | 15 |
Cut-out wind speed (m/s) | 20 | 25 | 20 | 25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hopuare, M.; Manni, T.; Laurent, V.; Maamaatuaiahutapu, K. Investigating Wind Energy Potential in Tahiti, French Polynesia. Energies 2022, 15, 2090. https://doi.org/10.3390/en15062090
Hopuare M, Manni T, Laurent V, Maamaatuaiahutapu K. Investigating Wind Energy Potential in Tahiti, French Polynesia. Energies. 2022; 15(6):2090. https://doi.org/10.3390/en15062090
Chicago/Turabian StyleHopuare, Marania, Tao Manni, Victoire Laurent, and Keitapu Maamaatuaiahutapu. 2022. "Investigating Wind Energy Potential in Tahiti, French Polynesia" Energies 15, no. 6: 2090. https://doi.org/10.3390/en15062090
APA StyleHopuare, M., Manni, T., Laurent, V., & Maamaatuaiahutapu, K. (2022). Investigating Wind Energy Potential in Tahiti, French Polynesia. Energies, 15(6), 2090. https://doi.org/10.3390/en15062090