Driving Factors of CO2 Emissions in China’s Power Industry: Relative Importance Analysis Based on Spatial Durbin Model
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Kaya Decomposition
3.2. The Spatial Econometric Model
3.3. Spatial Autocorrelation Analysis
3.4. Data Sources and Variable Description
4. Results and Discussion
4.1. The Unit Root Tests
4.2. Spatial Autocorrelation Test
4.3. Regression and Discussion of Spatial Econometric Models
4.3.1. Regression and Discussion of Based Model
4.3.2. Regressions and Discussions of Sector Models
5. Relative Importance Analysis of Influencing Factors of CO2 Emissions in the Power Industry
5.1. RI Analysis
5.2. Results of RI Analysis
5.2.1. RI Analysis of the Based Model
5.2.2. RI Analysis of Sector Models
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- BP. BP Statistical Review of World Energy 2021, 70th ed.; BP: London, UK, 2021. [Google Scholar]
- Li, W.; Zhang, Y.; Lu, C. The impact on electric power industry under the implementation of national carbon trading market in China: A dynamic CGE analysis. J. Clean. Prod. 2018, 200, 511–523. [Google Scholar] [CrossRef]
- Xie, P.; Yang, F.; Mu, Z.; Gao, S. Influencing factors of the decoupling relationship between CO2 emission and economic development in China’s power industry. Energy (Oxford) 2020, 209, 118341. [Google Scholar] [CrossRef]
- Jia, Z.; Lin, B. The impact of removing cross subsidies in electric power industry in China: Welfare, economy, and CO2 emission. Energy Policy 2021, 148, 111994. [Google Scholar] [CrossRef]
- Wu, H.; Xu, L.; Ren, S.; Hao, Y.; Yan, G. How do energy consumption and environmental regulation affect carbon emissions in China? New evidence from a dynamic threshold panel model. Resour. Policy 2020, 67, 101678. [Google Scholar]
- Tang, B.; Li, R.; Yu, B.; An, R.; Wei, Y. How to peak carbon emissions in China’s power sector: A regional perspective. Energy Policy 2018, 120, 365–381. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Tian, Y.; Cheng, W.; Yang, J.; Xu, D.; Wang, Y.; Xie, K.; Ku, A.Y. Reduction of carbon emissions from China’s coal-fired power industry: Insights from the province-level data. J. Clean. Prod. 2020, 242, 118518. [Google Scholar] [CrossRef]
- Zhang, L.; Du, Q.; Zhou, D.; Zhou, P. How does the photovoltaic industry contribute to China’s carbon neutrality goal? Analysis of a system dynamics simulation. Sci. Total Environ. 2022, 808, 151868. [Google Scholar]
- Lin, B.; Bega, F. China’s Belt & Road Initiative coal power cooperation: Transitioning toward low-carbon development. Energy Policy 2021, 156, 112438. [Google Scholar]
- Yu, Y.; Jin, Z.; Li, J.; Jia, L. Low-carbon development path research on China’s power industry based on synergistic emission reduction between CO2 and air pollutants. J. Clean. Prod. 2020, 275, 123097. [Google Scholar] [CrossRef]
- Yang, L.; Lin, B. Carbon dioxide-emission in China’s power industry: Evidence and policy implications. Renew. Sustain. Energy Rev. 2016, 60, 258–267. [Google Scholar] [CrossRef]
- Cui, H.; Zhao, T.; Wu, R. CO2 emissions from China’s power industry: Policy implications from both macro and micro perspectives. J. Clean. Prod. 2018, 200, 746–755. [Google Scholar] [CrossRef]
- Ling, Y.; Xia, S.; Cao, M.; He, K.; Lim, M.K.; Sukumar, A.; Yi, H.; Qian, X. Carbon emissions in China’s thermal electricity and heating industry: An input-output structural decomposition analysis. J. Clean. Prod. 2021, 329, 129608. [Google Scholar] [CrossRef]
- Jiang, T.; Yang, J.; Huang, S. Evolution and driving factors of CO2 emissions structure in China’s heating and power industries: The supply-side and demand-side dual perspectives. J. Clean. Prod. 2020, 264, 121507. [Google Scholar] [CrossRef]
- Quan, C.; Cheng, X.; Yu, S.; Ye, X. Analysis on the influencing factors of carbon emission in China’s logistics industry based on LMDI method. Sci. Total Environ. 2020, 734, 138473. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Peng, R.; Zhong, C.; Wang, M.; Guo, P. What drives the temporal and spatial differences of CO2 emissions in the transport sector? Empirical evidence from municipalities in China. Energy Policy 2021, 159, 112607. [Google Scholar] [CrossRef]
- Tang, Z.; Yu, H.; Zou, J. How does production substitution affect China’s embodied carbon emissions in exports? Renew. Sustain. Energy Rev. 2022, 156, 111957. [Google Scholar] [CrossRef]
- Ninpanit, P.; Malik, A.; Wakiyama, T.; Geschke, A.; Lenzen, M. Thailand’s energy-related carbon dioxide emissions from production-based and consumption-based perspectives. Energy Policy 2019, 133, 110877. [Google Scholar] [CrossRef]
- Cai, W.; Song, X.; Zhang, P.; Xin, Z.; Zhou, Y.; Wang, Y.; Wei, W. Carbon emissions and driving forces of an island economy: A case study of Chongming Island, China. J. Clean. Prod. 2020, 254, 120028. [Google Scholar] [CrossRef]
- Zhao, P.; Zeng, L.; Li, P.; Lu, H.; Hu, H.; Li, C.; Zheng, M.; Li, H.; Yu, Z.; Yuan, D.; et al. China’s transportation sector carbon dioxide emissions efficiency and its influencing factors based on the EBM DEA model with undesirable outputs and spatial Durbin model. Energy 2022, 238, 121934. [Google Scholar] [CrossRef]
- Li, J.; Li, S. Energy investment, economic growth and carbon emissions in China—Empirical analysis based on spatial Durbin model. Energy Policy 2020, 140, 111425. [Google Scholar] [CrossRef]
- Espoir, D.K.; Sunge, R. CO2 emissions and economic development in Africa: Evidence from a dynamic spatial panel model. J. Environ. Manag. 2021, 300, 113617. [Google Scholar] [CrossRef] [PubMed]
- Croonenbroeck, C.; Palm, M. A spatio-temporal Durbin fixed effects IV-Model for ENTSO-E electricity flows analysis. Renew. Energy 2020, 148, 205–213. [Google Scholar] [CrossRef]
- Park, J.; Yun, S. Social determinants of residential electricity consumption in Korea: Findings from a spatial panel model. Energy (Oxford) 2022, 239, 122272. [Google Scholar] [CrossRef]
- Yan, D.; Lei, Y.; Li, L.; Song, W. Carbon emission efficiency and spatial clustering analyses in China’s thermal power industry: Evidence from the provincial level. J. Clean. Prod. 2017, 156, 518–527. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, H.; Ding, Y.; Zhu, T.; Zhu, N.; Tian, Z. Energy efficiency evaluation of key energy consumption sectors in China based on a macro-evaluating system. Energy 2018, 153, 65–79. [Google Scholar] [CrossRef]
- Chen, Y.; Lee, C. Does technological innovation reduce CO2 emissions? Cross-country evidence. J. Clean. Prod. 2020, 263, 121550. [Google Scholar] [CrossRef]
- Lv, Y.; Chen, W.; Cheng, J. Modelling dynamic impacts of urbanization on disaggregated energy consumption in China: A spatial Durbin modelling and decomposition approach. Energy Policy 2019, 133, 110841. [Google Scholar] [CrossRef]
- Zhao, J.; Jiang, Q.; Dong, X.; Dong, K.; Jiang, H. How does industrial structure adjustment reduce CO2 emissions? Spatial and mediation effects analysis for China. Energy Econ. 2022, 105, 105704. [Google Scholar]
- Zhang, L.; Li, R. Impacts of green certification programs on energy consumption and GHG emissions in buildings: A spatial regression approach. Energy Build. 2022, 256, 111677. [Google Scholar] [CrossRef]
- Tan, Z.; Li, L.; Wang, J.; Wang, J. Examining the driving forces for improving China’s CO2 emission intensity using the decomposing method. Appl. Energy 2011, 88, 4496–4504. [Google Scholar] [CrossRef]
- Liao, C.; Wang, S.; Zhang, Y.; Song, D.; Zhang, C. Driving forces and clustering analysis of provincial-level CO2 emissions from the power sector in China from 2005 to 2015. J. Clean. Prod. 2019, 240, 118026. [Google Scholar] [CrossRef]
- Kantakumar, L.N.; Kumar, S.; Schneider, K. What drives urban growth in Pune? A logistic regression and relative importance analysis perspective. Sustain. Cities Soc. 2020, 60, 102269. [Google Scholar]
- Tang, L.; He, G. How to improve total factor energy efficiency? An empirical analysis of the Yangtze River economic belt of China. Energy 2021, 235, 121375. [Google Scholar]
- Ye, D.; Ng, Y.; Lian, Y. Culture and Happiness. Soc. Indic. Res. 2015, 123, 519–547. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Xing, Y.; Zeng, X.; Ji, Y.; Hou, H.; Zhang, Y.; Zhu, Z. Factors influencing carbon emissions from China’s electricity industry: Analysis using the combination of LMDI and K-means clustering. Environ. Impact Assess. 2022, 93, 106724. [Google Scholar] [CrossRef]
- Liao, C.; Wang, S.; Fang, J.; Zheng, H.; Liu, J.; Zhang, Y. Driving forces of provincial-level CO2 emissions in China’s power sector based on LMDI method. Energy Procedia 2019, 158, 3859–3864. [Google Scholar] [CrossRef]
- Tang, S.; Zhou, W.; Li, X.; Chen, Y.; Zhang, Q.; Zhang, X. Subsidy strategy for distributed photovoltaics: A combined view of cost change and economic development. Energy Econ. 2021, 97, 105087. [Google Scholar] [CrossRef]
- Zhu, X.; He, C.; Gu, Z. How do local policies and trade barriers reshape the export of Chinese photovoltaic products? J. Clean. Prod. 2021, 278, 123995. [Google Scholar] [CrossRef]
- Xu, J.; Yi, B.; Fan, Y. Economic viability and regulation effects of infrastructure investments for inter-regional electricity transmission and trade in China. Energy Econ. 2020, 91, 104890. [Google Scholar] [CrossRef]
- Pellini, E. Estimating income and price elasticities of residential electricity demand with Autometrics. Energy Econ. 2021, 101, 105411. [Google Scholar] [CrossRef]
Type | Variable | Variable Definition | Formula | Mean | Std | Min | Max | Median |
---|---|---|---|---|---|---|---|---|
Based model | CO2 emissions | 4.5680 | 0.8941 | 1.8422 | 6.4038 | 4.6026 | ||
CO2 emission intensity of thermal power | 2.5015 | 0.2180 | 1.9673 | 3.2286 | 2.4744 | |||
Power supply structure | 4.2605 | 0.4552 | 2.0931 | 4.6051 | 4.4278 | |||
Self-supply ratio of electricity | 4.6055 | 0.2990 | 3.4658 | 5.2628 | 4.6051 | |||
Energy demand structure | 3.2402 | 0.2785 | 0.4911 | 3.9707 | 3.2255 | |||
Energy intensity | 4.2836 | 0.5546 | 2.8014 | 6.2108 | 4.3065 | |||
GDP | 9.2374 | 1.0649 | 5.9532 | 11.5898 | 9.3536 | |||
Industry model | Proportion of industrial power consumption | 4.0743 | 0.2511 | 2.7288 | 4.4954 | 4.1061 | ||
Industrial energy demand structure | 3.3134 | 0.3623 | 0.4801 | 4.2487 | 3.2551 | |||
Industrial energy intensity | 4.6979 | 0.6459 | 2.8797 | 6.7262 | 4.7563 | |||
Industrial added value | 8.1893 | 1.1550 | 4.3694 | 10.5749 | 8.2675 | |||
Construction model | Proportion of construction’s power consumption | 0.7234 | 0.2729 | 0 | 1.8264 | 0.6750 | ||
Construction’s energy demand structure | 2.9745 | 0.5916 | 0 | 4.4928 | 3.0118 | |||
Construction’s energy intensity | 2.7241 | 0.6351 | 1.0271 | 6.5079 | 2.7680 | |||
Added value in construction | 6.5285 | 1.0328 | 3.7281 | 8.7531 | 6.5476 | |||
Transportation model | Proportion of transportation’s power consumption | 1.0164 | 0.3533 | 0.2976 | 2.2489 | 0.9647 | ||
Transportation’s energy demand structure | 1.7033 | 0.5118 | 0.0965 | 3.2081 | 1.6483 | |||
Transportation’s energy intensity | 4.8544 | 0.4345 | 3.6388 | 5.8043 | 4.8721 | |||
Added value in transportation | 6.2943 | 0.9416 | 3.2228 | 8.2047 | 6.3846 | |||
Resident model | Proportion of residents’ power consumption | 2.7324 | 0.4225 | 0.1972 | 3.8392 | 2.7492 | ||
Residents’ energy demand structure | 3.5672 | 0.4558 | 0.0681 | 4.3067 | 3.6043 | |||
Per capita energy consumption | 3.0990 | 0.5392 | 1.2925 | 4.3321 | 3.1294 | |||
Population | 8.1735 | 0.7522 | 6.2804 | 9.4326 | 8.2506 |
Variable | LLC Test | IPS Test | Fisher Test | Conclusion | Variable | LLC Test | IPS Test | Fisher Test | Conclusion |
---|---|---|---|---|---|---|---|---|---|
−3.30 *** | −3.49 *** | 165.20 *** | Stationary | −10.84 *** | −2.80 *** | 155.20 *** | Stationary | ||
−4.20 *** | −2.95 *** | 118.86 *** | Stationary | −14.36 *** | −3.23 *** | 145.13 *** | Stationary | ||
−2.67 *** | −4.33 *** | 96.85 *** | Stationary | −1.49 * | −4.89 *** | 242.27 *** | Stationary | ||
−2.75 *** | −4.59 *** | 151.41 *** | Stationary | −8.15 *** | −2.99 *** | 111.09 *** | Stationary | ||
−5.17 *** | −4.63 *** | 101.90 *** | Stationary | −6.77 *** | −3.56 *** | 123.10 *** | Stationary | ||
−2.06 ** | −2.25 ** | 105.38 *** | Stationary | −4.74 *** | −4.06 *** | 149.72 *** | Stationary | ||
−2.94 *** | −4.84 *** | 248.95 *** | Stationary | −4.29 *** | −3.64 *** | 164.47 *** | Stationary | ||
−5.75 *** | −1.37 * | 119.88 *** | Stationary | −4.54 *** | −4.40 *** | 151.38 *** | Stationary | ||
−14.27 *** | −4.38 *** | 152.56 *** | Stationary | −14.19 *** | −3.54 *** | 163.20 *** | Stationary | ||
−3.19 *** | −4.75 *** | 144.14 *** | Stationary | −11.69 *** | −3.63 *** | 145.82 *** | Stationary | ||
−4.58 *** | −6.77 *** | 246.85 *** | Stationary | −2.51 *** | 0.63 | 136.47 *** | Stationary | ||
−5.29 *** | −3.18 *** | 133.51 *** | Stationary |
Year | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 |
---|---|---|---|---|---|---|---|---|---|
Geary’s C | 0.760 ** (−2.33) | 0.778 ** (−2.168) | 0.793 ** (−1.992) | 0.807 ** (−1.860) | 0.817 ** (−1.764) | 0.798 ** (−1.954) | 0.798 ** (−1.958) | 0.807 ** (−1.846) | 0.835 * (−1.589) |
Year | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | |
Geary’s C | 0.834 * (−1.608) | 0.826 ** (−1.688) | 0.821 ** (−1.754) | 0.803 ** (−1.951) | 0.790 ** (−2.098) | 0.802 ** (−1.986) | 0.815 ** (−1.834) | 0.827 ** (−1.705) |
Variable | OLS | PM | SAR | SEM | SDM |
---|---|---|---|---|---|
0.2853 *** (6.26) | 0.7277 *** (3.86) | 0.7218 *** (14.08) | 0.7084 *** (13.96) | 0.6974 *** (13.83) | |
0.8214 *** (39.59) | 0.9921 *** (14.21) | 0.9828 *** (27.55) | 0.9941 *** (28.51) | 1.0209 *** (28.40) | |
1.0312 *** (31.03) | 1.0374 *** (7.85) | 1.0304 *** (17.50) | 1.0274 *** (17.59) | 1.0382 *** (17.45) | |
0.4728 *** (14.89) | 0.1463 (0.88) | 0.1451 *** (5.08) | 0.1345 *** (4.82) | 0.1432 *** (5.12) | |
0.9594 *** (34.36) | 0.6241 *** (2.99) | 0.6126 *** (14.34) | 0.6494 *** (15.43) | 0.6415 *** (15.20) | |
0.9722 *** (78.57) | 0.9082 *** (10.13) | 0.8768 *** (27.46) | 0.9281 *** (40.96) | 0.8045 *** (11.06) | |
0.0616 (1.30) | 0.2812 *** (3.67) | 0.2460 ** (3.84) | |||
0.0105 *** (15.97) | 0.0102 *** (15.84) | 0.0100 *** (15.90) | |||
0.9591 | 0.9288 | 0.9252 | 0.9232 | 0.9211 |
Variable | Industry | Construction | Transportation | Residents |
---|---|---|---|---|
0.6451 *** (12.78) | 0.8457 *** (15.69) | 0.8892 *** (18.65) | 0.8254 *** (16.42) | |
0.9976 *** (27.46) | 1.0146 *** (24.19) | 1.0420 *** (27.41) | 1.0313 *** (25.95) | |
1.0015 *** (16.31) | 0.9984 *** (14.38) | 1.0359 *** (16.16) | 1.0549 *** (15.52) | |
−0.0227 (−0.39) | −0.3050 *** (−6.70) | −0.5271 *** (−12.68) | −0.4298 *** (−12.26) | |
0.1521 *** (6.68) | 0.1443 *** (7.27) | 0.3281 *** (11.16) | 0.2770 *** (11.48) | |
0.4071 *** (12.38) | 0.1809 *** (7.99) | 0.2658 *** (8.20) | 0.3553 *** (11.37) | |
0.3853 *** (9.58) | 0.3695 *** (9.11) | 0.4452 *** (9.77) | 0.4347 *** (3.90) | |
0.2936 *** (4.02) | 0.2203 *** (3.57) | 0.0911 * (1.74) | 0.4655 *** (8.26) | |
0.0106 *** (15.84) | 0.0135 *** (15.92) | 0.0114 *** (15.96) | 0.0122 *** (15.72) | |
0.7773 | 0.7565 | 0.7987 | 0.8228 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chi, Y.; Zhou, W.; Tang, S.; Hu, Y. Driving Factors of CO2 Emissions in China’s Power Industry: Relative Importance Analysis Based on Spatial Durbin Model. Energies 2022, 15, 2631. https://doi.org/10.3390/en15072631
Chi Y, Zhou W, Tang S, Hu Y. Driving Factors of CO2 Emissions in China’s Power Industry: Relative Importance Analysis Based on Spatial Durbin Model. Energies. 2022; 15(7):2631. https://doi.org/10.3390/en15072631
Chicago/Turabian StyleChi, Yuanying, Wenbing Zhou, Songlin Tang, and Yu Hu. 2022. "Driving Factors of CO2 Emissions in China’s Power Industry: Relative Importance Analysis Based on Spatial Durbin Model" Energies 15, no. 7: 2631. https://doi.org/10.3390/en15072631
APA StyleChi, Y., Zhou, W., Tang, S., & Hu, Y. (2022). Driving Factors of CO2 Emissions in China’s Power Industry: Relative Importance Analysis Based on Spatial Durbin Model. Energies, 15(7), 2631. https://doi.org/10.3390/en15072631