Test and Modelling of Solid Oxide Fuel Cell Durability: A Focus on Interconnect Role on Global Degradation
Abstract
:1. Introduction
2. Experimental Test Description
2.1. Sample Preparation and Testing
2.2. Post-Experimental Characterisation
3. Modelling of Cell Performance
4. Experimental Observations on Interconnect Behaviour
4.1. Electrical Behaviour of Interconnects
4.2. Post-Mortem Microstructural Characterisation
5. Modelling of Global Cell Performance and Degradation
5.1. CoMnO/Crofer22 APU Interconnect-Based ESC Performance
5.2. CuMnO/AISI 441 Interconnect-Based ASC Performance
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
A, B | Kinetics orders [-] |
ASR | Area-Specific Resistance [Ω m−2] |
DR | Degradation Rate [V% kh−1] |
E | Open circuit voltage [V] |
E0 | Reversible voltage [V] |
Ea | Activation energy [J mol−1] |
F | Faraday constant [C mol−1] |
G | Gibbs free energy [J mol−1] |
J | Current density [A m−2] |
Jlim | Limiting current density [A m−2] |
Keq | Equilibrium constant [variable] |
p | Pressure [atm] |
R | Ideal gas constant [J mol−1 K−1] |
T | Temperature [K] |
V | Cell voltage under load [V] |
X, Y | Spatial directions along cell side [m] |
y | Molar fraction [-] |
z | Charge number [-] |
Greek letters | |
γ | Kinetic coefficient [variable] |
η | Overpotential [V] |
θ | Air electrode diffusion coefficient combination [-] |
σ | Conductivity [S m−1] |
Abbreviations and Subscritps | |
act | activation |
air | air electrode (cathode) |
diff | diffusion |
fuel | fuel electrode (anode) |
int | interconnect |
ohm | ohmic |
SR | Steam Reforming |
WGS | Water Gas Shift |
References
- Al-Khori, K.; Bicer, Y.; Boulfrad, S.; Koç, M. Techno-economic and environmental assessment of integrating SOFC with a conventional steam and power system in a natural gas processing plant. Int. J. Hydrogen Energy 2019, 44, 29604–29617. [Google Scholar] [CrossRef]
- Hauch, A.; Küngas, R.; Blennow, P.; Hansen, A.B.; Mathiesen, B.V.; Mogensen, M.B. Recent advances in solid oxide cell technology for electrolysis. Science 2020, 370, eaba6118. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, F.R.; Baldinelli, A.; Barelli, L.; Cinti, G.; Audasso, E.; Bosio, B. Multiscale Modeling for Reversible Solid Oxide Cell Operation. Energies 2020, 13, 5058. [Google Scholar] [CrossRef]
- Bianchi, F.R.; Bosio, B. Operating Principles, Performance and Technology Readiness Level of Reversible Solid Oxide Cells. Sustainability 2021, 13, 4777. [Google Scholar] [CrossRef]
- Rispoli, N.; Vitale, F.; Califano, F.; Polverino, P.; Rosen, M.; Sorrentino, M. Constrained optimal design of a reversible solid oxide cell-based multiple load renewable microgrid. J. Energy Storage 2020, 31, 101570. [Google Scholar] [CrossRef]
- Mekhilef, S.; Saidur, R.; Safari, A. Comparative study of different fuel cell technologies. Renew. Sustain. Energy Rev. 2012, 16, 981–989. [Google Scholar] [CrossRef]
- Stoynov, Z.; Vladikova, D.; Burdin, B.; Laurencin, J.; Montinaro, D.; Raikova, G.; Schiller, G.; Szabo, P. Differential analysis of SOFC current-voltage characteristics. Appl. Energy 2018, 228, 1584–1590. [Google Scholar] [CrossRef]
- Ruf, Y.; Kaufmann, M.; Lange, S.; Pfister, J.; Heieck, F.; Endres, A. Fuel Cells and Hydrogen Applications for Regions and Cities Vol 1. Consolidated Technology Introduction Dossiers. Available online: http://www.fch.europa.eu/page/presentations-2 (accessed on 29 December 2021).
- Venkataraman, V.; Pérez-Fortes, M.; Wang, L.; Hajimolana, Y.S.; Boigues-Muñoz, C.; Agostini, A.; McPhail, S.J.; Maréchal, F.; Van Herle, J.; Aravind, P. Reversible solid oxide systems for energy and chemical applications—Review & perspectives. J. Energy Storage 2019, 24, 100782. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, O.; Gambhir, A.; Staffell, I.; Hawkes, A.; Nelson, J.; Few, S. Future cost and performance of water electrolysis: An expert elicitation study. Int. J. Hydrogen Energy 2017, 42, 30470–30492. [Google Scholar] [CrossRef]
- Khan, M.Z.; Mehran, M.T.; Song, R.-H.; Lee, J.-W.; Lee, S.-B.; Lim, T.-H. A simplified approach to predict performance degradation of a solid oxide fuel cell anode. J. Power Sources 2018, 391, 94–105. [Google Scholar] [CrossRef]
- Menzler, N.H.; Sebold, D.; Sohn, Y.J.; Zischke, S. Post-test characterization of a solid oxide fuel cell after more than 10 years of stack testing. J. Power Sources 2020, 478, 228770. [Google Scholar] [CrossRef]
- Mogensen, M.B.; Hauch, A.; Sun, X.; Chen, M.; Tao, Y.; Ebbesen, S.D.; Hansen, K.V.; Hendriksen, P.V. Relation Between Ni Particle Shape Change and Ni Migration in Ni-YSZ Electrodes—A Hypothesis. Fuel Cells 2017, 17, 434–441. [Google Scholar] [CrossRef]
- Aguiar, P.; Adjiman, C.S.; Brandon, N.P. Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: Model-based steady-state performance. J. Power Sources 2004, 138, 120–136. [Google Scholar] [CrossRef]
- Lee, H.S.; Lee, H.M.; Park, J.-Y.; Lim, H.-T. Degradation behavior of Ni-YSZ anode-supported solid oxide fuel cell (SOFC) as a function of H2S concentration. Int. J. Hydrogen Energy 2018, 43, 22511–22518. [Google Scholar] [CrossRef]
- Hubert, M.; Laurencin, J.; Cloetens, P.; Mougin, J.; Sanchez, D.F.; Pylypko, S.; Morales, M.; Morata, A.; Morel, B.; Montinaro, D.; et al. Solid Oxide Cell Degradation Operated in Fuel Cell and Electrolysis Modes: A Comparative Study on Ni Agglomeration and LSCF Destabilization. ECS Trans. 2017, 78, 3167–3177. [Google Scholar] [CrossRef]
- Bongiorno, V.; Spotorno, R.; Paravidino, D.; Piccardo, P. On the High-Temperature Oxidation and Area Specific Resistance of New Commercial Ferritic Stainless Steels. Metals 2021, 11, 405. [Google Scholar] [CrossRef]
- Spotorno, R. High-Temperature Oxidation of AISI441 Ferritic Stainless Steel for Solid Oxide Fuel Cells. Mater. Sci. Forum 2021, 1016, 1381–1385. [Google Scholar] [CrossRef]
- Fontana, S.; Amendola, R.; Chevalier, S.; Piccardo, P.; Caboche, G.; Viviani, M.; Molins, R.; Sennour, M. Metallic interconnects for SOFC: Characterisation of corrosion resistance and conductivity evaluation at operating temperature of differently coated alloys. J. Power Sources 2007, 171, 652–662. [Google Scholar] [CrossRef]
- Spotorno, R.; Paravidino, D.; Delsante, S.; Piccardo, P. Volatilization of chromium from AISI 441 stainless steel: Time and temperature dependence. Surf. Coat. Technol. 2022, 433, 128125. [Google Scholar] [CrossRef]
- Paravidino, D.; Piccardo, P.; Spotorno, R. A Novel Method for Evaluation of Chromium Evaporation from Solid Oxide Fuel Cells Interconnects: A Feasibility Study. Mater. Sci. Forum 2021, 1016, 1109–1113. [Google Scholar] [CrossRef]
- Kornely, M.; Neumann, A.; Menzler, N.H.; Leonide, A.; Weber, A.; Ivers-Tiffée, E. Degradation of anode supported cell (ASC) performance by Cr-poisoning. J. Power Sources 2011, 196, 7203–7208. [Google Scholar] [CrossRef]
- Spotorno, R.; Piccardo, P.; Perrozzi, F.; Valente, S.; Viviani, M.; Ansar, A. Microstructural and Electrical Characterization of Plasma Sprayed Cu-Mn Oxide Spinels as Coating on Metallic Interconnects for Stacking Solid Oxide Fuel Cells. Fuel Cells 2015, 15, 728–734. [Google Scholar] [CrossRef]
- Liu, Y.; Fergus, J.W.; Cruz, C.D. Electrical Properties, Cation Distributions, and Thermal Expansion of Manganese Cobalt Chromite Spinel Oxides. J. Am. Ceram. Soc. 2013, 96, 1841–1846. [Google Scholar] [CrossRef]
- Wu, X.; Ye, Q. Fault diagnosis and prognostic of solid oxide fuel cells. J. Power Sources 2016, 321, 47–56. [Google Scholar] [CrossRef]
- Guida, M.; Postiglione, F.; Pulcini, G. A random-effects model for long-term degradation analysis of solid oxide fuel cells. Reliab. Eng. Syst. Saf. 2015, 140, 88–98. [Google Scholar] [CrossRef]
- Gallo, M.; Costabile, C.; Sorrentino, M.; Polverino, P.; Pianese, C. Development and application of a comprehensive model-based methodology for fault mitigation of fuel cell powered systems. Appl. Energy 2020, 279, 115698. [Google Scholar] [CrossRef]
- Staffolani, A.; Baldinelli, A.; Barelli, L.; Bidini, G.; Nobili, F. Early-Stage Detection of Solid Oxide Cells Anode Degradation by Operando Impedance Analysis. Processes 2021, 9, 848. [Google Scholar] [CrossRef]
- WZhu, W.; Deevi, S. Opportunity of metallic interconnects for solid oxide fuel cells: A status on contact resistance. Mater. Res. Bull. 2003, 38, 957–972. [Google Scholar] [CrossRef]
- Talic, B.; Molin, S.; Wiik, K.; Hendriksen, P.V.; Lein, H.L. Comparison of iron and copper doped manganese cobalt spinel oxides as protective coatings for solid oxide fuel cell interconnects. J. Power Sources 2017, 372, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Audasso, E.; Nam, S.; Arato, E.; Bosio, B. Preliminary model and validation of molten carbonate fuel cell kinetics under sulphur poisoning. J. Power Sources 2017, 352, 216–225. [Google Scholar] [CrossRef]
- FBianchi, F.R.; Spotorno, R.; Piccardo, P.; Bosio, B. Solid Oxide Fuel Cell Performance Analysis through Local Modelling. Catalysts 2020, 10, 519. [Google Scholar] [CrossRef]
- Conti, B.; Bosio, B.; McPhail, S.J.; Santoni, F.; Pumiglia, D.; Arato, E. A 2-D model for Intermediate Temperature Solid Oxide Fuel Cells Preliminarily Validated on Local Values. Catalysts 2019, 9, 36. [Google Scholar] [CrossRef] [Green Version]
- Audasso, E.; Bianchi, F.R.; Bosio, B. 2D Simulation for CH4 Internal Reforming-SOFCs: An Approach to Study Performance Degradation and Optimization. Energies 2020, 13, 4116. [Google Scholar] [CrossRef]
- Xu, J.; Froment, G.F. Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics. AIChE J. 1989, 35, 88–96. [Google Scholar] [CrossRef]
- Green, D.W.; Perry, R.H. Perry’s Chemical Engineers’ Handbook, 8th ed.; McGraw-Hill Education: New York, NY, USA, 2007. [Google Scholar]
- Bianchi, F.R.; Bosio, B.; Baldinelli, A.; Barelli, L. Optimization of a Reference Kinetic Model for Solid Oxide Fuel Cells. Catalysts 2020, 10, 104. [Google Scholar] [CrossRef] [Green Version]
- Padinjarethil, A.K.; Bianchi, F.R.; Bosio, B.; Hagen, A. Electrochemical Characterization and Modelling of Anode and Electrolyte Supported Solid Oxide Fuel Cells. Front. Energy Res. 2021, 9, 668964. [Google Scholar] [CrossRef]
- Wu, J.; Liu, X. Recent Development of SOFC Metallic Interconnect. J. Mater. Sci. Technol. 2010, 26, 293–305. [Google Scholar] [CrossRef]
- Sabato, A.; Zanchi, E.; Molin, S.; Cempura, G.; Javed, H.; Herbrig, K.; Walter, C.; Boccaccini, A.; Smeacetto, F. Mn-Co spinel coatings on Crofer 22 APU by electrophoretic deposition: Up scaling, performance in SOFC stack at 850 °C and compositional modifications. J. Eur. Ceram. Soc. 2021, 41, 4496–4504. [Google Scholar] [CrossRef]
- Mandal, B.; Mitra, P. Grain growth correlated complex impedance spectroscopy, modulus spectroscopy and carrier hopping mechanism in MnCo2O4: Influence of sintering temperature. Mater. Chem. Phys. 2020, 251, 123095. [Google Scholar] [CrossRef]
- Huang, W.; Gopalan, S.; Pal, U.B.; Basu, S.N. Evaluation of Electrophoretically Deposited CuMn1.8O4 Spinel Coatings on Crofer 22 APU for Solid Oxide Fuel Cell Interconnects. J. Electrochem. Soc. 2008, 155, B1161–B1167. [Google Scholar] [CrossRef]
- Huang, K. Characterization of iron-based alloy interconnects for reduced temperature solid oxide fuel cells. Solid State Ion. 2000, 129, 237–250. [Google Scholar] [CrossRef]
- Molin, S.; Kusz, B.; Gazda, M.; Jasinski, P. Protective coatings for stainless steel for SOFC applications. J. Solid State Electrochem. 2009, 13, 1695–1700. [Google Scholar] [CrossRef]
- Lu, Z.; Zhu, J.; Payzant, E.; Paranthaman, M. Electrical Conductivity of the Manganese Chromite Spinel Solid Solution. J. Am. Ceram. Soc. 2005, 88, 1050–1053. [Google Scholar] [CrossRef]
- Kurokawa, H.; Jacobson, C.; Dejonghe, L.; Visco, S. Chromium vaporization of bare and of coated iron–chromium alloys at 1073 K. Solid State Ion. 2007, 178, 287–296. [Google Scholar] [CrossRef]
- Talic, B.; Falk-Windisch, H.; Venkatachalam, V.; Hendriksen, P.V.; Wiik, K.; Lein, H.L. Effect of coating density on oxidation resistance and Cr vaporization from solid oxide fuel cell interconnects. J. Power Sources 2017, 354, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-I.; Hong, J.; Kim, H.; Son, J.-W.; Lee, J.-H.; Kim, B.-K.; Lee, H.-W.; Yoon, K.J. Highly Dense Mn-Co Spinel Coating for Protection of Metallic Interconnect of Solid Oxide Fuel Cells. J. Electrochem. Soc. 2014, 161, F1389–F1394. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, J.; Yang, Z.; Xia, G.; Nie, Z.; Templeton, J. Long-term oxidation behavior of spinel-coated ferritic stainless steel for solid oxide fuel cell interconnect applications. J. Power Sources 2013, 231, 256–263. [Google Scholar] [CrossRef]
- Gambino, L.V.; Magdefrau, N.J.; Aindow, M. Microstructural effects of the reduction step in reactive consolidation of manganese cobaltite coatings on Crofer 22 APU. Mater. High Temp. 2015, 32, 142–147. [Google Scholar] [CrossRef]
- Martin, B.E.; Petric, A. Electrical properties of copper–manganese spinel solutions and their cation valence and cation distribution. J. Phys. Chem. Solids 2007, 68, 2262–2270. [Google Scholar] [CrossRef]
- Sun, Z.; Gopalan, S.; Pal, U.B.; Basu, S.N. Cu1.3Mn1.7O4 spinel coatings deposited by electrophoretic deposition on Crofer 22 APU substrates for solid oxide fuel cell applications. Surf. Coat. Technol. 2017, 323, 49–57. [Google Scholar] [CrossRef]
- Molin, S.; Sabato, A.G.; Bindi, M.; Leone, P.; Cempura, G.; Salvo, M.; Polo, S.C.; Boccaccini, A.; Smeacetto, F. Microstructural and electrical characterization of Mn-Co spinel protective coatings for solid oxide cell interconnects. J. Eur. Ceram. Soc. 2017, 37, 4781–4791. [Google Scholar] [CrossRef] [Green Version]
- Mogensen, D.; Grunwaldt, J.-D.; Hendriksen, P.; Dam-Johansen, K.; Nielsen, J. Internal steam reforming in solid oxide fuel cells: Status and opportunities of kinetic studies and their impact on modelling. J. Power Sources 2011, 196, 25–38. [Google Scholar] [CrossRef]
- Stoynov, Z.; Vladikova, D.; Burdin, B. Differential Resistance Analysis-Current Achievements and Applications. Bulg. Chem. Commun. 2018, 50, 21–30. [Google Scholar]
- Posdziech, O.; Schwarze, K.; Brabandt, J. Efficient hydrogen production for industry and electricity storage via high-temperature electrolysis. Int. J. Hydrogen Energy 2019, 44, 19089–19101. [Google Scholar] [CrossRef]
- Skafte, T.; Hjelm, J.; Blennow, P.; Graves, C. Quantitative review of degradation and lifetime of solid oxide cells and stacks. In Proceedings of the 12th European SOFC & SOE Forum, Lucerne, Switzerland, 5–8 July 2016; pp. 8–27, [B0501] European Fuel Cell Forum. Available online: www.EFCF.com/Lib (accessed on 29 December 2021).
Layer | ESC | ASC |
---|---|---|
Anode | Ni-CGO (25 μm with 5 μm of Ni contact layer—36% porosity) | Ni-YSZ (250 with 10 μm as active layer—40% porosity) |
Electrolyte | YSZ (85 μm—1% porosity) | YSZ (8 μm—1% porosity) |
Cathode | LSCF-CGO (35 μm with 5 μm as CGO barrier layer—35% porosity) | LSCF-CGO (55 μm with 5 μm as CGO barrier layer—30% porosity) |
Parameter | ESC | ASC |
---|---|---|
γohm,cell [Ω cm2 K−1] | 1.3 × 10−7 | 7.3 × 10−10 |
Ea,ohm,cell [kJ mol−1] | 73 | 104 |
γfuel [A cm−2] | 1.1 × 105 | 2 × 104 |
Ea,fuel [kJ mol−1] | 86 | 107 |
A [-] | 0.45 | 0.30 |
γair [A cm−2] | 3 × 105 | 3 × 105 |
Ea,air [kJ mol−1] | 110 | 110 |
B [-] | 0.17 | 0.17 |
Aging Time [h] | Relative Density CoMnO [%] | Relative Density CuMnO [%] |
---|---|---|
0 | 30.8 | 27.9 |
200 | 58.7 | 63.6 |
400 | 68.3 | 74.5 |
Component | H2 Direct Oxidation | Biogas Internal Reforming | ||
---|---|---|---|---|
Anode | Cathode | Anode | Cathode | |
CH4 | - | - | 0.24 | |
H2 | 0.96 | - | 0.04 | - |
H2O | 0.04 | - | 0.51 | - |
CO | - | - | - | - |
CO2 | - | - | 0.12 | - |
N2 | - | 0.79 | 0.09 | 0.79 |
O2 | - | 0.21 | - | 0.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spotorno, R.; Bianchi, F.R.; Paravidino, D.; Bosio, B.; Piccardo, P. Test and Modelling of Solid Oxide Fuel Cell Durability: A Focus on Interconnect Role on Global Degradation. Energies 2022, 15, 2762. https://doi.org/10.3390/en15082762
Spotorno R, Bianchi FR, Paravidino D, Bosio B, Piccardo P. Test and Modelling of Solid Oxide Fuel Cell Durability: A Focus on Interconnect Role on Global Degradation. Energies. 2022; 15(8):2762. https://doi.org/10.3390/en15082762
Chicago/Turabian StyleSpotorno, Roberto, Fiammetta Rita Bianchi, Daniele Paravidino, Barbara Bosio, and Paolo Piccardo. 2022. "Test and Modelling of Solid Oxide Fuel Cell Durability: A Focus on Interconnect Role on Global Degradation" Energies 15, no. 8: 2762. https://doi.org/10.3390/en15082762
APA StyleSpotorno, R., Bianchi, F. R., Paravidino, D., Bosio, B., & Piccardo, P. (2022). Test and Modelling of Solid Oxide Fuel Cell Durability: A Focus on Interconnect Role on Global Degradation. Energies, 15(8), 2762. https://doi.org/10.3390/en15082762