A Study of Total-Factor Energy Efficiency for Regional Sustainable Development in China: An Application of Bootstrapped DEA and Clustering Approach
Abstract
:1. Introduction
2. Literature Review
3. Methodology
- (1)
- Use all DMUs to evaluate (=), n = 1,…, N, by an appropriate DEA model.
- (2)
- Randomly draw a sample of size N with replacement from the following set:To obtain .
- (3)
- Compute , where and are respectively the mean and standard deviation of , , draws randomly from a standard normal distribution, , and and are respectively the standard deviation and the interquartile range of .
- (4)
- Set , where if and otherwise.
- (5)
- Compute the bootstrap estimate (n = 1,…, N) by the appropriate DEA model with technology (V, X*, U, B), where X*.
- (6)
- Re-do steps (2)–(5) T times to achieve bootstrap estimates for t = 1,…, T.
4. Empirical Analysis
4.1. Data Sources and Input-Output Variables
4.2. Bootstrapped-Based Test of Returns to Scale
4.3. Analysis of Total-Factor Energy Efficiency
4.4. Cluster Analysis
5. Discussion and Policy Implications
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Shi, Q.; Shen, L.; Huang, Y.; Wu, Y. What makes the difference in construction carbon emissions between China and USA? Sustain. Cities Soc. 2019, 44, 604–613. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, L.; Shuai, C.; Bian, J.; Zhu, M.; Tan, Y.; Ye, G. How is the environmental efficiency in the process of dramatic economic development in the Chinese cities? Ecol. Indic. 2019, 98, 349–362. [Google Scholar] [CrossRef]
- The World Bank. 2020. Available online: https://data.worldbank.org/indicator?tab=all (accessed on 20 March 2022).
- Zhang, Y.; Shuai, C.; Bian, J.; Chen, X.; Wu, Y.; Shen, L. Socioeconomic factors of PM2.5 concentrations in 152 Chinese cities: Decomposition analysis using LMDI. J. Clean. Prod. 2019, 218, 96–107. [Google Scholar] [CrossRef]
- World Commission on Environment and Development. Our Common Future; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Camarero, M.; Castillo, J.; Picazotadeo, A.J.; Tamarit, C. Eco-efficiency and convergence in OECD countries. Environ. Resour. Econ. 2013, 55, 87–106. [Google Scholar] [CrossRef] [Green Version]
- Coluccia, B.; Valente, D.; Fusco, G.; De Leo, F.; Porrini, D. Assessing agricultural eco-efficiency in Italian regions. Ecol. Indic. 2020, 116, 106483. [Google Scholar] [CrossRef]
- Vasquez-Ibarra, L.; Rebolledo-Leiva, R.; Angulo-Meza, L.; Gonzalez-Araya, M.C.; Iriarte, A. The joint use of life cycle assessment and data envelopment analysis methodologies for eco-efficiency assessment: A critical review, taxonomy and future research. Sci. Total Environ. 2020, 738, 139538. [Google Scholar] [CrossRef]
- Gossling, S.; Peeters, P.; Ceron, J.P.; Dubois, G.; Patterson, T.; Richardson, R.B. The eco-efficiency of tourism. Ecol. Econ. 2005, 54, 417–434. [Google Scholar] [CrossRef]
- Hadjikakou, M.; Miller, G.; Chenoweth, J.; Druckman, A.; Zoumides, C. A comprehensive framework for comparing water use intensity across different tourist types. J. Sustain. Tour. 2015, 23, 1445–1467. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Yang, X.; Cheng, G.; Wang, S. A comprehensive eco-efficiency model and dynamics of regional eco-efficiency in China. J. Clean. Prod. 2014, 67, 228–238. [Google Scholar] [CrossRef]
- Chang, T.-P.; Hu, J.-L. Total-factor energy productivity growth, technical progress, and efficiency change: An empirical study of China. Appl. Energy 2010, 87, 3262–3270. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Chang, Y.; Zhang, L. Industrial eco-efficiency in China: A provincial quantification using three-stage data envelopment analysis. J. Clean. Prod. 2017, 143, 238–249. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, X. Assessing regional eco-efficiency from the perspective of resource, environmental and economic performance in China: A bootstrapping approach in global data envelopment analysis. J. Clean. Prod. 2018, 173, 100–111. [Google Scholar] [CrossRef]
- Hu, J.-L.; Wang, S.-C. Total-factor energy efficiency of regions in China. Energy Policy 2006, 34, 3206–3217. [Google Scholar] [CrossRef]
- Banker, R.D. Maximum likelihood, consistency and data envelopment analysis: A statistical foundation. Manag. Sci. 1993, 39, 1265–1273. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P.W. Non-parametric tests of returns to scale. Eur. J. Oper. Res. 2002, 139, 115–132. [Google Scholar] [CrossRef]
- Zhang, B.; Bi, J.; Fan, Z.; Yuan, Z.; Ge, J. Eco-efficiency analysis of industrial system in China: A data envelopment analysis approach. Ecol. Econ. 2008, 68, 306–316. [Google Scholar] [CrossRef]
- Kuosmanen, T.; Kortelainen, M. Measuring eco-efficiency of production with data envelopment analysis. J. Ind. Ecol. 2005, 9, 59–72. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision-making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnres, A.; Cooper, W.W. Some models for estimation of technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Woo, C.; Chung, Y.; Chun, D.; Seo, H.; Hong, S. The static and dynamic environmental efficiency of renewable energy: A Malmquist index analysis of OECD countries. Renew. Sustain. Energy Rev. 2015, 47, 367–376. [Google Scholar] [CrossRef]
- Yu, Y.; Huang, J.; Zhang, N. Industrial eco-efficiency, regional disparity, and spatial convergence of China’s regions. J. Clean. Prod. 2018, 204, 872–887. [Google Scholar] [CrossRef]
- Cooper, W.W.; Seiford, L.M.; Zhu, J. Data envelopment analysis: History, models, and interpretations. In Handbook on Data Envelopment Analysis, 2nd ed.; Cooper, W.W., Seiford, L.M., Zhu, J., Eds.; Springer: New York, NY, USA, 2011; pp. 1–39. [Google Scholar]
- Ali, A.I.; Seiford, L.M. The mathematical programming approach to efficiency analysis. In The Measurement of Productive Efficiency: Techniques and Applications; Fried, H.O., Lovell, C.A.K., Schmidt, S.S., Eds.; Oxford University Press: New York, NY, USA, 1993; pp. 120–159. [Google Scholar]
- Honma, S.; Hu, J.-L. Total-factor energy productivity growth of regions in Japan. Energy Policy 2009, 37, 3941–3950. [Google Scholar] [CrossRef]
- Zhang, X.P.; Cheng, X.M.; Yuan, J.H.; Gao, X.J. Total-factor energy efficiency in developing countries. Energy Policy 2011, 39, 644–650. [Google Scholar] [CrossRef]
- Chang, M.C. A Comment on the calculation of the total-factor energy efficiency (TFEE) index. Energy Policy 2013, 53, 500–504. [Google Scholar] [CrossRef]
- Ouellette, P.; Vierstraete, V. Technological change and efficiency in the presence of quasi-fixed inputs: A DEA application to the hospital sector. Eur. J. Oper. Res. 2004, 154, 755–763. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W. Linear programming models for measuring economy-wide energy efficiency performance. Energy Policy 2008, 36, 2911–2916. [Google Scholar] [CrossRef]
- Shi, G.-M.; Bi, J.; Wang, J.-N. Chinese regional industrial energy efficiency evaluation based on a DEA model of fixing non-energy inputs. Energy Policy 2010, 38, 6172–6179. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Poh, K.L. A survey of data envelopment analysis in energy and environmental studies. Eur. J. Oper. Res. 2008, 189, 1–18. [Google Scholar] [CrossRef]
- Scheel, H. Undesirable outputs in efficiency valuations. Eur. J. Oper. Res. 2001, 132, 400–410. [Google Scholar] [CrossRef]
- Ali, A.; Seiford, L.M. Translation invariance in data envelopment analysis. Oper. Res. Lett. 1990, 10, 403–405. [Google Scholar]
- Chen, Y.-K.; Chien, F.S.; Li, Y. The impact of capital requirement on bank operating efficiency: An application of the bootstrapped truncated regression model. J. Financ. Stud. 2016, 24, 19–46. [Google Scholar]
- Färe, R.; Grosskopf, S.; Lovell, C.A.K.; Pasurka, C. Multilateral productivity comparisons when some outputs are undesirable: A nonparametric approach. Rev. Econ. Stat. 1989, 71, 90–98. [Google Scholar] [CrossRef]
- Li, Y. Analyzing efficiencies of city commercial banks in China: An application of the bootstrapped DEA approach. Pac.-Basin Financ. J. 2020, 62, 101372. [Google Scholar] [CrossRef]
- Li, Y.; Liu, A.-C.; Yu, Y.-Y.; Zhang, Y.; Zhan, Y.; Lin, W.-C. Bootstrapped DEA and clustering analysis of eco-Efficiency in China’s hotel industry. Sustainability 2022, 14, 2925. [Google Scholar] [CrossRef]
- Hu, J.-L.; Chang, T.-P. Total-factor energy efficiency and its extensions: Introduction, computation and application. In Data Envelopment Analysis: A Handbook of Empirical Studies and Applications; Zhu, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 45–69. [Google Scholar]
- Simar, L.; Wilson, P.W. Sensitivity analysis of efficiency scores: How to bootstrap in nonparametric frontier models. Manag. Sci. 1998, 44, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Frisch, R. Theory of Production; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1964. [Google Scholar]
- Bertani, F.; Ponta, L.; Raberto, M.; Teglio, A.; Cincotti, S. The complexity of the intangible digital economy: An agent-based model. J. Bus. Res. 2021, 129, 527–540. [Google Scholar] [CrossRef]
- Cheremukhin, A.; Golosov, M.; Guriev, S.; Tsyvinski, A. The Economy of People’s Republic of China from 1953; NBER Working Paper No. 21397; NBER: Cambridge, MA, USA, 2015. [Google Scholar]
- Romer, P.M. Increasing returns and long-run growth. J. Polit. Econ. 1986, 94, 1002–1037. [Google Scholar] [CrossRef] [Green Version]
- Lucas, R.E. On the mechanics of economic development. J. Monet. Econ. 1988, 22, 3–42. [Google Scholar] [CrossRef]
- Hall, B.H.; Mairesse, J. Exploring the relationship between R&D and productivity in French manufacturing firms. J. Econom. 1995, 65, 263–293. [Google Scholar]
- Mairesse, J.; Hall, B.H. Estimating the productivity of research and development in French and US manufacturing firms: An exploration of simultaneity issues with GMM methods. In International Productivity Differences, Measurement and Explanations; Wagner, K., Van Ark, B., Eds.; Elsevier Science: Amsterdam, The Netherlands, 1996; pp. 285–315. [Google Scholar]
- Hu, J.-L.; Yang, C.-H.; Chen, C.-P. R&D efficiency and the national innovation system: An international comparison using the distance function approach. Bull. Econ. Res. 2014, 66, 55–71. [Google Scholar]
- Myllyvirta, L. New Trends in China Energy Consumption. Greenpeace 2016. Available online: https://www.brookings.edu/wp-content/uploads/2016/07/PPT_Lauri-Myllyvirta.pdf (accessed on 15 March 2022).
- Yang, J.; Cheng, J.; Zou, R.; Geng, Z. Industrial SO2 technical efficiency, reduction potential and technology heterogeneities of China’s prefecture-level cities: A multi-hierarchy meta-frontier parametric approach. Energy Econ 2021, 104, 105626. [Google Scholar] [CrossRef]
- Hu, J.-L.; Chang, T.-P. The context-dependent total-factor energy efficiency of China’s regions. In Energy, Environment and Transitional Green Growth in China; Pang, R., Bai, X., Lovell, C.A.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 177–187. [Google Scholar]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; Chapman and Hall: New York, NY, USA, 1993. [Google Scholar]
- Amin, G.R.; Emrouznejad, A.; Rezaei, S. Some clarifications on the DEA clustering approach. Eur. J. Oper. Res. 2011, 215, 498–501. [Google Scholar] [CrossRef]
- Dai, X.; Kuosmanen, T. Best-practice benchmarking using clustering methods: Application to energy regulation. Omega 2014, 42, 179–188. [Google Scholar] [CrossRef]
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; Wiley: New York, NY, USA, 1990. [Google Scholar]
- Hirschberg, J.G.; Lye, J.N. Clustering in a Data Envelopment Analysis Using Bootstrapped Efficiency Scores; Department of Economics—Working Papers Series 800; The University of Melbourne: Parkville, Australia, 2001. [Google Scholar]
Variables | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|
Variable input | ||||
Energy (10 million tons) | 7.867 | 4.482 | 0.703 | 20.331 |
Quasi-fixed inputs | ||||
Labor (million) | 27.731 | 18.091 | 3.243 | 71.503 |
Capital (RMB trillion) | 19.552 | 13.533 | 2.636 | 60.053 |
RD (RMB trillion) | 0.203 | 0.258 | 0.003 | 1.210 |
Undesirable output | ||||
SO2 (10,000 tons) | 20.315 | 14.316 | 0.192 | 72.976 |
Desirable outputs | ||||
GDP (RMB trillion) | 3.144 | 2.468 | 0.261 | 11.931 |
Patent (1000) | 125.691 | 160.752 | 3.181 | 807.700 |
Energy | Capital | Labor | RD | |
---|---|---|---|---|
GDP | 0.6813 (<0.001) | 0.8362 (<0.001) | 0.8208 (<0.001) | 0.9648 (<0.001) |
Patent | 0.4578 (<0.001) | 0.6087 (<0.001) | 0.6444 (<0.001) | 0.9359 (<0.001) |
SO2 | 0.6224 (<0.001) | 0.2857 (0.002) | 0.3608 (<0.001) | 0.1563 (0.088) |
H0: CRS. Ha: VRS | Critical Values | p-Value | ||
α = 0.01 | α = 0.05 | |||
0.8701 | 0.8854 | 0.8947 | 0.0005 |
Mean | Median | Std. Dev. | Min | Max | |
---|---|---|---|---|---|
0.8060 | 0.8648 | 0.2073 | 0.3339 | 1 | |
0.5764 | 0.5812 | 0.1031 | 0.2998 | 0.8299 |
k = 2 | k = 3 | k = 4 | |||||||
---|---|---|---|---|---|---|---|---|---|
Cluster | 1 | 2 | 1 | 2 | 3 | 1 | 2 | 3 | 4 |
0.927 | 0.625 | 0.977 | 0.618 | 0.830 | 0.977 | 0.585 | 0.862 | 0.750 | |
0.614 | 0.520 | 0.607 | 0.521 | 0.611 | 0.607 | 0.489 | 0.637 | 0.599 | |
Energy | 7.932 | 7.738 | 6.550 | 7.409 | 10.261 | 6.550 | 7.611 | 9.501 | 9.517 |
Cluster 1 | Cluster 2 | Cluster 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
Energy | Energy | Energy | |||||||
Mean | 0.977 | 0.607 | 6.550 | 0.618 | 0.521 | 7.409 | 0.830 | 0.611 | 10.261 |
Min | 0.920 | 0.582 | 0.770 | 0.452 | 0.390 | 3.429 | 0.707 | 0.515 | 5.067 |
Max | 1.000 | 0.631 | 15.046 | 0.767 | 0.672 | 18.958 | 0.943 | 0.731 | 17.843 |
Representative province | Guizhou | Hebei | Shandong | ||||||
0.983 | 0.625 | 5.475 | 0.560 | 0.401 | 18.958 | 0.821 | 0.565 | 17.843 | |
Number of provinces Coast (inland) | 11 6 (5) | 11 3 (8) | 8 3 (5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Liu, A.-C.; Wang, S.-M.; Zhan, Y.; Chen, J.; Hsiao, H.-F. A Study of Total-Factor Energy Efficiency for Regional Sustainable Development in China: An Application of Bootstrapped DEA and Clustering Approach. Energies 2022, 15, 3093. https://doi.org/10.3390/en15093093
Li Y, Liu A-C, Wang S-M, Zhan Y, Chen J, Hsiao H-F. A Study of Total-Factor Energy Efficiency for Regional Sustainable Development in China: An Application of Bootstrapped DEA and Clustering Approach. Energies. 2022; 15(9):3093. https://doi.org/10.3390/en15093093
Chicago/Turabian StyleLi, Yang, An-Chi Liu, Shu-Mei Wang, Yiting Zhan, Jingran Chen, and Hsiao-Fen Hsiao. 2022. "A Study of Total-Factor Energy Efficiency for Regional Sustainable Development in China: An Application of Bootstrapped DEA and Clustering Approach" Energies 15, no. 9: 3093. https://doi.org/10.3390/en15093093
APA StyleLi, Y., Liu, A. -C., Wang, S. -M., Zhan, Y., Chen, J., & Hsiao, H. -F. (2022). A Study of Total-Factor Energy Efficiency for Regional Sustainable Development in China: An Application of Bootstrapped DEA and Clustering Approach. Energies, 15(9), 3093. https://doi.org/10.3390/en15093093