Comprehensive Estimation of Combustion Behavior and Thermochemical Structure Evolution of Four Typical Industrial Polymeric Wastes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Proximate Analysis
2.3. Ultimate Analysis
2.4. Combustion Behavior Characteristics
2.4.1. Combustion Process
2.4.2. Determination of Combustion Indexes
2.4.3. Kinetic Theory
2.5. Volatile Analysis
2.6. Residual Phase Evolution and ASH Analysis
3. Results and Discussion
3.1. Ultimate and Proximate Analysis
3.2. Combustion Behaviors of the Polymeric Wastes
3.2.1. General
3.2.2. Ignition and Burnout Characteristics
3.2.3. Comprehensive Combustion Characteristic
3.3. Kinetic and Thermodynamic Analysis
3.4. Evolution of Gas-Solid Phase
3.4.1. Volatile Component Releasing
3.4.2. Residual Phase Evolution
3.4.3. Final Ash Analysis
3.5. Practical Implications of this Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Mad | Moisture at air dryness condition (ad) |
Aad | Ash contents at air dryness condition (ad) |
Vad | Volatile matter at air dryness condition (ad) |
QLHV | Lower heating value (MJ/kg); |
QHHV | Higher heating value (MJ/kg); |
T | Temperature (°C); |
M0 | The initial sample weight (wt.%); |
MT | The solid mass at the temperature of T (wt.%); |
ti | Ignition time (min) |
Ti | Ignition temperature (°C); |
Mi | The solid mass at the temperature of Ti (wt.%); |
∆t1/2 | The time range of DTG/DTGmax = 0.5, min; |
∆T1/2 | The temperature range (half-peak breadth) when (dm/dt)/(dm/dt)max = 1/2 (°C); |
tp | The time at the maximum mass loss, (min); |
Tp | The temperature corresponding to the peak (°C); |
DTGmax | The mass loss rate corresponding to the Tp peak (%/min); |
tb | Burnout time (min); |
Tb | Burnout temperature (°C); |
Mb | The solid mass at the reaction temperature of Tb (wt.%); |
DTGmean | The average mass loss rate (%/min); |
Mf | The final sample weight (wt.%); |
Di | Ignition index, |
Db | Burnout index, |
Ci | Lammability index, |
Si | Comprehensive combustibility index, |
Hf | Intensity index of combustion process, |
A | Pre-exponential factor of Arrhenius equation |
Ea | Reaction activation energy |
β | Heating rate |
R | Universal gas constant |
KB | Boltzmann constant (1.381 × 10−23 J/K) |
h | Plank constant (6.626 × 10−34 J·s) |
∆H | Enthalpy change |
∆G | Gibbs free energy |
∆S | Entropy production |
ST | Softening temperature of ash |
FT | Flow temperature of ash |
IDT | Initial deformation temperature of ash |
HT | Hemispherical temperature of ash |
RB/A | Base to acid ratio |
Sd | Slagging index |
RS | Slagging index |
Fu | Fouling index |
SR | Slag viscosity index |
References
- Marshall, R.E.; Farahbakhsh, K. Systems approaches to integrated solid waste management in developing countries. Waste Manag. 2013, 33, 988–1003. [Google Scholar] [CrossRef] [PubMed]
- Stachowiak, T.; Łukasik, K. The Management of Polymer and Biodegradable Composite Waste in Relation to Petro-leum-Based Thermoplastic Polymer Waste—In Terms of Energy Consumption and Processability. Sustainability 2021, 13, 3701. [Google Scholar] [CrossRef]
- Suksankraisorn, K.; Patumsawad, S.; Vallikul, P.; Fungtammasan, B.; Accary, A. Co-combustion of municipal solid waste and Thai lignite in a fluidized bed. Energy Convers. Manag. 2004, 45, 947–962. [Google Scholar] [CrossRef]
- Sokolović, D.; Vulic, T.; Kiralj, A.; Hadnadjev-Kostic, M.; Sokolovic, S. Separation efficiency of two waste polymer fibers for oily water treatment. Acta Period. Technol. 2016, 2016, 167–174. [Google Scholar] [CrossRef]
- Sauve, G.; Van Acker, K. The environmental impacts of municipal solid waste landfills in Europe: A life cycle as-sessment of proper reference cases to support decision making. J. Environ. Manag. 2020, 261, 110216. [Google Scholar] [CrossRef]
- Taylor, P.H.; Yamada, T.; Striebich, R.C.; Graham, J.L.; Giraud, R.J. Investigation of waste incineration of fluorote-lomer-based polymers as a potential source of PFOA in the environment. Chemosphere 2014, 110, 17–22. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Ye, C.; He, X.; Zhang, S. Fate of antibiotics and antibiotic resistance genes during aerobic co-composting of food waste with sewage sludge. Sci. Total Environ. 2021, 784, 146950. [Google Scholar] [CrossRef]
- Saad, J.M.; Williams, P.T.; Zhang, Y.S.; Yao, D.; Yang, H.; Zhou, H. Comparison of waste plastics pyrolysis under ni-trogen and carbon dioxide atmospheres: A thermogravimetric and kinetic study. J. Anal. Appl. Pyrol. 2021, 156, 105135. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, A.; Zhao, Z.; Wang, Q.; Wang, C.; Liu, S.; Huang, Z.; Li, H. External fields enhanced glycerol pre-treatment of forestry waste for producing value-added pyrolytic chemicals. Ind. Crop. Prod. 2021, 168, 113603. [Google Scholar] [CrossRef]
- Zhang, J.; Li, C.; Yuan, H.; Chen, Y. Enhancement of aromatics production via cellulose fast pyrolysis over Ru modi-fied hierarchical zeolites. Renew. Energy 2022, 184, 280–290. [Google Scholar] [CrossRef]
- Al-Salem, S.M.; Kishk, M.W.; Karam, H.J.; Al-Qassimi, M.M.; Al-Wadi, M.H.; Al-Shemmari, A.J. Inducing polymer waste biodegradation using oxo-prodegradant and thermoplastic starch based additives. J. Polym. Res. 2021, 28, 1–15. [Google Scholar] [CrossRef]
- Kasina, M.; Kajdas, B.; Michalik, M. The leaching potential of sewage sludge and municipal waste incineration ashes in terms of landfill safety and potential reuse. Sci. Total Environ. 2021, 791, 148313. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhao, S.; Liang, Z.; Wang, F.; Sun, F.; Chen, D. Perfluoroalkyl substances (PFASs) in leachate, fly ash, and bottom ash from waste incineration plants: Implications for the environmental release of PFAS. Sci. Total Environ. 2021, 795, 148468. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, A.A.; Peter, O.; Hassan, A.S.; Tunji, L.A.; Oyagbola, I.; Mustafa, M.M.; Yusuf, D.A. Municipality solid waste management system for Mukono District, Uganda. Procedia Manuf. 2019, 35, 613–622. [Google Scholar] [CrossRef]
- Li, Z.; Lu, Q.; Na, Y. N2O and NO emissions from co-firing MSW with coals in pilot scale CFBC. Fuel Process. Technol. 2004, 85, 1539–1549. [Google Scholar] [CrossRef]
- Muthuraman, M.; Namioka, T.; Yoshikawa, K. A comparative study on co-combustion performance of municipal sol-id waste and Indonesian coal with high ash Indian coal: A thermogravimetric analysis. Fuel Process. Technol. 2010, 91, 550–558. [Google Scholar] [CrossRef]
- Muthuraman, M.; Namioka, T.; Yoshikawa, K. Characteristics of co-combustion and kinetic study on hydrothermally treated municipal solid waste with different rank coals: A thermogravimetric analysis. Appl. Energy 2010, 87, 141–148. [Google Scholar] [CrossRef]
- Gug, J.; Cacciola, D.; Sobkowicz, M.J. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics. Waste Manag. 2015, 35, 283–292. [Google Scholar] [CrossRef]
- Liu, G.H.; Ma, X.Q.; Yu, Z. Experimental and kinetic modeling of oxygen-enriched air combustion of municipal solid waste. Waste Manag. 2009, 29, 792–796. [Google Scholar] [CrossRef]
- Lai, Z.; Ma, X.; Tang, Y.; Lin, H. A study on municipal solid waste (MSW) combustion in N2/O2 and CO2/O2 atmos-phere from the perspective of TGA. Energy 2011, 36, 819–824. [Google Scholar] [CrossRef]
- López, R.; Fernández, C.; Cara, J.; Martínez, O.; Sánchez, M. Differences between combustion and oxy-combustion of corn and corn–rape blend using thermogravimetric analysis. Fuel Process. Technol. 2014, 128, 376–387. [Google Scholar] [CrossRef]
- Suksankraisorn, K.; Patumsawad, S.; Fungtammasan, B. Co-firing of Thai lignite and municipal solid waste (MSW) in a fluidised bed: Effect of MSW moisture content. Appl. Therm. Eng. 2010, 30, 2693–2697. [Google Scholar] [CrossRef]
- Channiwala, S.; Parikh, P. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 2002, 81, 1051–1063. [Google Scholar] [CrossRef]
- Kök, M.V. Temperature-controlled combustion and kinetics of different rank coal samples. J. Therm. Anal. Calorim. 2005, 79, 175–180. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Shi, X.; Yang, C.; Wang, W.; Li, Y. Risk evaluation of coal spontaneous combustion on the basis of auto-ignition temperature. Fuel 2018, 233, 68–76. [Google Scholar] [CrossRef]
- Sahu, S.; Sarkar, P.; Chakraborty, N.; Adak, A. Thermogravimetric assessment of combustion characteristics of blends of a coal with different biomass chars. Fuel Process. Technol. 2010, 91, 369–378. [Google Scholar] [CrossRef]
- Mureddu, M.; Dessì, F.; Orsini, A.; Ferrara, F.; Pettinau, A. Air- and oxygen-blown characterization of coal and bio-mass by thermogravimetric analysis. Fuel 2018, 212, 626–637. [Google Scholar] [CrossRef]
- Yuanyuan, Z.; Yanxia, G.; Fangqin, C.; Kezhou, Y.; Yan, C. Investigation of combustion characteristics and kinetics of coal gangue with different feedstock properties by thermogravimetric analysis. Thermochim. Acta 2015, 614, 137–148. [Google Scholar] [CrossRef]
- Manasrah, A.D.; Hassan, A.; Nassar, N.N. Enhancement of petroleum coke thermal reactivity using Oxy-cracking technique. Can. J. Chem. Eng. 2019, 97, 2794–2803. [Google Scholar] [CrossRef]
- Wnorowska, J.; Ciukaj, S.; Kalisz, S. Thermogravimetric Analysis of Solid Biofuels with Additive under Air Atmos-phere. Energies 2021, 14, 2257. [Google Scholar] [CrossRef]
- Wang, J.; Lian, W.; Li, P.; Zhang, Z.; Yang, J.; Hao, X.; Huang, W.; Guan, G. Simulation of pyrolysis in low rank coal particle by using DAEM kinetics model: Reaction behavior and heat transfer. Fuel 2017, 207, 126–135. [Google Scholar] [CrossRef]
- Zhang, J.; Gu, J.; Yuan, H.; Chen, Y. Thermal behaviors and kinetics for fast pyrolysis of chemical pretreated waste cassava residues. Energy 2020, 208, 118192. [Google Scholar] [CrossRef]
- Ozawa, T. A New Method of Analyzing Thermogravimetric Data. Bull. Chem. Soc. Jpn. 1965, 38, 1881–1886. [Google Scholar] [CrossRef] [Green Version]
- Flynn, J.H.; Wall, L.A. A quick, direct method for the determination of activation energy from thermogravimetric data. J. Polym. Sci. Part B Polym. Lett. 1966, 4, 323–328. [Google Scholar] [CrossRef]
- Kissinger, H.E. Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 1957, 29, 1702–1706. [Google Scholar] [CrossRef]
- Cai, Z.; Ma, X.; Fang, S.; Yu, Z.; Lin, Y. Thermogravimetric analysis of the co-combustion of eucalyptus residues and paper mill sludge. Appl. Therm. Eng. 2016, 106, 938–943. [Google Scholar] [CrossRef]
- Noda, I. Chapter 13—Generalized Two-Dimensional Correlation Spectroscopy. In Frontiers of Molecular Spectros-Copy; Laane, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 367–381. [Google Scholar]
- Chen, Y.; Liu, B.; Yang, H.; Yang, Q.; Chen, H. Evolution of functional groups and pore structure during cotton and corn stalks torrefaction and its correlation with hydrophobicity. Fuel 2014, 137, 41–49. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S.; Yang, H.; Shao, J.; Chen, Y.; Liao, X.; Wang, X.; Chen, H. Generalized two-dimensional correla-tion infrared spectroscopy to reveal mechanisms of CO2 capture in nitrogen enriched biochar. Proc. Combust. Inst. 2017, 36, 3933–3940. [Google Scholar] [CrossRef]
- Harvey, O.R.; Herbert, B.E.; Kuo, L.; Louchouarn, P. Generalized Two-Dimensional Perturbation Correlation Infrared Spectroscopy Reveals Mechanisms for the Development of Surface Charge and Recalcitrance in Plant-Derived Bio-chars. Environ. Sci. Technol. 2012, 46, 10641–10650. [Google Scholar] [CrossRef]
- Abdulyekeen, K.A.; Umar, A.A.; Patah, M.F.A.; Daud, W.M.A.W. Torrefaction of biomass: Production of enhanced solid biofuel from municipal solid waste and other types of biomass. Renew. Sustain. Energy Rev. 2021, 150, 111436. [Google Scholar] [CrossRef]
- Mian, I.; Li, X.; Dacres, O.D.; Wang, J.; Wei, B.; Jian, Y.; Zhong, M.; Liu, J.; Ma, F.; Rahman, N. Combustion kinetics and mechanism of biomass pellet. Energy 2020, 205, 117909. [Google Scholar] [CrossRef]
- Dou, X.; Li, W.; Zhu, C. Catalytic hydrotreatment of Kraft lignin into liquid fuels over porous ZnCoOx nanoplates. Fuel 2020, 283, 118801. [Google Scholar] [CrossRef]
- Hammes, K.; Smernik, R.J.; Skjemstad, J.O.; Schmidt, M.W.I. Characterisation and evaluation of reference materials for black carbon analysis using elemental composition, colour, BET surface area and 13C NMR spectroscopy. Appl. Geochem. 2008, 23, 2113–2122. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Chen, W.; Yang, H.; Chen, H. The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance. Bioresour. Technol. 2017, 246, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.; Wu, S.; Liang, J.; Liu, C. Comprehensive understanding the chemical structure evolution and crucial inter-mediate radical in situ observation in enzymatic hydrolysis/mild acidolysis lignin pyrolysis. J. Anal. Appl. Pyrol. 2019, 138, 249–260. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, C.; Kong, X.; Han, Y.; Lei, M.; Xiao, R. A new perspective on polyethylene-promoted lignin pyrolysis with mass transfer and radical explanation. Green Energy Environ. 2021. [Google Scholar] [CrossRef]
- Martínez, J.D.; Veses, A.; Mastral, A.M.; Murillo, R.; Navarro, M.V.; Puy, N.; Artigues, A.; Bartrolí, J.; García, T. Co-pyrolysis of biomass with waste tyres: Upgrading of liquid bio-fuel. Fuel Process. Technol. 2014, 119, 263–271. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Dong, Z.; Liu, B.; Chen, Y.; Gong, M.; Li, S.; Chen, H. A new insight of lignin pyrolysis mechanism based on functional group evolutions of solid char. Fuel 2020, 288, 119719. [Google Scholar] [CrossRef]
- Kok, M.V. Simultaneous thermogravimetry–calorimetry study on the combustion of coal samples: Effect of heating rate. Energy Convers. Manag. 2012, 53, 40–44. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Jiang, X.; Li, F.; Lei, Y.; Lin, Q. The thermal behavior and kinetics of co-combustion between sewage sludge and wheat straw. Fuel Process. Technol. 2019, 189, 1–14. [Google Scholar] [CrossRef]
- Öner, C.; Altun, S. Improved Combustion of Asphaltite Coals in a Rotating Head Combustor with Various Air Supply Arrangements. Energy Fuel 2014, 28, 2971–2976. [Google Scholar]
- Li, X.; Lv, Y.; Ma, B.; Jian, S.; Tan, H. Thermogravimetric investigation on co-combustion characteristics of tobacco residue and high-ash anthracite coal. Bioresour. Technol. 2011, 102, 9783–9787. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hu, J.; Ran, J.; Zhang, L.; Pu, G.; Tang, Q. Experimental study on combustion and kinetic characteristics of mixed industrial sludge. Proc. CSEE 2007, 27, 44–50. [Google Scholar]
- Wang, H.; You, C. Experimental Investigation into the Spontaneous Ignition Behavior of Upgraded Coal Products. Energy Fuels 2014, 28, 2267–2271. [Google Scholar] [CrossRef]
- Maia, A.; de Morais, L.C. Kinetic parameters of red pepper waste as biomass to solid biofuel. Bioresour. Technol. 2016, 204, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Xie, C.; Liu, J.; Zhang, X.; Chang, K.; Kuo, J.; Sun, J.; Xie, W.; Zheng, L.; Sun, S.; et al. Influence of catalysts on co-combustion of sewage sludge and water hyacinth blends as determined by TG-MS analysis. Bioresour. Technol. 2018, 247, 217–225. [Google Scholar] [CrossRef]
- Ahmad, M.S.; Mehmood, M.A.; Liu, C.-G.; Tawab, A.; Bai, F.-W.; Sakdaronnarong, C.; Xu, J.; Rahimuddin, S.A.; Gull, M. Bioenergy potential of Wolffia arrhiza appraised through pyrolysis, kinetics, thermodynamics parameters and TG-FTIR-MS study of the evolved gases. Bioresour. Technol. 2018, 253, 297–303. [Google Scholar] [CrossRef]
- Turmanova, S.C.; Genieva, S.D.; Dimitrova, A.S.; Vlaev, L.T. Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites. Express Polym. Lett. 2008, 2, 133–146. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, Y.S.; Kim, S.H. Investigation of thermodynamic parameters in the thermal decomposition of plastic waste-waste lube oil compounds. Environ. Sci. Technol. 2010, 44, 5313–5317. [Google Scholar] [CrossRef]
- Li, X.; Dong, W.; Zhang, J.; Shao, S.; Cai, Y. Preparation of bio-oil derived from catalytic upgrading of biomass vac-uum pyrolysis vapor over metal-loaded HZSM-5 zeolites. J. Energy Inst. 2020, 93, 605–613. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, X.; Yue, M.; Yan, M.; Shi, Y. Heat transfer and ash deposition performance of heat exchange surface in waste incineration flue gas. Int. J. Heat Mass Transf. 2020, 155, 119691. [Google Scholar] [CrossRef]
- Ge, Z.; Cao, X.; Zha, Z.; Ma, Y.; Zeng, M.; Wu, K.; Chu, S.; Tao, Y.; Zhang, H. The mineral transformation and molten behaviors of biomass waste ashes in gasification-melting process. Fuel Process. Technol. 2021, 226, 107095. [Google Scholar] [CrossRef]
- Pronobis, M. Evaluation of the influence of biomass co-combustion on boiler furnace slagging by means of fusibility correlations. Biomass Bioenergy 2005, 28, 375–383. [Google Scholar] [CrossRef]
- Rizvi, T.; Xing, P.; Pourkashanian, M.; Darvell, L.I.; Jones, J.M.; Nimmo, W. Prediction of biomass ash fusion be-haviour by the use of detailed characterisation methods coupled with thermodynamic analysis. Fuel 2015, 141, 275–284. [Google Scholar] [CrossRef]
- Guo, L.; Zhai, M.; Wang, Z.; Zhang, Y.; Dong, P. Comparison of bituminous coal and lignite during combustion: Combustion performance, coking and slagging characteristics. J. Energy Inst. 2019, 92, 802–812. [Google Scholar] [CrossRef]
- Barroso, J.; Ballester, J.; Ferrer, L.; Jiménez, S. Study of coal ash deposition in an entrained flow reactor: Influence of coal type, blend composition and operating conditions. Fuel Process. Technol. 2006, 87, 737–752. [Google Scholar] [CrossRef]
- Fahmi, R.; Bridgwater, A.; Darvell, L.; Jones, J.; Yates, N.; Thain, S.; Donnison, I. The effect of alkali metals on combustion and pyrolysis of Lolium and Festuca grasses, switchgrass and willow. Fuel 2007, 86, 1560–1569. [Google Scholar] [CrossRef]
- Saddawi, A.; Jones, J.M.; Williams, A.; Le Coeur, C. Commodity Fuels from Biomass through Pretreatment and Tor-refaction: Effects of Mineral Content on Torrefied Fuel Characteristics and Quality. Energy Fuel 2012, 26, 6466–6474. [Google Scholar] [CrossRef]
- Miles, T.R.; Baxter, L.L.; Bryers, R.W.; Jenkins, B.M.; Oden, L.L. Boiler deposits from firing biomass fuels. Biomass Bioenergy 1996, 10, 125–138. [Google Scholar] [CrossRef]
Ind. Waste | Ultimate Analysis (wt.%) | Proximate Analysis (wt.%) | QLHV (MJ/kg) | QHHV (MJ/kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | N | H | S | O | Cl | Mad | Aad | Vad | FCad | |||
Rubber | 52.2 | 0.17 | 5.83 | 0.00 | 32.5 | 0.48 | 13.7 | 7.10 | 74.6 | 4.68 | 18.4 | 20.2 |
Leather | 58.1 | 0.80 | 5.06 | 0.00 | 33.0 | 0.31 | 0.48 | 4.56 | 85.5 | 9.45 | 19.9 | 21.0 |
Plastics | 42.0 | 0.04 | 6.85 | 0.04 | 30.3 | 2.19 | 22.7 | 4.84 | 71.1 | 1.31 | 16.5 | 18.7 |
Cloth | 43.7 | 0.01 | 4.80 | 0.00 | 33.8 | 0.19 | 4.65 | 4.41 | 82.4 | 8.52 | 14.5 | 15.7 |
Sample | β (°C/min) | Di (10−2·wt.%·min−3) | Dbd (10−3·wt.%·min−4) | Ci (10−4·wt.%·min−1·°C−2) | Si (10−6·%2·min−2·°C−3) | Hf (103·°C) |
---|---|---|---|---|---|---|
Rubber | 10 | 0.86 | 0.16 | 0.82 | 2.51 | 1.52 |
20 | 4.60 | 2.37 | 1.10 | 7.99 | 1.25 | |
30 | 17.06 | 11.16 | 1.81 | 17.03 | 1.17 | |
40 | 50.02 | 44.04 | 2.97 | 32.43 | 1.05 | |
50 | 100.52 | 122.74 | 3.81 | 59.36 | 0.94 | |
Leather | 10 | 0.88 | 1.09 | 0.79 | 5.51 | 1.06 |
20 | 7.25 | 20.93 | 1.67 | 20.45 | 0.78 | |
30 | 22.81 | 95.32 | 2.40 | 38.48 | 0.67 | |
40 | 47.23 | 237.76 | 2.87 | 56.29 | 0.62 | |
50 | 87.68 | 532.62 | 3.46 | 72.19 | 0.57 | |
Plastics | 10 | 0.79 | 0.19 | 0.83 | 2.15 | 1.47 |
20 | 7.23 | 5.52 | 1.84 | 9.05 | 1.20 | |
30 | 23.09 | 28.67 | 2.62 | 20.46 | 1.07 | |
40 | 46.02 | 79.80 | 2.97 | 29.74 | 1.03 | |
50 | 94.62 | 177.91 | 3.97 | 50.53 | 0.94 | |
Cloth | 10 | 0.93 | 1.10 | 0.82 | 5.76 | 1.07 |
20 | 6.72 | 17.48 | 1.56 | 19.63 | 0.81 | |
30 | 21.12 | 81.01 | 2.26 | 37.38 | 0.70 | |
40 | 45.92 | 223.86 | 2.82 | 60.72 | 0.60 | |
50 | 85.44 | 520.80 | 3.40 | 90.01 | 0.52 |
Iso-Conv. Method | Waste Rubber | Waste Leather | Waste Plastic | Waste Cloth | ||||
---|---|---|---|---|---|---|---|---|
Ea (kJ/mol) | R2 | Ea (kJ/mol) | R2 | Ea (kJ/mol) | R2 | Ea (kJ/mol) | R2 | |
DAEM | 79.0 | 0.843 | 136.0 | 0.982 | 102.6 | 0.933 | 136.6 | 0.997 |
FWO | 85.9 | 0.865 | 141.8 | 0.985 | 105.4 | 0.945 | 159.4 | 0.959 |
STK | 79.4 | 0.854 | 137.4 | 0.982 | 96.1 | 0.925 | 156.0 | 0.953 |
Kissinger | 75.8 | 0.852 | 121.4 | 0.996 | 92.9 | 0.981 | 120.2 | 0.993 |
Plastics-900 °C | Plastics-550 °C | Cloth-900 °C | Cloth-550 °C | |
---|---|---|---|---|
Normalized percentage of Oxide in ash compound (wt.%) | ||||
Na2O | 0.64 | 6.58 | 6.88 | 5.95 |
MgO | 2.51 | 3.50 | 13.1 | 19.9 |
Fe2O3 | 1.78 | 0.67 | 7.95 | 2.61 |
K2O | 0.09 | 0.36 | 2.10 | 2.91 |
CaO | 79.3 | 79.3 | 31.3 | 37.2 |
Al2O3 | 9.93 | 4.36 | 7.01 | 6.49 |
SiO2 | 5.14 | 4.58 | 10.4 | 4.45 |
TiO2 | 0.32 | 0.29 | 14.7 | 11.0 |
Cr2O3 | 0.02 | 0.00 | 2.71 | 8.37 |
MnO | 0.12 | 0.16 | 2.99 | 0.18 |
NiO | 0.01 | 0.01 | 0.28 | 0.18 |
CuO | 0.06 | 0.12 | 0.33 | 0.33 |
ZnO | 0.07 | 0.10 | 0.16 | 0.41 |
Slagging and fouling indices | ||||
RB/A | 5.48 | 9.79 | 1.91 | 3.13 |
RS | 0.22 | 0.39 | 0.00 | 0.00 |
FU | 4.00 | 67.9 | 17.1 | 27.7 |
SR | 5.79 | 5.20 | 16.6 | 6.94 |
Apparent properties | ||||
Stacking density (g/cm3) | 2.36 | 2.32 | 2.28 | 2.31 |
Partical size * (nm) | 49.9–349.3 | 28.9–399.2 | 19.2–292.3 | 47.1–349.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Lei, M.; Li, M.; Liu, C.; Xue, B.; Xiao, R. Comprehensive Estimation of Combustion Behavior and Thermochemical Structure Evolution of Four Typical Industrial Polymeric Wastes. Energies 2022, 15, 2487. https://doi.org/10.3390/en15072487
Yang S, Lei M, Li M, Liu C, Xue B, Xiao R. Comprehensive Estimation of Combustion Behavior and Thermochemical Structure Evolution of Four Typical Industrial Polymeric Wastes. Energies. 2022; 15(7):2487. https://doi.org/10.3390/en15072487
Chicago/Turabian StyleYang, Shiqiao, Ming Lei, Min Li, Chao Liu, Beichen Xue, and Rui Xiao. 2022. "Comprehensive Estimation of Combustion Behavior and Thermochemical Structure Evolution of Four Typical Industrial Polymeric Wastes" Energies 15, no. 7: 2487. https://doi.org/10.3390/en15072487
APA StyleYang, S., Lei, M., Li, M., Liu, C., Xue, B., & Xiao, R. (2022). Comprehensive Estimation of Combustion Behavior and Thermochemical Structure Evolution of Four Typical Industrial Polymeric Wastes. Energies, 15(7), 2487. https://doi.org/10.3390/en15072487