Guide Vane for Thermal Enhancement of a LED Heat Sink
Abstract
:1. Introduction
2. Numerical Modeling
2.1. Mathematical Model
- (1)
- The air is incompressible ideal gas.
- (2)
- The air properties are constant except for the density.
- (3)
- The flow is steady state.
2.2. Numerical Procedure
3. Experiments and Validation
4. Results and Discussion
4.1. Effect of Guide Vane
4.2. Optimization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
A | area [m2] | μeff | effetive viscosity [kg/m s] |
g | gravitational acceleration [m/s2] | μt | turbulent viscosity [kg/m s] |
H | height [mm] | arbitrary scalar | |
k | thermal conductivity [W/m℃] | Subscripts | |
L | length [mm] | ave | average |
heat flux [W/m2] | b | heat sink base | |
heat transfer rate [W] | d | domain | |
r | radius [mm] | f | fin |
Rth | thermal resistance [℃/W] | g | glass |
S | source term | h | heat sink |
t | thickness [mm] | i | inner or index, i = 1, 2, 3 |
T | temperature [℃] | in | input |
u | velocity [m/s] | j | index, j = x, y, z |
x | design factor | l | long |
X | normalized design factor | m | middle |
o | outer | ||
Greek symbols | ref | reference | |
Γ | diffusion coefficient | v | guide vane |
θ | angle [degree] |
References
- Ahn, B.-L.; Park, J.-W.; Yoo, S.; Kim, J.; Leigh, S.-B.; Jang, C.-Y. Savings in Cooling Energy with a Thermal Management System for LED Lighting in Office Buildings. Energies 2015, 8, 6658–6671. [Google Scholar] [CrossRef] [Green Version]
- Baran, K.; Różowicz, A.; Wachta, H.; Różowicz, S.; Mazur, D. Thermal Analysis of the Factors Influencing Junction Temperature of LED Panel Sources. Energies 2019, 12, 3941. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, R.; Beyragh, D.; Pahlevani, M.; Wood, D. A Numerical and Experimental Study of a Novel Heat Sink Design for Natural Convection Cooling of LED Grow Lights. Energies 2020, 13, 4046. [Google Scholar] [CrossRef]
- Allwyn, R.G.; Al Abri, R.; Malik, A.; Al-Hinai, A. Economic Analysis of Replacing HPS Lamp with LED Lamp and Cost Estimation to Set Up PV/Battery System for Street Lighting in Oman. Energies 2021, 14, 7697. [Google Scholar] [CrossRef]
- Rammohan, A.; Chandramohan, V.P. Experimental analysis on estimating junction temperature and service life of high power LED array. Microelectron. Reliab. 2021, 120, 114121. [Google Scholar] [CrossRef]
- Olvera-Gonzalez, E.; Escalante-Garcia, N.; Myers, D.; Ampim, P.; Obeng, E.; Alaniz-Lumbreras, D.; Castaño, V. Pulsed LED-Lighting as an Alternative Energy Savings Technique for Vertical Farms and Plant Factories. Energies 2021, 14, 1603. [Google Scholar] [CrossRef]
- Pilagatti, A.N.; Piscopo, G.; Atzeni, E.; Iuliano, L.; Salmi, A. Design of additive manufactured passive heat sinks for electronics. J. Manuf. Process. 2021, 64, 878–888. [Google Scholar] [CrossRef]
- Elshafei, E. Natural convection heat transfer from a heat sink with hollow/perforated circular pin fins. Energy 2010, 35, 2870–2877. [Google Scholar] [CrossRef]
- Ahmadian-Elmi, M.; Mohammadifar, M.; Rasouli, E.; Hajmohammadi, M. Optimal design and placement of heat sink elements attached on a cylindrical heat-generating body for maximum cooling performance. Thermochim. Acta 2021, 700, 178941. [Google Scholar] [CrossRef]
- Tang, Y.; Luo, Y.; Du, P.; Wang, H.; Ma, H.; Qin, Y.; Bai, P.; Zhou, G. Experimental investigation on active heat sink with heat pipe assistance for high-power automotive LED headlights. Case Stud. Therm. Eng. 2021, 28, 101503. [Google Scholar] [CrossRef]
- Lin, X.; Mo, S.; Jia, L.; Yang, Z.; Chen, Y.; Cheng, Z. Experimental study and Taguchi analysis on LED cooling by thermoelectric cooler integrated with microchannel heat sink. Appl. Energy 2019, 242, 232–238. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, S.; Huo, J.; Hu, Y.; Chen, J.; Zhang, W.; Lee, E. Heat transfer characteristics and LED heat sink application of aluminum plate oscillating heat pipes. Appl. Therm. Eng. 2011, 31, 2221–2229. [Google Scholar] [CrossRef]
- Lu, X.-Y.; Hua, T.-C.; Wang, Y.-P. Thermal analysis of high power LED package with heat pipe heat sink. Microelectron. J. 2011, 42, 1257–1262. [Google Scholar] [CrossRef]
- Alvin, C.; Chu, W.; Cheng, C.-H.; Teng, J.-T. Thermal analysis of extruded aluminum fin heat sink for LED cooling application. In Proceedings of the 6th International Microsystems Packaging, Assembly and Circuits Technology Conference (IMPACT), Taipei, Taiwan, 19–21 October, 2011; pp. 397–400. [Google Scholar] [CrossRef]
- Tucker, R.; Khatamifar, M.; Lin, W.; McDonald, K. Experimental investigation of orientation and geometry effect on additive manufactured aluminium LED heat sinks under natural convection. Therm. Sci. Eng. Prog. 2021, 23, 100918. [Google Scholar] [CrossRef]
- De Mey, G.; Wójcik, M.; Pilarski, J.; Lasota, M.; Banaszczyk, J.; Vermeersch, B.; Napieralski, A.; De Paepe, M. Chimney Effect on Natural Convection Cooling of a Transistor Mounted on a Cooling Fin. J. Electron. Packag. 2009, 131, 014501. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, A.K.; Gosselin, L. Optimal geometry of L and C-shaped channels for maximum heat transfer rate in natural convection. Int. J. Heat Mass Transf. 2005, 48, 609–620. [Google Scholar] [CrossRef]
- Shimoyama, R.; Horibe, A.; Haruki, N.; Sano, Y. Natural Convection Heat Transfer from Upward-Facing Horizontal Heated Surface with Heated Cylindrical Pipe (Effects of Flow Characteristic around Heated Cylinder). Trans. Jpn. Soc. Mech. Eng. Ser. B 2013, 79, 2289–2300. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-J.; Jang, D.; Lee, K.-S. Thermal performance improvement of a radial heat sink with a hollow cylinder for LED downlight applications. Int. J. Heat Mass Transf. 2015, 89, 1184–1189. [Google Scholar] [CrossRef]
- Souayeh, B.; Yasin, E.; Alam, M.W.; Hussain, S.G. Numerical Simulation of Magnetic Dipole Flow Over a Stretching Sheet in the Presence of Non-Uniform Heat Source/Sink. Front. Energy Res. 2021, 9. [Google Scholar] [CrossRef]
- Li, B.; Baik, Y.-J.; Byon, C. Enhanced natural convection heat transfer of a chimney-based radial heat sink. Energy Convers. Manag. 2016, 108, 422–428. [Google Scholar] [CrossRef]
- Lopez, M.J.S.; Blanco-Marigorta, A.M.; Trashorras, A.J.G.; Pistono-Favero, J.; Blanco-Marigorta, E. Numerical simulation and exergetic analysis of building ventilation solar chimneys. Energy Convers. Manag. 2015, 96, 1–11. [Google Scholar] [CrossRef]
- Yakhot, V.; Orszag, S.A. Renormalization group analysis of turbulence. I. Basic theory. J. Sci. Comput. 1986, 1, 3–51. [Google Scholar] [CrossRef]
- Jang, D.; Yook, S.-J.; Lee, K.-S. Optimum design of a radial heat sink with a fin-height profile for high-power LED lighting applications. Appl. Energy 2014, 116, 260–268. [Google Scholar] [CrossRef]
- Sani, F.H.; Pourfallah, M.; Gholinia, M. The effect of MoS2–Ag/ H2O hybrid nanofluid on improving the performance of a solar collector by placing wavy strips in the absorber tube. Case Stud. Therm. Eng. 2022, 30, 101760. [Google Scholar] [CrossRef]
- Gholinia, M.; Ranjbar, A.; Javidan, M.; Hosseinpour, A. Employing a new micro-spray model and (MWCNTs—SWCNTs)—H2O nanofluid on Si-IGBT power module for energy storage: A numerical simulation. Energy Rep. 2021, 7, 6844–6853. [Google Scholar] [CrossRef]
- Shaker, B.; Gholinia, M.; Pourfallah, M.; Ganji, D. CFD analysis of Al2O3-syltherm oil Nanofluid on parabolic trough solar collector with a new flange-shaped turbulator model. Theor. Appl. Mech. Lett. 2022, 100323. [Google Scholar] [CrossRef]
- Coleman, H.W.; Steele, W.G. Experimentation, Validation, and Uncertainty Analysis for Engineers; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Sacks, J.; Welch, W.J.; Mitchell, T.J.; Wynn, H. Design and Analysis of Computer Experiments. Stat. Sci. 1989, 4, 409–423. [Google Scholar] [CrossRef]
Domain | Wall | Momentum | Energy |
---|---|---|---|
Fluid | Periodic wall | ||
Outer face | Pressure inlet/outlet condition | ||
Solid | Base of heat sink | ||
Symmetric face |
Model | Rth (K/W) | Error (%) |
---|---|---|
Experiment | 2.45 | - |
SST k-ω | 1.99 | 11.7 |
Standard k-ω | 2.26 | 7.9 |
Standard k-ε | 2.29 | 14.9 |
Realizable k-ε | 2.57 | 12.1 |
RNG k-ε | 2.60 | 1.5 |
Mass | Momentum | Turbulent Kinetic Energy | Turbulent Dissipation Rate | Energy | |
---|---|---|---|---|---|
1 | cpT | ||||
0 | |||||
0 |
Previous Study | Errors Using Present Model | |||
---|---|---|---|---|
Author | Tair [°C] | (W/m2) | Rth (°C/W) | Error [%] |
Park et al. [19] | 17.5 | 615 | 1.75 | 5.4 |
875 | 1.61 | 3.9 | ||
Jang et al. [24] | 30 | 437 | 1.89 | 4.8 |
919 | 1.52 | 5.3 |
Parameters | Values |
---|---|
Size of population | 50 |
Initial seed value of the generation | 100 |
Maximum number of generations | 200 |
Crossover probability | 1.0 |
Violated constraint limit | 0.003 |
Selection probability | 0.15 |
Guide Vane Parameters | Range | Reference | Optimum |
---|---|---|---|
Angle, θv | 0° ≤ θv ≤ 90° | 45° | 79.2° |
Height, Hv | 0 mm ≤ Hv ≤ 20 mm | 10 mm | 2.12 mm |
Length, Lv | 0 mm ≤ Lv ≤ 20 mm | 10 mm | 13.84 mm |
Installation of Guide Vane | Thermal Resistance, Rth [°C/W] (Improvement, %) |
---|---|
Without guide vane | 2.451 |
Reference guide vane | 2.225 (−9.2%) |
Optimum guide vane | 2.028 (−17.2%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byun, S.; Hyeon, S.; Lee, K.-S. Guide Vane for Thermal Enhancement of a LED Heat Sink. Energies 2022, 15, 2488. https://doi.org/10.3390/en15072488
Byun S, Hyeon S, Lee K-S. Guide Vane for Thermal Enhancement of a LED Heat Sink. Energies. 2022; 15(7):2488. https://doi.org/10.3390/en15072488
Chicago/Turabian StyleByun, Sungjoon, Seounghwan Hyeon, and Kwan-Soo Lee. 2022. "Guide Vane for Thermal Enhancement of a LED Heat Sink" Energies 15, no. 7: 2488. https://doi.org/10.3390/en15072488
APA StyleByun, S., Hyeon, S., & Lee, K. -S. (2022). Guide Vane for Thermal Enhancement of a LED Heat Sink. Energies, 15(7), 2488. https://doi.org/10.3390/en15072488