Feature Selection in Energy Consumption of Solar Catamaran INER 1 on Galapagos Island
Abstract
:1. Introduction
2. Experimental Methods
2.1. Data Mining
2.1.1. Information Pre-Processing
2.1.2. Artificial Neural Networks
2.2. Solar Ship INER 1
2.3. Meteorological Parameters
2.4. Energy Parameters
2.5. Social Parameters
3. Methodology
4. Results
4.1. Attribute Analysis
4.2. Energy Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cuvi, N.; Guijarro, D. ¿ Una trayectoria hacia la insustentabilidad? La movilidad terrestre en la isla Santa Cruz, Galápagos. Rev. Transp. Y Territ. 2016, 15, 216–240. [Google Scholar] [CrossRef]
- Helling, R.K. The Role of LCA in Sustainable Development. In Encyclopedia of Sustainable Technologies; Abraham, M.A., Ed.; Elsevier: Oxford, UK, 2017; pp. 237–242. [Google Scholar] [CrossRef]
- Rivela, B.; Montero, A.; Criollo, B.; Vaca, D.; López-Villada, J. Environmental Policies in Maritime Transport: A Case Study of Solar Ship in Galapagos Islands. In Proceedings of the EuroSun 2014, ISES Conference, Aix-les-Bains, France, 16–19 September 2014. [Google Scholar]
- Ko, N.; Gantner, J. Local added value and environmental impacts of ship scrapping in the context of a ship’s life cycle. Ocean Eng. 2016, 122, 317–321. [Google Scholar] [CrossRef]
- Gursu, H. Solar And Wind Powered Concept Boats: The Example Of Volitan. METU J. Fac. Archit. 2016, 31, 109–123. [Google Scholar] [CrossRef]
- Bleicher, A. Solar sailor [Dream Jobs 2013—Renewables]. IEEE Spectr. 2013, 50, 45–46. [Google Scholar] [CrossRef]
- Lucas, A.; Neto, R.C.; Silva, C.A. Energy supply infrastructure LCA model for electric and hydrogen transportation systems. Energy 2013, 56, 70–80. [Google Scholar] [CrossRef]
- Ling-Chin, J.; Heidrich, O.; Roskilly, A.P. Life cycle assessment (LCA)—From analysing methodology development to introducing an LCA framework for marine photovoltaic (PV) systems. Renew. Sustain. Energy Rev. 2016, 59, 352–378. [Google Scholar] [CrossRef] [Green Version]
- Schiller, L.; Alava, J.J.; Grove, J.; Reck, G.; Pauly, D. The demise of Darwin’s fishes: Evidence of fishing down and illegal shark finning in the Galápagos Islands. Aquat. Conserv. Mar. Freshw. Ecosyst. 2015, 25, 431–446. [Google Scholar] [CrossRef]
- Maggí, P.D.E.; Rodríguez, J.P.C.; Litardo, J.E.T.; Caviedes, E.C.E. Análisis del mercado turístico de las islas galápagos: Caso cruising galápagos. Obs. De La Econ. Latinoam. 2018. Available online: http://www.eumed.net/2/rev/oel/2018/02/mercado-turistico-galapagos.html. (accessed on 1 December 2021).
- Parque-Nacional-Galápagos. Informe Anual 2017 Visitantes a Las Áreas Protegidas de Galápagos; Ministerio del Ambiente: Puerto Ayora, Galápagos, Ecuador, 2017. Available online: http://www.galapagos.gob.ec/ (accessed on 1 December 2021).
- García, J.; Rangel, E.; Farías, M. Informe Galápagos 2011–2012, DPNG, GCREG, FCD y GC; Administración del Parque Nacional Galápagos: Puerto Ayora, Ecuador, 2013. [Google Scholar]
- Jara-Alvear, J.; Pastor, H.; Garcia, J.; Casafont, M.; Araujo, E.; Calderon, E. Embarcaciones solares, una evolución al transporte marino en las islas Galápagos, Ecuador. In Proceedings of the 1st International congress and scientific expo ISEREE, Quito, Ecuador, November 2013; pp. 1–8. [Google Scholar]
- Moya, M.; Arroyo, D. Análisis de los resultados de la operación del catamarán “Génesis Solar” en el estrecho de Itabaca (Islas Galápagos). Congr. Int. 2015, 2, 68–72. Available online: https://docplayer.es/44822739-I-d-i-en-sostenibilidad-energetica-iner-2015.html (accessed on 1 December 2021).
- INAMHI. Instituto Nacional de Meteorología e Hidrología; INAMHI: Quito, Ecuador, 17 July 2014. [Google Scholar]
- Touati, F.; Chowdhury, N.A.; Benhmed, K.; San Pedro Gonzales, A.J.R.; Al-Hitmi, M.A.; Benammar, M.; Gastli, A.; Ben-Brahim, L. Long-term performance analysis and power prediction of PV technology in the State of Qatar. Renew. Energy 2017, 113, 952–965. [Google Scholar] [CrossRef]
- Salcedo-Sanz, S.; Cornejo-Bueno, L. Feature selection in machine learning prediction systems for renewable energy applications. Renew. Sustain. Energy Rev. 2018, 90, 728–741. [Google Scholar] [CrossRef]
- Hatwaambo, S.; Jain, P.C.; Perers, B.; Karlsson, B. Projected beam irradiation at low latitudes using Meteonorm database. Renew. Energy 2009, 34, 1394–1398. [Google Scholar] [CrossRef]
- Zhang, W.; Dang, H.; Simoes, R. A new solar power output prediction based on hybrid forecast engine and decomposition model. ISA Trans. 2018, 81, 105–120. [Google Scholar] [CrossRef] [PubMed]
- Meteonorm. Publication Page. Available online: www.meteonorm.com (accessed on 1 December 2021).
- Okello, D.; Van Dyk, E.E.; Vorster, F.J. Analysis of measured and simulated performance data of a 3.2kWp grid-connected PV system in Port Elizabeth, South Africa. Energy Convers. Manag. 2015, 100, 10–15. [Google Scholar] [CrossRef]
- Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J. Data Mining: Practical Machine Learning Tools and Techniques; Morgan Kaufmann: Burlington, MA, USA, 2016. [Google Scholar]
- Tan, P.N.; Steinbach, M.; Karpatne, A.; Kumar, V. Introduction to Data Mining; Pearson Education: London, UK, 2018; ISBN 9780133128901. [Google Scholar]
- Rodríguez, Y.; Fernández, Y.; Bello, R.; Caballero, Y. Selección de atributos relevantes aplicando algoritmos que combinan conjuntos aproximados y optimización en colonias de hormigas. Rev. Cuba. De Cienc. Inf. 2014, 8, 79–86. [Google Scholar]
- Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16–28. [Google Scholar] [CrossRef]
- Martínez, J.J. Análisis de minería de datos distribuida con Weka Parallel en computadoras con múltiples procesadores físicos y lógicos. Econ. Y Adm. 2017, 6, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Leary, D.; Kubby, J. Feature Selection and ANN Solar Power Prediction. J. Renew. Energy 2017, 2017, 7. [Google Scholar] [CrossRef] [Green Version]
- Saad, S.; Ishtiyaque, M.; Malik, H. Selection of most relevant input parameters using WEKA for artificial neural network based concrete compressive strength prediction model. In Proceedings of the 2016 IEEE 7th Power India International Conference (PIICON), Bikaner, India, 25–27 November 2016; pp. 1–6. [Google Scholar]
- Gutiérrez, J.A.G. Comenzando con Weka: Filtrado y Selección de Subconjuntos de Atributos Basada en su Relevancia Descriptiva Para la Clas; ETSI Informática, Universidad Nacional de Educación a Distancia: Madrid, Spain, 2016. [Google Scholar]
- Navarro, J.J.L. Selección de Atributos en Aprendizaje Automático Basada en Teoría de la Información. Doctoral Dissertation, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain, 2001. Available online: https://www.siani.es/files/documentos/tesisdoctorales/Tesis_J_J_Lorenzo_Navarro.pdf (accessed on 1 December 2021).
- Khmaissia, F.; Frigui, H.; Sunkara, M.; Jasinski, J.; Garcia, A.M.; Pace, T.; Menon, M. Accelerating band gap prediction for solar materials using feature selection and regression techniques. Comput. Mater. Sci. 2018, 147, 304–315. [Google Scholar] [CrossRef]
- INER. Informe del Sistema Fotovoltaico del Catamarán Solar de las Islas Galápagos; INER: Quito, Ecuador, 2014.
- Jurado, S.; Nebot, À.; Mugica, F.; Avellana, N. Hybrid methodologies for electricity load forecasting: Entropy-based feature selection with machine learning and soft computing techniques. Energy 2015, 86, 276–291. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.M.; Kumar, M.R.; Rejoice, P.R.; Mathew, M. Performance analysis of 100 kWp grid connected Si-poly photovoltaic system using PVsyst simulation tool. Energy Procedia 2017, 117, 180–189. [Google Scholar] [CrossRef]
- INOCAR, I.O.d.l.A. Tabla de Mareas INOCAR, Galapagos, Ecuador. 2016. Available online: https://www.inocar.mil.ec/web/index.php/productos/tabla-mareas (accessed on 1 December 2021).
- Del Álamo, L.M. Relaciones Entre Mareas y Otros Fenómenos Geodinámicos: Estudios en la Península Ibérica y California; Universidad Complutense de Madrid: Madrid, Spain, 2016. [Google Scholar]
- Saeteros, A.M.; Da Silva, E.V.; Calles, V.G. Análisis de la Demanda del Turismo para la Gestión Sustentable del Destino en las Islas Galápagos-Ecuador. An. Bras. De Estud. Turísticos-ABET 2017, 7, 78–88. [Google Scholar] [CrossRef] [Green Version]
- DPNG, Dirección del Parque Nacional Galápagos. Informe Anual de Visitantes a las áreas Protegidas; 2016; Available online: https://www.galapagos.gob.ec/wp-content/uploads/downloads/2017/07/Informe_visitantes_Anual_2016_vfinal.pdf (accessed on 1 December 2021).
- Frank, E.; Hall, M.; Holmes, G.; Kirkby, R.; Pfahringer, B.; Witten, I.H.; Trigg, L. Weka-a machine learning workbench for data mining. In Data Mining and Knowledge Discovery Handbook; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1269–1277. [Google Scholar]
- Almaraashi, M. Investigating the impact of feature selection on the prediction of solar radiation in different locations in Saudi Arabia. Appl. Soft Comput. 2018, 66, 250–263. [Google Scholar] [CrossRef]
Input Variable | Abbreviation | Units |
---|---|---|
Date and Time | date | aaaa-dd-mm hh:mm:ss |
Energy used by the boat (Baltra—Santa Cruz electrical network, photovoltaic generation of the vessel, battery bank) | Energ | kWh |
Temperature | Temp | °C |
Relative humidity | HR | % |
Global radiation | GlRad | kWm2/h |
Wind direction | WD | ° from the north |
Wind speed | WS | m/s |
Precipitation | Prec | mm |
Caterpilar Unit 1 | Term1 | kWh |
Caterpilar Unit 3 | Term3 | kWh |
Caterpilar Unit 4 | Term4 | kWh |
Caterpilar Unit 5 | Term5 | kWh |
Caterpilar Unit 6 | Term6 | kWh |
Caterpilar Unit 7 | Term7 | kWh |
Hyundai Unit 8 | Term8 | kWh |
Hyundai Unit 9 | Term9 | kWh |
Hyundai Unit 10 | Term10 | kWh |
Hyundai Unit 11 | Term11 | kWh |
Hyundai Unit 12 | Term12 | kWh |
Hyundai Unit 13 | Term13 | kWh |
Baltra wind farm | Eol | kWh |
Santa Cruz photovoltaic plant | Fotov | kWh |
Sea height | Mar | m |
Tourists | Tur | people |
Input Variable | Abbreviation | ||
---|---|---|---|
MultiLayer perceptron 29 hidden layers Backpropagation network type 5 output nodes | Instances correctly classified | 922 | 88.82% |
Misclassified instances | 116 | 11.17% | |
Kappa statistic | 0.67 | ||
Mean absolute error | 0.04 | ||
Root-mean-square-error | 0.21 | ||
Relative absolute error | 26.45% | ||
Relative Ssquare error | 74.22% | ||
Total number of instances | 1038 |
Attribute Evaluator | Attribute Selection Mode | Search Method | Study Variable |
---|---|---|---|
InfoGainAttributeEval | Full training set | Ranker | Class |
Classifier Order | Attribute | InfoGain Merit |
---|---|---|
1 | Energ | 1.09798 |
2 | Tur | 0.57595 |
3 | Fotov | 0.18327 |
4 | GlRad | 0.10919 |
5 | date | 0.05443 |
6 | Term9 | 0.02289 |
7 | Term10 | 0.01495 |
8 | Term11 | 0.01279 |
9 | Term13 | 0.01208 |
10 | Term3 | 0.01025 |
11 | Prec | 0.00955 |
12 | Term5 | 0.00942 |
13 | Term8 | 0.00848 |
14 | Term12 | 0.0069 |
15 | Mar | 0.00671 |
16 | Term4 | 0.00627 |
17 | HR | 0.00622 |
18 | Term1 | 0 |
19 | Eol | 0 |
20 | Temp | 0 |
21 | Term6 | 0 |
22 | Term7 | 0 |
23 | WS | 0 |
23 | WD | 0 |
Attribute Evaluator | Attribute Selection Mode | Search Method | Study Variable |
---|---|---|---|
ClassifierAttibuteEval Jrip | Full training set | Ranker | Class |
Classifier Order | Attribute | Jrip Merit |
---|---|---|
1 | Energ | 0.3113551 |
2 | Tur | 0.182028316 |
3 | Fotov | 0.013002023 |
4 | Term11 | 0.001059424 |
5 | GlRad | 0.000866802 |
6 | date | 0.000144467 |
7 | WS | 0 |
8 | Term8 | 0 |
9 | HR | 0 |
10 | Term1 | −1 × 10−16 |
11 | Prec | −0.000144467 |
12 | Term4 | −0.000144467 |
13 | Temp | −0.000433401 |
14 | Term6 | −0.000433401 |
15 | Term7 | −0.000433401 |
16 | Term5 | −0.000577868 |
17 | Mar | −0.000722335 |
18 | Eol | −0.000722335 |
19 | WD | −0.000722335 |
20 | Term9 | −0.001300202 |
21 | Term3 | −0.001444669 |
22 | Term13 | −0.001589136 |
23 | Term12 | −0.001733603 |
23 | Term10 | −0.002455938 |
Classifier Order | Attribute | Jrip Merit |
---|---|---|
1 | Tur | 0.135493 |
2 | Energ | 0.110779 |
3 | Fotov | 0.055994 |
4 | GlRad | 0.034984 |
5 | Term3 | 0.028548 |
6 | Eol | 0.02564 |
7 | Term9 | 0.024717 |
8 | Mar | 0.023221 |
9 | HR | 0.023154 |
10 | Term8 | 0.019967 |
11 | Term10 | 0.019596 |
12 | Term11 | 0.018686 |
13 | Temp | 0.017447 |
14 | Term4 | 0.017266 |
15 | WS | 0.016182 |
16 | Term5 | 0.015636 |
17 | Term12 | 0.014259 |
18 | Term6 | 0.013598 |
19 | Prec | 0.012945 |
20 | Term13 | 0.011907 |
21 | WD | 0.009496 |
22 | Term1 | 0.006279 |
23 | Term7 | 0.000108 |
24 | date | 0 |
Classifier Order | Attribute | InfoGain Merit |
---|---|---|
1 | Energ | 1.09798 |
2 | Tur | 0.57595 |
3 | Fotov | 0.18327 |
4 | GlRad | 0.10919 |
5 | date | 0.05443 |
6 | Term9 | 0.02289 |
Classifier | Classifier Results | ||
---|---|---|---|
MultiLayer Perceptron 11 hidden layers Backpropagation 5 output nodes | Instances correctly classified | 1027 | 98.94% |
Misclassified instances | 11 | 1.06% | |
Kappa statistic | 0.97 | ||
Mean absolute error | 0.005 | ||
Square root error | 0.049 | ||
Relative absolute error | 3.26% | ||
Relative square error | 17.63% | ||
Total number of instances | 1038 |
Classifier Order | Attribute | InfoGain Merit |
---|---|---|
1 | Energ | 0.3113551 |
2 | Tur | 0.182028316 |
3 | Fotov | 0.013002023 |
4 | Term11 | 0.001059424 |
5 | GlRad | 0.000866802 |
6 | Term9 | 0.02289 |
Classifier | Classifier Results | ||
---|---|---|---|
MultiLayer perceptron 11 hidden layers backpropagation 5 output nodes | Instances correctly classified | 1000 | 96.34% |
Misclassified instances | 38 | 6.66% | |
Kappa statistic | 0.97 | ||
Mean absolute error | 0.005 | ||
Square root error | 0.05 | ||
Relative absolute error | 3.26% | ||
Relative Square Error | 17.64% | ||
Total number of instances | 1038 |
Battery-Powered Electric Network kWh | Electricity Network to Consumer kWh | Solar Powered by Batteries kWh | Solar Energy to Electrical Network kWh | Solar Energy to Consumers kWh | Total Energy kWh |
---|---|---|---|---|---|
788.62 | 279.92 | 1.45164 | 0 | 868.98 | 3.38916 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moya, M.; Martínez-Gómez, J.; Urresta, E.; Cordovez-Dammer, M. Feature Selection in Energy Consumption of Solar Catamaran INER 1 on Galapagos Island. Energies 2022, 15, 2761. https://doi.org/10.3390/en15082761
Moya M, Martínez-Gómez J, Urresta E, Cordovez-Dammer M. Feature Selection in Energy Consumption of Solar Catamaran INER 1 on Galapagos Island. Energies. 2022; 15(8):2761. https://doi.org/10.3390/en15082761
Chicago/Turabian StyleMoya, Marcelo, Javier Martínez-Gómez, Esteban Urresta, and Martín Cordovez-Dammer. 2022. "Feature Selection in Energy Consumption of Solar Catamaran INER 1 on Galapagos Island" Energies 15, no. 8: 2761. https://doi.org/10.3390/en15082761
APA StyleMoya, M., Martínez-Gómez, J., Urresta, E., & Cordovez-Dammer, M. (2022). Feature Selection in Energy Consumption of Solar Catamaran INER 1 on Galapagos Island. Energies, 15(8), 2761. https://doi.org/10.3390/en15082761