Fast Experimental Magnetic Model Identification for Synchronous Reluctance Motor Drives
Abstract
:1. Introduction
2. Proposed Triangle Current Injection Constant-Speed Method
2.1. Principle of Flux Linkages Identification
2.2. Finite Element Model of SynRel
3. Hardware Implementation
4. Experimental Results
4.1. Constant-Speed Method Identification
4.2. Proposed Triangle Current Injection Constant-Speed Method
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Pellegrino, G.; Jahn, T.M.; Bianchi, N.; Soong, W.L.; Cupertino, F. The Rediscovery of Synchronous Reluctance and Ferrite Permanent Magnet Motors Tutorial Course Notes; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Armando, E.; Bojoi, R.I.; Guglielmi, P.; Pellegrino, G.; Pastorelli, M. Experimental Identification of the Magnetic Model of Synchronous Machines. IEEE Trans. Ind. Appl. 2013, 49, 2116–2125. [Google Scholar] [CrossRef]
- Drobnič, K.; Gašparin, L.; Fišer, R. Fast and Accurate Model of Interior Permanent-Magnet Machine for Dynamic Characterization. Energies 2019, 12, 783. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kwon, Y.C.; Sul, S.K. Identification of IPMSM Flux-Linkage Map for High-Accuracy Simulation of IPMSM Drives. IEEE Trans. Power Electron. 2021, 36, 14257–14266. [Google Scholar] [CrossRef]
- Ortombina, L.; Pasqualotto, D.; Tinazzi, F.; Zigliotto, M. Magnetic Model Identification of Synchronous Motors Considering Speed and Load Transients. IEEE Trans. Ind. Appl. 2020, 56, 4945–4954. [Google Scholar] [CrossRef]
- Zhu, Z.Q.; Liang, D.; Liu, K. Online Parameter Estimation for Permanent Magnet Synchronous Machines: An Overview. IEEE Access 2021, 9, 59059–59084. [Google Scholar] [CrossRef]
- Berto, M.; Alberti, L.; Martin, F.; Hinkkanen, M. Online Incremental Inductance Identification for SynRel Motors. In Proceedings of the IECON 2021—47th Annual Conference of the IEEE Industrial Electronics Society, Toronto, ON, Canada, 13–16 October 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Odhano, S.A.; Pescetto, P.; Awan, H.A.A.; Hinkkanen, M.; Pellegrino, G.; Bojoi, R. Parameter Identification and Self-Commissioning in AC Motor Drives: A Technology Status Review. IEEE Trans. Power Electron. 2019, 34, 3603–3614. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, N.; Bolognani, S. Magnetic models of saturated interior permanent magnet motors based on finite element analysis. In Proceedings of the Conference Record of 1998 IEEE Industry Applications Conference. Thirty-Third IAS Annual Meeting (Cat. No.98CH36242), St. Louis, MO, USA, 12–15 October 1998; Volume 1, pp. 27–34. [Google Scholar] [CrossRef]
- Murataliyev, M.; Degano, M.; Galea, M. A Novel Sizing Approach for Synchronous Reluctance Machines. IEEE Trans. Ind. Electron. 2021, 68, 2083–2095. [Google Scholar] [CrossRef]
- Cavagnino, A.; Pellegrino, G.; Vaschetto, S.; Agamloh, E.B. Contribution to Offline Measurements of PMSM and SyRM Inductances. IEEE Trans. Ind. Appl. 2019, 55, 407–416. [Google Scholar] [CrossRef]
- Pellegrino, G.; Boazzo, B.; Jahns, T.M. Magnetic Model Self-Identification for PM Synchronous Machine Drives. IEEE Trans. Ind. Appl. 2015, 51, 2246–2254. [Google Scholar] [CrossRef] [Green Version]
- Hall, S.; Márquez-Fernández, F.J.; Alaküla, M. Dynamic Magnetic Model Identification of Permanent Magnet Synchronous Machines. IEEE Trans. Energy Convers. 2017, 32, 1367–1375. [Google Scholar] [CrossRef]
- Wiedemann, S.; Hall, S.; Kennel, R.M.; Alaküla, M. Dynamic Testing Characterization of a Synchronous Reluctance Machine. IEEE Trans. Ind. Appl. 2018, 54, 1370–1378. [Google Scholar] [CrossRef]
- Stumberger, B.; Stumberger, G.; Dolinar, D.; Hamler, A.; Trlep, M. Evaluation of saturation and cross-magnetization effects in interior permanent-magnet synchronous motor. IEEE Trans. Ind. Appl. 2003, 39, 1264–1271. [Google Scholar] [CrossRef]
- Pescetto, P. Sensorless Commissioning and Control of High Anisotropy Synchronous Motor Drives. Ph.D. Thesis, Politecnico di Torino, Turin, Italy, 2019. [Google Scholar]
- Bedetti, N.; Calligaro, S.; Petrella, R. Stand-Still Self-Identification of Flux Characteristics for Synchronous Reluctance Machines Using Novel Saturation Approximating Function and Multiple Linear Regression. IEEE Trans. Ind. Appl. 2016, 52, 3083–3092. [Google Scholar] [CrossRef]
- Hinkkanen, M.; Pescetto, P.; Mölsä, E.; Saarakkala, S.E.; Pellegrino, G.; Bojoi, R. Sensorless Self-Commissioning of Synchronous Reluctance Motors at Standstill Without Rotor Locking. IEEE Trans. Ind. Appl. 2017, 53, 2120–2129. [Google Scholar] [CrossRef] [Green Version]
- Pescetto, P.; Pellegrino, G. Automatic Tuning for Sensorless Commissioning of Synchronous Reluctance Machines Augmented With High-Frequency Voltage Injection. IEEE Trans. Ind. Appl. 2018, 54, 4485–4493. [Google Scholar] [CrossRef]
- Varvolik, V.; Prystupa, D.; Buticchi, G.; Peresada, S.; Galea, M.; Bozhko, S. Inverter Nonlinearity Effects on Self-Commissioning of Synchronous Reluctance Drives. In Proceedings of the 2021 24th International Conference on Electrical Machines and Systems (ICEMS), Gyeongju, Korea, 31 October–3 November 2021; pp. 1792–1797. [Google Scholar] [CrossRef]
- Mingardi, D.; Morandin, M.; Bolognani, S.; Bianchi, N. On the Proprieties of the Differential Cross-Saturation Inductance in Synchronous Machines. IEEE Trans. Ind. Appl. 2017, 53, 991–1000. [Google Scholar] [CrossRef]
- Saur, M.; Gaona Erazo, D.E.; Zdravkovic, J.; Lehner, B.; Gerling, D.; Lorenz, R.D. Minimizing Torque Ripple of Highly Saturated Salient Pole Synchronous Machines by Applying DB-DTFC. IEEE Trans. Ind. Appl. 2017, 53, 3643–3651. [Google Scholar] [CrossRef]
- Varvolik, V.; Prystupa, D.; Buticchi, G.; Peresada, S.; Galea, M.; Bozhko, S. Co-Simulation Analysis for Performance Prediction of Synchronous Reluctance Drives. Electronics 2021, 10, 2154. [Google Scholar] [CrossRef]
- Riccio, J.; Karamanakos, P.; Odhano, S.; Tang, M.; Nardo, M.D.; Zanchetta, P. A Direct Model Predictive Control Strategy for High-Performance Synchronous Reluctance Motor Drives. In Proceedings of the 2021 IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, BC, Canada, 10–14 October 2021; pp. 4704–4710. [Google Scholar] [CrossRef]
- Pyrhonen, J.; Hrabovcova, V.; Semken, R. Electrical Machine Drives Control: An Introduction; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
Parameter | Value | Parameter | Value |
---|---|---|---|
DC link voltage (V) | 540 | Stator diameter (mm) | 260 |
Rated current (Apk) | 44.2 | Airgap thickness (mm) | 0.5 |
Rated power (kW) | 15 | Rotor diameter (mm) | 169 |
Rated torque (Nm) | 95 | Stack length (mm) | 205 |
Parameter | |||||
---|---|---|---|---|---|
Conventional CSM | 1.9 | 13.8 | 3.19 | 5.8 | 83 |
Proposed TCICSM | 2.2 | 13.3 | 3.26 | 5.5 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varvolik, V.; Wang, S.; Prystupa, D.; Buticchi, G.; Peresada, S.; Galea, M.; Bozhko, S. Fast Experimental Magnetic Model Identification for Synchronous Reluctance Motor Drives. Energies 2022, 15, 2207. https://doi.org/10.3390/en15062207
Varvolik V, Wang S, Prystupa D, Buticchi G, Peresada S, Galea M, Bozhko S. Fast Experimental Magnetic Model Identification for Synchronous Reluctance Motor Drives. Energies. 2022; 15(6):2207. https://doi.org/10.3390/en15062207
Chicago/Turabian StyleVarvolik, Vasyl, Shuo Wang, Dmytro Prystupa, Giampaolo Buticchi, Sergei Peresada, Michael Galea, and Serhiy Bozhko. 2022. "Fast Experimental Magnetic Model Identification for Synchronous Reluctance Motor Drives" Energies 15, no. 6: 2207. https://doi.org/10.3390/en15062207
APA StyleVarvolik, V., Wang, S., Prystupa, D., Buticchi, G., Peresada, S., Galea, M., & Bozhko, S. (2022). Fast Experimental Magnetic Model Identification for Synchronous Reluctance Motor Drives. Energies, 15(6), 2207. https://doi.org/10.3390/en15062207