Application of Far-Gather Seismic Attributes in Suppressing the Interference of Coal Beds in Reservoir Prediction
Abstract
:1. Introduction
2. Geological Setting
3. Data and Methods
3.1. Analysis of Petrophysical Characteristics
3.2. Analysis of Factors That Influence Seismic Amplitude
3.3. A Method to Suppress Coal Seam Interference Based on Partial Stacked Seismic Analysis
4. Results
5. Discussion
6. Conclusions
- (1)
- Coal seams are widespread within the Pinghu Formation and have small thicknesses and low impedance characteristics. P-wave impedance can only be used to detect coal seams, whereas Vp/Vs can be used to detect sandstone reservoirs.
- (2)
- The finite-difference acoustic wave equation in the frequency domain can effectively eliminate the interference of the far-offset waveform distortion that is typical of coal seams, and the simulation results are consistent with the actual seismic response characteristics. The forward modeling of sandstone–coal assemblages indicates that the responses of coal seams and sandstone cannot be distinguished by post-stack seismic data, but the interference of coal seams can be eliminated by far-offset partial stacked seismic analysis.
- (3)
- The far-gather seismic attribute has been applied successfully in reservoir prediction and sand body description in the study area, which contributed to the successful exploration of coal-rich strata in the Pingbei slope belt.
- (4)
- The value of popularizing the method introduced in this paper has been proven in both the ECSSB and the Ordos Basin, where the accuracy of reservoir prediction in coal-bearing strata has been improved.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abbas, A.; Zhu, H.T.; Zeng, Z.W.; Zhou, X.H. Sedimentary facies analysis using sequence stratigraphy and seismic sedimentology in the Paleogene Pinghu Formation, Xihu Depression, East China Sea Shelf Basin. Mar. Pet. Geol. 2018, 93, 289–297. [Google Scholar] [CrossRef]
- Lei, C.; Yin, S.Y.; Ye, J.R.; Wu, J.F. Geochemical Characteristics and Hydrocarbon Generation History of Paleocene Source Rocks in Jiaojiang Sag, East China Sea Basin. Editor. Comm. Earth Sci. J. China Univ. Geosci. 2021, 46, 3575–3587. [Google Scholar]
- Liu, J.S.; Zhang, S.P. Natural gas migration and accumulation patterns in the central-north Xihu Sag, East China Sea Basin. Nat. Gas Geosci. 2021, 32, 1163–1176. [Google Scholar]
- Liu, J.S.; Li, S.X.; Qin, L.Z.; Yi, Q.; Chen, X.D.; Kang, S.L.; Shen, W.C.; Shao, L.Y. Hydrocarbon generation kinetics of Paleogene coal in Xuhu sag, East China Sea Basin. Acta Pet. Sin. 2020, 41, 1174–1187. [Google Scholar]
- Su, A.; Chen, H.H.; Wu, Y.; Lei, M.Z.; Li, Q.; Wang, C.W. Genesis, origin and migration-accumulation of low-permeable and nearly tight-tight sandstone gas in the central western part of Xihu sag, East China Sea Basin. Acta Pet. Sin. 2018, 92, 184–196. [Google Scholar]
- Diessel, C.F. Coal-Bearing Depositional Systems; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Zou, F.; Xue, Y.J. Strong amplitude suppression of coal seam based on synchrosqueezed wavelet transform. Prog. Geophys. 2018, 33, 1198–1204. [Google Scholar]
- Liu, L.; Zhang, Q.; Zhang, J.H.; Ban, L.; Li, J.L. Application of the Strong Shielding Peeling Technique Based on Matching Pursuit Algorithm in the Reservoir Prediction of Fan 159 Well Block. Comput. Tomogr. Theory Appl. 2016, 25, 331–337. [Google Scholar]
- Liu, J.; Zhang, Z.T.; Liu, D.L. Sediment boundary identification and fluid detection for the seismic data with strong background reflections. Geophys. Prospect. Pet. 2016, 55, 142–149. [Google Scholar]
- Han, W.G.; Zhang, J.G. Theoretical study on characteristic of weak signal and its identification. Oil Geophys. Prospect. 2011, 46, 232–236. [Google Scholar]
- Ping, A. Application of Multi-Wavelet Seismic Trace Decomposition and Reconstruction to Seismic Data Interpretation and Reservoir Characterization. In Proceedings of the SEG/New Orleans Annual Meeting. 2006. Available online: https://onepetro.org/SEGAM/proceedings-abstract/SEG06/All-SEG06/SEG-2006-0973/93194?redirectedFrom=PDF (accessed on 10 January 2022).
- Ping, A. Case Studies on Stratigraphic Interpretation and Sand Mapping Using Volume-Based Seismic Waveform Decomposition. In Proceedings of the SEG/New Orleans Annual Meeting. 2006. Available online: https://library.seg.org/doi/10.1190/1.2370307 (accessed on 10 January 2022).
- Wang, X.X.; Yu, S.; Li, S.; Zhang, N.D. Two parameter optimization methods of multi-point geostatistics. J. Petrol. Sci. Eng. 2022, 208, 109724. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Wei, X.W.; Tan, M.Y.; Gao, Q.J.; Zhu, D.R.; Li, S.X. Removal of seismic strong shield interface based on compressed sensing technology and its application. Lithol. Reserv. 2019, 31, 85–91. [Google Scholar]
- Gu, W.; Zhang, X.; Xu, M.; Liang, H.; Zhang, D.J.; Luo, J.; Zheng, H. High precision prediction of thin reservoir under strong shielding effect and its application: A case study from Sanzhao Depression, Songliao Basin. Geophys. Prospect. Pet. 2017, 56, 439–448. [Google Scholar]
- Wan, L.; Hurter, S.; Bianchi, V.; Li, P.; Wang, J.; Salles, T. The roles and seismic expressions of turbidites and mass transport deposits using stratigraphic forward modeling and seismic forward modeling. J. Asian Earth Sci. 2022, 229, 105110. [Google Scholar] [CrossRef]
- Tomassi, A.; Trippetta, F.; Franco, R.; Ruggieri, R. From petrophysical properties to forward-seismic modeling of facies heterogeneity in the carbonate realm (Majella Massif, central Italy). J. Pet. Sci. Eng. 2022, 211, 110242. [Google Scholar] [CrossRef]
- Wang, X.X.; Hou, J.G.; Li, S.H.; Dou, L.X.; Song, S.H.; Kang, Q.Q.; Wang, D.M. Insight into the nanoscale pore structure of organic-rich shales in the Bakken Formation, USA. J. Pet. Sci. Eng. 2019, 176, 312–320. [Google Scholar] [CrossRef]
- Juan, C.M.; Ghisays, A.; Montes, L. AVO analysis with partial stacking to detect gas anomalies in the GÜEPAJÉ-3D project. Geofís. Int. 2013, 52, 249–260. [Google Scholar]
- Ismail, A.; Ewida, H.F.; Al-Ibiary, M.G.; Zollo, A. Application of AVO attributes for gas channels identification, West offshore Nile Delta, Egypt. Pet. Res. 2020, 5, 112–123. [Google Scholar] [CrossRef]
- Farfour, M.; Foster, D. New AVO expression and attribute based on scaled Poisson reflectivity. J. Appl. Geophys. 2021, 185, 104255. [Google Scholar] [CrossRef]
- Yi, B.Y.; Lee, G.H.; Horozal, S. Qualitative assessment of gas hydrate and gas concentrations from the AVO characteristics of the BSR in the Ulleung Basin, East Sea (Japan Sea). Mar. Pet. Geol. 2011, 28, 1953–1966. [Google Scholar] [CrossRef]
- Wang, X.C.; Pan, D.Y. Application of AVO attribute inversion technology to gas hydrate identification in the Shenhu Area, South China Sea. Mar. Pet. Geol. 2017, 80, 23–31. [Google Scholar] [CrossRef]
- Liu, L.; Liu, L.H.; Wo, Y.J.; Sun, W. Pre-stack elastic parameter inversion of ray parameters. J. Appl. Geophys. 2019, 162, 13–21. [Google Scholar] [CrossRef]
- Jiang, X.D.; Cao, J.X.; Hu, J.T. Pre-stack gather optimization technology based on an improved bidimensional empirical mode decomposition method. J. Appl. Geophys. 2020, 177, 104026. [Google Scholar]
- Li, C.Y.; Wei, L.; Diao, H.; Cheng, X.; Hou, D.J. Hydrocarbon source and charging characteristics of the Pinghu Formation in the Kongqueting Structure, Xihu Depression. Pet. Sci. Bull. 2021, 6, 196–208. [Google Scholar]
- Li, J.W.; Jiang, B.; Qu, Z.H.; Yin, S.; Xu, J.; Li, P. Tectonic evolution and control of coal in Donghai Xihu Sag. Coal Geol. Explor. 2016, 44, 22–27. [Google Scholar]
- Ding, F.; Liu, J.S.; Jiang, Y.M.; Zhao, H.; Yu, Z.K. Source and migration direction of oil and gas in Kongqueting area, Xihu Sag, East China Sea Shelf Basin. Mar. Geol. Quat. Geol. 2021, 41, 156–165. [Google Scholar]
- Li, J.J.; Jiang, Y.M.; Hou, G.W.; Xie, J.J.; Jiang, X. Constraints of slope break belt on oil and gas trapping-An example from the Pinghu Formation in the Kongqueting area of Pinghu Slope. Mar. Geol. Quat. Geol. 2021, 41, 141–150. [Google Scholar]
- Zhou, X.H.; Gao, S.L.; Gao, W.Z.; Li, N. Formation and distribution of marine-continental transitional lithologic reservoirs in Pingbei slope belt, Xihu sag, East China Sea Shelf Basin. China Pet. Explor. 2019, 24, 153–164. [Google Scholar]
Lithology | P Wave Velocity (m/s) | S Wave Velocity (m/s) | Density (g/cm3) | Vp/Vs |
---|---|---|---|---|
Mudstone | 4150 | 2220 | 2.63 | 1.87 |
Sandstone | 4027 | 2430 | 2.43 | 1.65 |
Coal seam | 2700 | 1350 | 1.90 | 2.0 |
Lithology | P-Wave Velocity (m/s) | S-Wave Velocity (m/s) | Density (g/cm3) | Intercept | Gradient | AVO Type |
---|---|---|---|---|---|---|
Mudstone | 4150 | 2220 | 2.63 | — | — | — |
Coal seam | 2700 | 1350 | 2.00 | −0.3477 | 0.4657 | IV |
2639 | 1300 | 2.13 | −0.3276 | 0.4525 | IV | |
2900 | 1378 | 2.10 | −0.2894 | 0.4271 | IV | |
2698 | 1290 | 2.15 | −0.3125 | 0.4504 | IV | |
2617 | 1300 | 2.14 | −0.3293 | 0.4503 | IV | |
2747 | 1362 | 1.90 | −0.3646 | 0.4873 | IV | |
2956 | 1605 | 2.14 | −0.2708 | 0.3237 | IV | |
2801 | 1600 | 2.00 | −0.3301 | 0.3625 | IV | |
2900 | 1627 | 2.02 | −0.3085 | 0.3461 | IV | |
2760 | 1529 | 1.80 | −0.3885 | 0.4535 | IV | |
2849 | 1600 | 2.18 | −0.2794 | 0.3124 | IV | |
2736 | 1654 | 2.07 | −0.3245 | 0.3154 | IV | |
2619 | 1344 | 1.75 | −0.4271 | 0.5417 | IV | |
2895 | 1337 | 1.80 | −0.3655 | 0.5192 | IV |
Lithology | P-Wave Velocity (m/s) | S-Wave Velocity (m/s) | Density (g/cm3) | Intercept | Gradient | AVO Type |
---|---|---|---|---|---|---|
Mudstone | 4150 | 2220 | 2.63 | - | - | - |
Sandstone | 4027 | 2518 | 2.43 | −0.0546 | −0.1309 | II |
4114 | 2492 | 2.42 | −0.0459 | −0.1004 | II | |
4300 | 2402 | 2.39 | −0.0115 | −0.0414 | II | |
4273 | 2517 | 2.44 | −0.0229 | −0.0966 | II | |
4080 | 2485 | 2.47 | −0.0399 | −0.1148 | III | |
4361 | 2743 | 2.49 | −0.0026 | −0.2247 | III | |
4136 | 2492 | 2.40 | −0.0474 | −0.0919 | II | |
4062 | 2575 | 2.45 | −0.0461 | −0.1643 | III | |
4000 | 2415 | 2.41 | −0.0621 | −0.0708 | II | |
4230 | 2473 | 2.46 | −0.0239 | −0.0838 | II | |
4157 | 2480 | 2.38 | −0.0491 | −0.0769 | II | |
4235 | 2550 | 2.42 | −0.0314 | −0.1151 | III | |
4070 | 2515 | 2.39 | −0.0575 | −0.1117 | III |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, Y.; Yan, C.; Zhang, R.; Li, Y.; Lou, M.; Dou, L.; Zhou, X.; Wang, X. Application of Far-Gather Seismic Attributes in Suppressing the Interference of Coal Beds in Reservoir Prediction. Energies 2022, 15, 2206. https://doi.org/10.3390/en15062206
Mao Y, Yan C, Zhang R, Li Y, Lou M, Dou L, Zhou X, Wang X. Application of Far-Gather Seismic Attributes in Suppressing the Interference of Coal Beds in Reservoir Prediction. Energies. 2022; 15(6):2206. https://doi.org/10.3390/en15062206
Chicago/Turabian StyleMao, Yunxin, Chunjing Yan, Ruoyu Zhang, Yangsen Li, Min Lou, Luxing Dou, Xinrui Zhou, and Xixin Wang. 2022. "Application of Far-Gather Seismic Attributes in Suppressing the Interference of Coal Beds in Reservoir Prediction" Energies 15, no. 6: 2206. https://doi.org/10.3390/en15062206
APA StyleMao, Y., Yan, C., Zhang, R., Li, Y., Lou, M., Dou, L., Zhou, X., & Wang, X. (2022). Application of Far-Gather Seismic Attributes in Suppressing the Interference of Coal Beds in Reservoir Prediction. Energies, 15(6), 2206. https://doi.org/10.3390/en15062206