Thermoelectric Performance Evaluation and Optimization in a Concentric Annular Thermoelectric Generator under Different Cooling Methods
Abstract
:1. Introduction
2. Mathematical Modeling of the CATEG
2.1. Three-dimensional Geometry of the CATEG
2.2. Main Equations of the Numerical Model
2.3. Solution Method
3. Model Validation
4. Results and Discussion
4.1. Effect of Different Cooling Methods on CATEG Thermoelectric Conversion Performance
4.2. Effect of Various Exhaust Parameters on CATEG Performance under Four Different Cooling Methods
4.3. Effect of Exhaust Mass Flow Rates on CATEG Net Power under Four Different Cooling Methods
5. Conclusions
- (1)
- When compared to the cocurrent cooling method, the countercurrent cooling method can effectively improve the working temperature difference of the thermocouples, especially when using air-cooling, thereby increasing the output power; however, it requires more thermoelectric semiconductor volume to achieve maximum output power;
- (2)
- It is not preferable to use the cocurrent air-cooling method for the heat source with high temperature. As the temperature of the heat source rises, the output power of TEG increases first, then gradually declines after reaching a peak. For COUA, COW, and COUW, the output power rises almost linearly as the temperature of the heat source increases;
- (3)
- The exhaust mass flow rate has a significant influence on CATEG net power. The maximum net power Pnet = 432.42 W can be obtained using countercurrent water-cooling, corresponding to an optimal thermoelectric semiconductor volume of 9.06 × 10−4 m3. Compared to COW, the maximum net power increased by 8.9%, but the optimal thermoelectric semiconductor volume increased by 21.4%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
a1, a2, a3 | height, inner arc length, and thickness of the thermoelectric leg, mm |
a4 | gap between p- and n-type semiconductors, mm |
C | specific heat capacity, J∙g−1∙K−1 |
D | diameter, mm |
Dh | hydraulic diameter, m |
F | Darcy resistance coefficient |
Hr | surface finish quality, m |
H | convective heat transfer coefficient, W∙m−2∙K−1 |
I | current, A |
K | total heat transfer coefficient, W∙m−2∙K−1 |
K | thermal conductance, W∙K−1 |
L | length of the heat exchanger, m |
m | mass flow rate, g∙s−1 |
nr | total thermocouple number in a single-ring |
nx | total thermocouple number in a line |
Nu | Nusselt number |
p | pressure, Pa |
P | power, W |
Pr | Prandtl number |
Q | quantity of heat, W |
r | radius, m |
R | resistance, Ω |
Re | Reynolds number |
T | temperature, °C |
Greek symbols | |
α | the Seebeck coefficient, V∙K−1 |
γ | density, kg∙m−3 |
δ | thickness, mm |
∆ | difference |
η | efficiency, % |
λ | thermal conductivity, W∙m−1∙K−1 |
µ | dynamic viscosity, Pa∙s |
ρ | resistivity, Ω∙m |
Subscript | |
b | consumed pump value |
c | cold side of the thermoelectric generator |
cer | ceramic |
con | connector |
cu | copper |
f | hot fluid |
fav | average value of hot fluid |
h | hot side of the thermoelectric generator |
i | inner ring of the hot end heat exchanger |
L | external load |
n | n-type thermoelectric semiconductor |
net | net value |
o | outer ring of heat exchanger |
p | p-type thermoelectric semiconductor |
plate | heat exchanger plate |
pn | thermocouple |
teg | TEG system value |
w | cold fluid |
wav | average value of cold fluid |
Abbreviations | |
ATEC | annular thermoelectric couple |
ATEG | annular thermoelectric generator |
CATEG | concentric annular thermoelectric generator |
TEG | thermoelectric generator |
References
- Li, X.; Xie, C.; Quan, S.; Huang, L.; Fang, W. Energy management strategy of thermoelectric generation for localized air conditioners in commercial vehicles based on 48 V electrical system. Appl. Energy 2018, 231, 887–900. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Sui, X.; Li, W.; Xu, D. Performance of Thermoelectric Power-Generation System for Sufficient Recovery and Reuse of Heat Accumulated at Cold Side of TEG with Water-Cooling Energy Exchange Circuit. Energies 2020, 13, 5542. [Google Scholar] [CrossRef]
- Musharavati, F.; Khanmohammadi, S.; Nondy, J.; Gogoi, T.K. Proposal of a new low-temperature thermodynamic cycle: 3E analysis and optimization of a solar pond integrated with fuel cell and thermoelectric generator. J. Clean. Prod. 2022, 331, 129908. [Google Scholar] [CrossRef]
- Musharavati, F.; Khanmohammadi, S. Performance improvement of a heat recovery system combined with fuel cell and thermoelectric generator: 4E analysis. Int. J. Hydrogen Energy 2022, in press. [Google Scholar]
- Cho, Y.H.; Park, J.; Chang, N.; Kim, J. Comparison of Cooling Methods for a Thermoelectric Generator with Forced Convection. Energies 2020, 13, 3185. [Google Scholar] [CrossRef]
- Li, C.; Jiang, F.; Liu, C.; Liu, P.; Xu, J. Present and future thermoelectric materials toward wearable energy harvesting. Appl. Mater. Today 2019, 15, 543–557. [Google Scholar] [CrossRef]
- Kubenova, M.M.; Kuterbekov, K.A.; Balapanov, M.K.; Ishembetov, R.K.; Bekmyrza, K.Z. Some thermoelectric phenomena in copper chalcogenides replaced by lithium and sodium alkaline metals. Nanomaterials 2021, 11, 2238. [Google Scholar] [CrossRef] [PubMed]
- Bell, L.E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457–1461. [Google Scholar] [CrossRef] [Green Version]
- Yin, L.-C.; Liu, W.-D.; Li, M.; Sun, Q.; Gao, H.; Wang, D.-Z.; Wu, H.; Wang, Y.-F.; Shi, X.-L.; Liu, Q.; et al. High Carrier Mobility and High Figure of Merit in the CuBiSe2 Alloyed GeTe. Adv. Energy Mater. 2021, 11, 2102913. [Google Scholar] [CrossRef]
- Ao, D.-W.; Liu, W.-D.; Chen, Y.-X.; Wei, M.; Jabar, B.; Li, F.; Shi, X.-L.; Zheng, Z.-H.; Liang, G.-X.; Zhang, X.-H.; et al. Novel Thermal Diffusion Temperature Engineering Leading to High Thermoelectric Performance in Bi2Te3-Based Flexible Thin-Films. Adv. Sci. 2022, 9, 2103547. [Google Scholar] [CrossRef]
- Li, X.; Xie, C.; Quan, S.; Shi, Y.; Tang, Z. Optimization of thermoelectric modules’ number and distribution pattern in an automotive exhaust thermoelectric generator. IEEE Access 2019, 7, 72143–72157. [Google Scholar] [CrossRef]
- Spriggs, P.; Wang, Q. Computationally Modelling the Use of Nanotechnology to Enhance the Performance of Thermoelectric Materials. Energies 2020, 13, 5096. [Google Scholar] [CrossRef]
- Shen, Z.-G.; Wu, S.-Y.; Xiao, L. Assessment of the performance of annular thermoelectric couples under constant heat flux condition. Energy Convers. Manag. 2017, 150, 704–713. [Google Scholar] [CrossRef]
- Chen, W.H.; Wu, P.H.; Lin, Y.L. Performance optimization of thermoelectric generators designed by multi-objective genetic algorithm. Appl. Energy. 2018, 209, 211–223. [Google Scholar] [CrossRef]
- Fan, L.; Zhang, G.; Wang, R.; Jiao, K. A comprehensive and time-efficient model for determination of thermoelectric generator length and cross-section area. Energy Convers. Manag. 2016, 122, 85–94. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, J.; Tian, Y.; Zhou, Y.; Zhang, J.; Xie, H.; Wu, Z.; Li, W.; Wang, Y. Performance comparison of annular and flat-plate thermoelectric generators for cylindrical hot source. Energy Rep. 2021, 7, 413–420. [Google Scholar] [CrossRef]
- Zhu, W.; Weng, Z.; Li, Y.; Zhang, L.; Zhao, B.; Xie, C.; Shi, Y.; Huang, L.; Yan, Y. Theoretical analysis of shape factor on performance of annular thermoelectric generators under different thermal boundary conditions. Energy 2022, 239, 122285. [Google Scholar] [CrossRef]
- Weng, Z.; Liu, F.; Zhu, W.; Li, Y.; Xie, C.; Deng, J.; Huang, L. Performance improvement of variable-angle annular thermoelectric generators considering different boundary conditions. Appl. Energy 2022, 306, 118005. [Google Scholar] [CrossRef]
- Shen, Z.-G.; Liu, X.; Chen, S.; Wu, S.-Y.; Xiao, L.; Chen, Z.-X. Theoretical analysis on a segmented annular thermoelectric generator. Energy 2018, 157, 297–313. [Google Scholar] [CrossRef]
- Shittu, S.; Li, G.; Zhao, X.; Ma, X.; Akhlaghi, Y.G.; Ayodele, E. High performance and thermal stress analysis of a segmented annular thermoelectric generator. Energy Convers. Manag. 2019, 184, 180–193. [Google Scholar] [CrossRef]
- Wen, Z.F.; Sun, Y.; Zhang, A.B.; Wang, B.L.; Wang, J.; Du, J.K. Performance Analysis of a Segmented Annular Thermoelectric Generator. J. Electron. Mater. 2020, 49, 4830–4842. [Google Scholar] [CrossRef]
- Luo, D.; Wang, R.; Yu, W.; Sun, Z.; Meng, X. Modelling and simulation study of a converging thermoelectric generator for engine waste heat recovery. Appl. Therm. Eng. 2019, 153, 837–847. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Zhao, Y.; Lu, C. Experimental study on the influence of porous foam metal filled in the core flow region on the performance of thermoelectric generators. Appl. Energy 2017, 207, 634–642. [Google Scholar] [CrossRef]
- Yang, W.; Zhu, W.; Li, Y.; Zhang, L.; Zhao, B.; Xie, C.; Yan, Y.; Huang, L. Annular thermoelectric generator performance optimization analysis based on concentric annular heat exchanger. Energy 2022, 239, 122127. [Google Scholar] [CrossRef]
- Zhu, W.; Deng, Y.; Wang, Y.; Shen, S.; Gulfam, R. High-performance photovoltaic-thermoelectric hybrid power generation system with optimized thermal management. Energy 2016, 100, 91–101. [Google Scholar] [CrossRef]
- Li, B.; Huang, K.; Yan, Y.; Li, Y.; Twaha, S.; Zhu, J. Heat transfer enhancement of a modularised thermoelectric power generator for passenger vehicles. Appl. Energy 2017, 205, 868–879. [Google Scholar] [CrossRef]
- Jaworski, M.; Bednarczyk, M.; Czachor, M. Experimental investigation of thermoelectric generator (TEG) with PCM module. Appl. Therm. Eng. 2016, 96, 527–533. [Google Scholar] [CrossRef]
- Sajid, M.; Hassan, I.; Rahman, A. An overview of cooling of thermoelectric devices. Renew. Sust. Energ. Rev. 2017, 78, 15–22. [Google Scholar] [CrossRef]
- Meng, J.-H.; Wu, H.-C.; Wang, T.-H. Optimization of Two-Stage Combined Thermoelectric Devices by a Three-Dimensional Multi-Physics Model and Multi-Objective Genetic Algorithm. Energies 2019, 12, 2832. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Fan, Y.; Ge, M.; Xie, L.; Li, Z.; Yan, X.; Wang, S. Thermoelectric performance of an exhaust waste heat recovery system based on intermediate fluid under different cooling methods. Case Stud. Therm. Eng. 2021, 23, 100811. [Google Scholar] [CrossRef]
- Luo, D.; Wang, R.; Yu, W.; Zhou, W. A numerical study on the performance of a converging thermoelectric generator system used for waste heat recovery. Appl. Energy 2020, 270, 115181. [Google Scholar] [CrossRef]
- He, W.; Wang, S.; Zhang, X.; Li, Y.; Lu, C. Optimization design method of thermoelectric generator based on exhaust gas parameters for recovery of engine waste heat. Energy 2015, 91, 1–9. [Google Scholar] [CrossRef]
- He, W.; Wang, S.; Lu, C.; Zhang, X.; Li, Y. Influence of different cooling methods on thermoelectric performance of an engine exhaust gas waste heat recovery system. Appl. Energy 2016, 162, 1251–1258. [Google Scholar] [CrossRef]
- Luo, D.; Sun, Z.; Wang, R. Performance investigation of a thermoelectric generator system applied in automobile exhaust waste heat recovery. Energy 2022, 238, 121816. [Google Scholar] [CrossRef]
- He, W.; Guo, R.; Liu, S.; Zhu, K.; Wang, S. Temperature gradient characteristics and effect on optimal thermoelectric performance in exhaust power-generation systems. Appl. Energy 2020, 261, 114366. [Google Scholar] [CrossRef]
- He, W.; Wang, S.; Li, Y.; Zhao, Y. Structural size optimization on an exhaust exchanger based on the fluid heat transfer and flow resistance characteristics applied to an automotive thermoelectric generator. Energy Convers. Manage. 2016, 129, 240–249. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, S.; Zhu, Y. Evaluation method for assessing heat transfer enhancement effect on performance improvement of thermoelectric generator systems. Appl. Energy 2020, 263, 114688. [Google Scholar] [CrossRef]
- Niu, X.; Yu, J.; Wang, S. Experimental study on low-temperature waste heat thermoelectric generator. J. Power Sources 2009, 188, 621–626. [Google Scholar] [CrossRef]
- Ge, M.; Wang, X.; Zhao, Y. Performance analysis of vaporizer tube with thermoelectric generator applied to cold energy recovery of liquefied natural gas. Energy Convers. Manage. 2019, 200, 112112. [Google Scholar] [CrossRef]
- Zhou, Z.-G.; Zhu, D.-S.; Wu, H.-X.; Zhang, H.-S. Modeling, experimental study on the heat transfer characteristics of thermoelectric generator. J. Therm. Sci. 2013, 22, 48–54. [Google Scholar] [CrossRef]
Parameters | Description | Value | Units |
---|---|---|---|
a1/a2/a3 | Height/thickness/inner arc length of the p(n)-type leg | 5/5/5 | mm |
a4 | Distance between p-type leg and n-type leg | 1 | mm |
δcer | Thickness of the ceramic sheet | 0.05 | mm |
λcer | Thermal conductivity coefficient of ceramic | 35 | W m−1 K−1 |
δcu | Thickness of the copper sheet | 0.2 | mm |
λcu | Thermal conductivity coefficient of copper | 398 | W m−1 K−1 |
δplate | Thickness of the exchanger plate | 1 | mm |
λplate | Thermal conductivity coefficient of the exchanger plate | 398 | W m−1 K−1 |
αp | Seebeck coefficient of the p-type semiconductor | αp (T) = 161 × 10−4 − 1.818 × 10−6T + 1.11 × 10−8T2 − 2.035 × 10−11T3 + 1.134 × 10−14T4 | V K−1 |
αn | Seebeck coefficient of the n-type semiconductor | αn (T) = −4.428 × 10−4 + 3.469 × 10−6T − 1.42 × 10−8T2 + 2.325 × 10−11T3 − 1.3 × 10−14T4 | V K−1 |
λp | Thermal conductivity of the p-type semiconductor | λp (T) = −46.97 + 0.457T − 1.575 × 10−3T2 + 2.331 × 10−6T3 − 1.242 × 10−9T4 | W m−1 K−1 |
λn | Thermal conductivity of the n-type semiconductor | λn (T) = 10.12 − 7.414 × 10−2T + 2.246 × 10−4T2 − 3.019 × 10−7T3 − 1.537 × 10−10T4 | W m−1 K−1 |
ρp | Electrical resistivity of the p-type semiconductor | ρp (T) = −5.01 × 10−5 + 3.519 × 10−7T − 7.74 × 10−10T2 + 8.94 × 10−13T3 − 4.32 × 10−16T4 | Ω·m |
ρn | Electrical resistivity of the n-type semiconductor | ρn (T) = −8.072 × 10−6 + 4.507 × 10−8T + 7.827 × 10−11T2 − 2.305 × 10−13T3 + 1.317 × 10−16T4 | Ω·m |
Name | Description | Parameter | Value | Unit |
---|---|---|---|---|
Exhaust gas | Heat transfer coefficient | kf | Equation (10) | W m−2 K−1 |
Inlet temperature | Tfin | 400 | °C | |
Mass flow rate | mf | 20 | g s−1 | |
Specific heat capacity | cf | 1.12 | J g−1 K−1 | |
Ambient air | Heat transfer coefficient | kw | 100 | W m−2 K−1 |
Inlet temperature | Twin | 30 | °C | |
Mass flow rate | mw | 20 | g s−1 | |
Specific heat capacity | cw | 1.0 | J g−1 K−1 | |
Cooling water | Heat transfer coefficient | kw | 1000 | W m−2 K−1 |
Inlet temperature | Twin | 70 | °C | |
Mass flow rate | mw | 200 | g s−1 | |
Specific heat capacity | cw | 4.177 | J g−1 K−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Zhu, W.; Yang, Y.; Huang, L.; Shi, Y.; Xie, C. Thermoelectric Performance Evaluation and Optimization in a Concentric Annular Thermoelectric Generator under Different Cooling Methods. Energies 2022, 15, 2231. https://doi.org/10.3390/en15062231
Yang W, Zhu W, Yang Y, Huang L, Shi Y, Xie C. Thermoelectric Performance Evaluation and Optimization in a Concentric Annular Thermoelectric Generator under Different Cooling Methods. Energies. 2022; 15(6):2231. https://doi.org/10.3390/en15062231
Chicago/Turabian StyleYang, Wenlong, Wenchao Zhu, Yang Yang, Liang Huang, Ying Shi, and Changjun Xie. 2022. "Thermoelectric Performance Evaluation and Optimization in a Concentric Annular Thermoelectric Generator under Different Cooling Methods" Energies 15, no. 6: 2231. https://doi.org/10.3390/en15062231
APA StyleYang, W., Zhu, W., Yang, Y., Huang, L., Shi, Y., & Xie, C. (2022). Thermoelectric Performance Evaluation and Optimization in a Concentric Annular Thermoelectric Generator under Different Cooling Methods. Energies, 15(6), 2231. https://doi.org/10.3390/en15062231