Evaluation of the Communication Delay in a Hybrid Real-Time Simulator for Weak Grids
Abstract
:1. Introduction
2. The Real-Time Simulation Configuration
2.1. Platform Framework
2.2. Data Interaction between the Platform
- (1)
- Ethernet data communication
- (2)
- I/O port data communication
3. Influence of Communication Delay in Weak Grid
3.1. Modeling of Grid-Connected Inverters
3.2. Virtual Impedance Characteristic of Control Loop with Communication Delay
3.2.1. Virtual Impedance Characteristic of Capacitive Current Feedback Control
3.2.2. Virtual Impedance Characteristic of Grid Voltage Feedforward Control
3.2.3. Virtual Impedance Characteristic of Control Loop
4. Simulation and Experimental Verification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Zhang, Y.; Zhou, Q.; Zhao, L.; Ma, Y.; Lv, Q.; Gao, P. Dynamic Reactive Power Configuration of High Penetration Renewable Energy Grid Based on Transient Stability Probability Assessment. In Proceedings of the 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), Wuhan, China, 30 October–1 November 2020; pp. 3801–3805. [Google Scholar]
- He, J.; Liu, P.; Duan, S. Stability Analysis of Multi-paralleled Grid-connected Inverters with Different Controllers in Weak Grid Condition. In Proceedings of the IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 18–21 October 2020; pp. 2350–2355. [Google Scholar]
- Okada, N.; Fukushima, K.; Sano, K. A Method to Consider Voltage Distortion Caused by Interaction Grid-Connected Inverter and Distribution System. In Proceedings of the 2020 23rd International Conference on Electrical Machines and Systems (ICEMS), Hamamatsu, Japan, 24–27 November 2020; pp. 630–635. [Google Scholar]
- D’Agostino, F.; Kaza, D.; Martelli, M.; Schiapparelli, G.-P.; Silvestro, F.; Soldano, C. Development of a Multiphysics Real-Time Simulator for Model-Based Design of a DC Shipboard Microgrid. Energies 2020, 13, 3580. [Google Scholar] [CrossRef]
- Summers, A.; Johnson, J.; Darbali-Zamora, R.; Hansen, C.; Anandan, J.; Showalter, C. A Comparison of DER Voltage Regulation Technologies Using Real-Time Simulations. Energies 2020, 13, 3562. [Google Scholar] [CrossRef]
- Sodin, D.; Ilievska, R.; Čampa, A.; Smolnikar, M.; Rudez, U. Proving a Concept of Flexible Under-Frequency Load Shedding with Hardware-in-the-Loop Testing. Energies 2020, 13, 3607. [Google Scholar] [CrossRef]
- Saad, H.; Ould-Bachir, T.; Mahseredjian, J.; Dufour, C.; Dennetière, S.; Nguefeu, S. Real-Time Simulation of MMCs Using CPU and FPGA. IEEE Trans. Power Electron. 2015, 30, 259–267. [Google Scholar] [CrossRef]
- Matar, M.; Iravani, R. FPGA Implementation of the Power Electronic Converter Model for Real-Time Simulation of Electromagnetic Transients. IEEE Trans. Power Deliv. 2010, 25, 852–860. [Google Scholar] [CrossRef]
- Vijay, A.S.; Doolla, S.; Chandorkar, M.C. Real-time testing approaches for microgrids. J. Emerg. Sel. Top. Power Electron. 2017, 5, 1356–1376. [Google Scholar] [CrossRef]
- Faruque, M.D.O.; Strasser, T.; Lauss, G.; Jalili-Marandi, V.; Forsyth, P.; Dufour, C.; Dinavahi, V.; Monti, A.; Kotsampopoulos, P.; Martinez, J.A.; et al. Real-time simulation technologies for power systems design, testing, and analysis. IEEE Power Energy Technol. Syst. J. 2015, 2, 63–73. [Google Scholar] [CrossRef]
- Guillaud, X.; Faruque, M.O.; Teninge, A.; Hariri, A.H.; Vanfretti, L.; Paolone, M.; Dinavahi, V.; Mitra, P.; Lauss, G.; Dufour, C.; et al. Applications of real-time simulation technologies in power and energy systems. IEEE Power Energy Technol. Syst. J. 2015, 2, 103–115. [Google Scholar] [CrossRef] [Green Version]
- McLaren, P.G.; Kuffel, R.; Wierckx, R.; Giesbrecht, J.; Arendt, L. A real time digital simulator for testing relays. IEEE Trans. Power Deliv. 1992, 7, 207–213. [Google Scholar] [CrossRef]
- Kumar, A.; Bahjaoui, A.; Musunuri, S.K.; Rout, B. Design and Tuning of Multi-Band Based Power System Stabilizer and Implementation in HYPERSIM. In Proceedings of the 2019 20th International Conference on Intelligent System Application to Power Systems (ISAP), New Delhi, India, 11 April 2019; pp. 1–6. [Google Scholar]
- Devaux, O.; Levacher, L.; Huet, O. An advanced and powerful real-time digital transient network analyzer. IEEE Trans. Power Deliv. 1998, 13, 421–426. [Google Scholar] [CrossRef]
- Bélanger, J.; Snider, L.A.; Paquin, J. A Modern and Open Real-Time Digital Simulator of Contemporary Power Systems. In Proceedings of the International Conference on Power Systems Transients (IPST 2009), Kyoto, Japan, 10 October 2009. [Google Scholar]
- Kulicke, B. NETOMAC Digital program for simulating electromechanical and electromagnetic transient phenomena in AC systems. Elektrizitätswirtschaft Heft. 1979, 78, 18–23. [Google Scholar]
- Wang, X.; Bao, C.; Ruan, X.; Li, W.; Pan, D. Design considerations of digitally controlled LCL-filtered inverter with capacitor current feedback active damping. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 2, 972–984. [Google Scholar] [CrossRef]
- Hou, G.; Vittal, V. Cluster Computing-Based Trajectory Sensitivity Analysis Application to the WECC System. IEEE Trans. Power Syst. 2012, 27, 502–509. [Google Scholar] [CrossRef]
- Li, Z.; Donde, V.D.; Tournier, J.; Yang, F. On limitations of traditional multi-core and potential of many-core processing architectures for sparse linear solvers used in large-scale power system applications. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011; pp. 1–8. [Google Scholar]
- Chen, Y.; Shen, C.; Wang, J. Distributed Transient Stability Simulation of Power Systems Based on a Jacobian-Free Newton-GMRES Method. IEEE Trans. Power Syst. 2009, 24, 146–156. [Google Scholar] [CrossRef]
- Su, H.; Chan, K.K.W.; Snider, L.A. Interfacing an electromagnetic SVC model into the transient stability simulation. In Proceedings of the International Conference on Power System Technology, Kunming, China, 13–17 October 2002; Volume 3, pp. 1568–1572. [Google Scholar]
- Su, H.; Chan, K.W.; Snider, L.A.; Chung, T.S. A parallel implementation of electromagnetic electromechanical hybrid simulation protocol. In Proceedings of the 2004 IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies, Hong Kong, China, 5–8 April 2004; Volume 1, pp. 151–155. [Google Scholar]
- Chan, K.K.W.; Snider, L.A. Development of a hybrid real-time fully digital simulator for the study and control of large power systems. In Proceedings of the 2000 International Conference on Advances in Power System Control, Operation and Management, APSCOM-00, Hong Kong, China, 30 October–1 November 2000; Volume 2, pp. 527–531. [Google Scholar]
- Guo, B.; Mohamed, A.; Bacha, S.; Alamir, M.; Boudinet, C.; Pouget, J. Reduced-Scale Models of Variable Speed Hydro-Electric Plants for Power Hardware-in-the-Loop Real-Time Simulations. Energies 2020, 13, 5764. [Google Scholar] [CrossRef]
- Sidwall, K.; Forsyth, P. Advancements in Real-Time Simulation for the Validation of Grid Modernization Technologies. Energies 2020, 13, 4036. [Google Scholar] [CrossRef]
- Song, J.; Hur, K.; Lee, J.; Lee, H.; Lee, J.; Jung, S.; Shin, J.; Kim, H. Hardware-in-the-Loop Simulation Using Real-Time Hybrid-Simulator for Dynamic Performance Test of Power Electronics Equipment in Large Power System. Energies 2020, 13, 3955. [Google Scholar] [CrossRef]
- Mirz, M.; Dinkelbach, J.; Monti, A. DPsim—Advancements in Power Electronics Modelling Using Shifted Frequency Analysis and in Real-Time Simulation Capability by Parallelization. Energies 2020, 13, 3879. [Google Scholar] [CrossRef]
- Wong, S.M.; Sze, K.M.; Snider, L.A.; Chan, K.W.; Larose, C. Overcoming the difficulties associated with interfacing different simulation programs. In Proceedings of the 2003 Sixth International Conference on Advances in Power System Control, Operation and Management ASDCOM 2003, Hong Kong, China, 11–14 November 2003; pp. 403–408. [Google Scholar]
- Pan, S.; Jiang, W.; Geng, H.; Wang, J.; Li, M. Evaluation of the Delay Effect in a Novel Hybrid Real-Time Simulation Platform. In Proceedings of the 2021 IEEE 1st International Power Electronics and Application Symposium (PEAS), Shanghai, China, 13–15 November 2021; pp. 1–6. [Google Scholar]
- Chan, K.K.W.; Snider, L.A. Electromagnetic electromechanical hybrid real-time digital simulator for the study and control of large power systems, PowerCon 2000. In Proceedings of the 2000 International Conference on Power System Technology, Perth, WA, Australia, 4–7 December 2000; Volume 2, pp. 783–788. [Google Scholar]
- Xu, J.; Qian, Q.; Xie, S.; Zhang, B. Grid-voltage feedforward based control for grid-connected LCL-filtered inverter with high robustness and low grid current distortion in weak grid. In Proceedings of the 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 20–24 March 2016; pp. 1919–1925. [Google Scholar]
- Hu, Y.; Xu, J.; Qian, H.; Bian, S.; Xie, S. Robustness and Harmonics Suppression of Grid-Connected Inverters with Different Grid Voltage Feedforward Compensations in Weak Grid. In Proceedings of the 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), Delft, The Netherlands, 17–19 June 2020; pp. 779–784. [Google Scholar]
Hardware Architecture | Advantages | Disadvantages |
---|---|---|
CPU | Flexible solving algorithm Complex solver Easy coding | Large I/O latency Low sampling rate |
FPGA | Low I/O latency High sampling rate Flexible parallelism | Weak in sequential computing algorithms (math operations) Inherent fixed-point numerical representation Large coding effort and longtime bitstream generation |
CPU-FPGA | Efficient computing resource partition Benefit from both sequential computing and high parallelism | Large communication latency Model numerical stability issue |
SPACER | Typhoon HIL402 | |
---|---|---|
Computing unit | CPU | FPGA |
Processor | 12 cores | 4 cores |
Analog I/O | 16 Analog inputs | 16 Analog inputs |
16 Analog outputs | 16 Analog outputs | |
Digital I/O | 32 Digital inputs | 32 Digital inputs |
32 Digital outputs | 32 Digital outputs | |
Resolution | 16 bit | 16 bit |
Connectivity | Ethernet | USB/Ethernet |
Sample rate | 1 MSPS | 1 MSPS |
Real-time simulation step | 20 μs | 0.5, 1 or 2 μs |
TCP | UDP | |
---|---|---|
Definition | Transmission Control Protocol | User Datagram Protocol |
Advantages | Connectionless Low resource overhead Fast transmission speed | Reliable transmission No error Mass data transmission Flow control |
Disadvantages | Unreliable, easy to loss packets No flow control | Slow transmission speed High resource overhead |
Parameter | Symbol | Value |
---|---|---|
Grid phase-to-phase voltage | Ug | 380 V |
Grid frequency | fg | 50 Hz |
DC-link voltage | Udc | 700 V |
Inverter side inductance | L1 | 8 mH |
Filter capacitance | C | 10 μF |
Grid impedance | Lg | 0.5 mH |
Switching frequency | fsw | 10 kHz |
PI controller of PLL | Kp_PLL | 100 |
PI controller of PLL | Ki_PLL | 3200 |
PI controller of current control | Kp_Curr | 0.018 |
PI controller of current control | Ki_Curr | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, S.; Jiang, W.; Li, M.; Geng, H.; Wang, J. Evaluation of the Communication Delay in a Hybrid Real-Time Simulator for Weak Grids. Energies 2022, 15, 2255. https://doi.org/10.3390/en15062255
Pan S, Jiang W, Li M, Geng H, Wang J. Evaluation of the Communication Delay in a Hybrid Real-Time Simulator for Weak Grids. Energies. 2022; 15(6):2255. https://doi.org/10.3390/en15062255
Chicago/Turabian StylePan, Sisi, Wei Jiang, Ming Li, Hua Geng, and Jieyun Wang. 2022. "Evaluation of the Communication Delay in a Hybrid Real-Time Simulator for Weak Grids" Energies 15, no. 6: 2255. https://doi.org/10.3390/en15062255
APA StylePan, S., Jiang, W., Li, M., Geng, H., & Wang, J. (2022). Evaluation of the Communication Delay in a Hybrid Real-Time Simulator for Weak Grids. Energies, 15(6), 2255. https://doi.org/10.3390/en15062255