Additive Manufacturing of Bulk Thermoelectric Architectures: A Review
Abstract
:1. Introduction
2. Additively Manufactured Bulk TE Structures
2.1. Material Extrusion
2.2. Vat Photopolymerization
2.3. Powder Bed Fusion
3. Outlook and Future Directions
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Hochbaum, A.I.; Chen, R.; Diaz Delgado, R.; Liang, W.; Garnett, E.C.; Najarian, M.; Majumdar, A.; Yang, P. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Rogl, G.; Rogl, P. Skutterudites, a most promising group of thermoelectric materials. Curr. Opin. Green Sustain. Chem. 2017, 4, 50–57. [Google Scholar] [CrossRef]
- Shi, Y.; Sturm, C.; Kleinke, H. Chalcogenides as thermoelectric materials. J. Solid State Chem. 2019, 270, 273–279. [Google Scholar] [CrossRef]
- Bin Masood, K.; Kumar, P.; Singh, R.A.; Singh, J. Odyssey of thermoelectric materials: Foundation of the complex structure. J. Phys. Commun. 2018, 2, 062001. [Google Scholar] [CrossRef]
- Ren, G.-K.; Wang, S.-Y.; Zhu, Y.-C. Enhancing thermoelectric performance in hierarchically structured BiCuSeO by increasing bond covalency and weakening carrier–phonon coupling. Energy Environ. Sci. 2017, 10, 1590–1599. [Google Scholar] [CrossRef]
- Ohtaki, M.; Tsubota, T.; Eguchi, K. High-temperature thermoelectric properties of (Zn1−xAlx)O. J. Appl. Phys. 1996, 79, 1816–1818. [Google Scholar] [CrossRef]
- Tan, X.; Liu, Y.C.; Liu, R. Synergistical Enhancement of Thermoelectric Properties in n-Type Bi2O2 Se by Carrier Engineering and Hierarchical Microstructure. Adv. Energy Mater. 2019, 9, 1900354. [Google Scholar] [CrossRef]
- Kemp, N.T.; Kaiser, A.B.; Liu, C.-J. Thermoelectric power and conductivity of different types of polypyrrole. J. Polym. Sci. Part B Polym. Phys. 1999, 37, 953–960. [Google Scholar] [CrossRef]
- Liu, S.; Li, H.; Li, P.; Liu, Y.; He, C. Recent Advances in Polyaniline-Based Thermoelectric Composites. CCS Chem. 2021, 3, 2547–2560. [Google Scholar] [CrossRef]
- Liang, L.; Fan, J.; Wang, M.; Chen, G.; Sun, G. Ternary thermoelectric composites of polypyrrole/PEDOT:PSS/carbon nanotube with unique layered structure prepared by one-dimensional polymer nanostructure as template. Compos. Sci. Technol. 2020, 187, 107948. [Google Scholar] [CrossRef]
- Nolas, G.S.; Sharp, J.; Goldsmid, J. Thermoelectrics: Basic Principles and New Materials Developments; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 45. [Google Scholar]
- Tkatch, V.I.; Limanovskii, A.I.; Denisenko, S.N.; Rassolov, S.G. The effect of the melt-spinning processing parameters on the rate of cooling. Mater. Sci. Eng. A 2002, 323, 91–96. [Google Scholar] [CrossRef]
- Kim, J.; Duy, L.T.; Ahn, B.; Seo, H. Pre-oxidation effects on properties of bismuth telluride thermoelectric composites compacted by spark plasma sintering. J. Asian Ceram. Soc. 2020, 8, 211–221. [Google Scholar] [CrossRef]
- Nataraj, D.; Nagao, J.; Ferhat, M. High temperature thermoelectric properties of arc-melted Ba/sub 8/M/sub 16/Si/sub 30/(M = Al, Ga) clathrates. In Proceedings of the Twenty-First International Conference on Thermoelectrics, 2002, Proceedings ICT’02, Long Beach, CA, USA, 29 August 2002; IEEE: Piscataway, NJ, USA, 2002; pp. 72–75. [Google Scholar]
- Im, H.J.; Koo, B.; Kim, M.-S.; Lee, J.E. Optimization of high-energy ball milling process for uniform p-type Bi-Sb-Te thermoelectric material powder. Korean J. Chem. Eng. 2022, 1–5. [Google Scholar] [CrossRef]
- Jaziri, N.; Boughamoura, A.; Müller, J.; Mezghani, B.; Tounsi, F.; Ismail, M. A comprehensive review of Thermoelectric Generators: Technologies and common applications. Energy Rep. 2019, 6, 264–287. [Google Scholar] [CrossRef]
- Cleary, M. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery. In Proceedings of the Annual Merit Review and Peer Evaluation Meeting, Arlington, Virginia, 8–12 June 2014. [Google Scholar]
- Du, Y.; Chen, J.; Meng, Q.; Dou, Y.; Xu, J.; Shen, S.Z. Thermoelectric materials and devices fabricated by additive manufacturing. Vacuum 2020, 178, 109384. [Google Scholar] [CrossRef]
- Şişik, B.; Leblanc, S. The Influence of Leg Shape on Thermoelectric Performance Under Constant Temperature and Heat Flux Boundary Conditions. Front. Mater. 2020, 7, 595955. [Google Scholar] [CrossRef]
- Yang, S.; Gao, Z.; Qiu, P. Ductile Ag20S7Te3 with Excellent Shape-Conformability and High Thermoelectric Performance. Adv. Mater. 2021, 33, 2007681. [Google Scholar] [CrossRef]
- Gibson, I.; Rosen, D.; Stucker, B. Additive Manufacturing Technologies; Springer: Berlin/Heidelberg, Germany, 2021; Volume 17. [Google Scholar]
- Sun, C.; Wang, Y.; McMurtrey, M.D. Additive manufacturing for energy: A review. Appl. Energy 2020, 282, 116041. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- F2792-12a; Standard Terminology for Additive Manufacturing Technologies. ASTM International: West Conshohocken, PA, USA, 2012.
- Kulkarni, A.; Sorarù, G.D.; Pearce, J.M. Polymer-derived SiOC replica of material extrusion-based 3-D printed plastics. Addit. Manuf. 2019, 32, 100988. [Google Scholar] [CrossRef] [Green Version]
- Burton, M.R.; Mehraban, S.; Beynon, D.; McGettrick, J.; Watson, T.; Lavery, N.P.; Carnie, M.J. 3D Printed SnSe Thermoelectric Generators with High Figure of Merit. Adv. Energy Mater. 2019, 9, 1900201. [Google Scholar] [CrossRef] [Green Version]
- Kumaresan, R.; Samykano, M.; Kadirgama, K. 3D Printing Technology for Thermal Application: A Brief Review. J. Adv. Res. Fluid Mech. Therm. Sci. 2021, 83, 84–97. [Google Scholar] [CrossRef]
- Mallick, M.; Franke, L.; Rösch, A.G.; Lemmer, U. Shape-Versatile 3D Thermoelectric Generators by Additive Manufacturing. ACS Energy Lett. 2020, 6, 85–91. [Google Scholar] [CrossRef]
- Riabov, D. The Effects of Morphology and Surface Oxidation of Stainless Steel Powder in Laser Based-Powder Bed Fusion; Chalmers University of Technology: Göteborg, Sweden, 2020. [Google Scholar]
- Shi, J.; Chen, H.; Jia, S.; Wang, W. 3D printing fabrication of porous bismuth antimony telluride and study of the thermoelectric properties. J. Manuf. Process. 2018, 37, 370–375. [Google Scholar] [CrossRef]
- Salmi, M. Additive Manufacturing Processes in Medical Applications. Materials 2021, 14, 191. [Google Scholar] [CrossRef] [PubMed]
- Tofail, S.A.; Koumoulos, E.P.; Bandyopadhyay, A. Additive manufacturing: Scientific and technological challenges, market uptake and opportunities. Mater. Today 2018, 21, 22–37. [Google Scholar] [CrossRef]
- Froes, F.; Dutta, B. The Additive Manufacturing (AM) of Titanium Alloys. Adv. Mater. Res. 2014, 1019, 19–25. [Google Scholar] [CrossRef]
- Zeng, M.; Zavanelli, D.; Chen, J.; Saeidi-Javash, M.; Du, Y.; LeBlanc, S.; Snyder, G.J.; Zhang, Y. Printing thermoelectric inks toward next-generation energy and thermal devices. Chem. Soc. Rev. 2021, 51, 485–512. [Google Scholar] [CrossRef]
- Orrill, M.; LeBlanc, S. Printed thermoelectric materials and devices: Fabrication techniques, advantages, and challenges. J. Appl. Polym. Sci. 2017, 134. [Google Scholar] [CrossRef]
- Masoumi, S.; O’Shaughnessy, S.; Pakdel, A. Organic-based flexible thermoelectric generators: From materials to devices. Nano Energy 2021, 92, 106774. [Google Scholar] [CrossRef]
- Tian, Y.; Molina-Lopez, F. Boosting the performance of printed thermoelectric materials by inducing morphological anisotropy. Nanoscale 2021, 13, 5202–5215. [Google Scholar] [CrossRef] [PubMed]
- Daminabo, S.C.; Goel, S.; Grammatikos, S.A.; Nezhad, H.Y.; Thakur, V.K. Fused deposition modeling-based additive manufacturing (3D printing): Techniques for polymer material systems. Mater. Today Chem. 2020, 16, 100248. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Liu, R. Thermoelectric and mechanical properties of PLA/Bi0·5Sb1 5Te3 composite wires used for 3D printing. Compos. Sci. Technol. 2018, 157, 1–9. [Google Scholar] [CrossRef]
- Oztan, C.; Ballikaya, S.; Ozgun, U.; Karkkainen, R.; Celik, E. Additive manufacturing of thermoelectric materials via fused filament fabrication. Appl. Mater. Today 2019, 15, 77–82. [Google Scholar] [CrossRef]
- Aw, Y.Y.; Yeoh, C.K.; Idris, M.A.; Teh, P.L.; Hamzah, K.A.; Sazali, S.A. Effect of Printing Parameters on Tensile, Dynamic Mechanical, and Thermoelectric Properties of FDM 3D Printed CABS/ZnO Composites. Materials 2018, 11, 466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, C.; Stevens, B.; Hsu, J.-H.; Bureau, R.; Hagen, D.A.; Regev, O.; Yu, C.; Grunlan, J.C. Completely Organic Multilayer Thin Film with Thermoelectric Power Factor Rivaling Inorganic Tellurides. Adv. Mater. 2015, 27, 2996–3001. [Google Scholar] [CrossRef] [PubMed]
- Kim, F.; Kwon, B.; Eom, Y.; Lee, J.E.; Park, S.; Jo, S.; Park, S.H.; Kim, B.-S.; Im, H.J.; Lee, M.H.; et al. 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks. Nat. Energy 2018, 3, 301–309. [Google Scholar] [CrossRef]
- Lee, J.; Choo, S.; Ju, H.; Hong, J.; Yang, S.E.; Kim, F.; Gu, D.H.; Jang, J.; Kim, G.; Ahn, S.; et al. Doping-Induced Viscoelasticity in PbTe Thermoelectric Inks for 3D Printing of Power-Generating Tubes. Adv. Energy Mater. 2021, 11, 2100190. [Google Scholar] [CrossRef]
- Rocha, V.G.; Saiz, E.; Tirichenko, I.S.; García-Tuñón, E. Direct ink writing advances in multi-material structures for a sustainable future. J. Mater. Chem. A 2020, 8, 15646–15657. [Google Scholar] [CrossRef]
- Yang, S.E.; Kim, F.; Ejaz, F.; Lee, G.S.; Ju, H.; Choo, S.; Lee, J.; Kim, G.; Jung, S.-H.; Ahn, S.; et al. Composition-segmented BiSbTe thermoelectric generator fabricated by multimaterial 3D printing. Nano Energy 2020, 81, 105638. [Google Scholar] [CrossRef]
- Choo, S.; Ejaz, F.; Ju, H.; Kim, F.; Lee, J.; Yang, S.E.; Kim, G.; Kim, H.; Jo, S.; Baek, S.; et al. Cu2Se-based thermoelectric cellular architectures for efficient and durable power generation. Nat. Commun. 2021, 12, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.S.; Dutta, N.K.; Choudhury, N.R. Graphene inks for printed flexible electronics: Graphene dispersions, ink formulations, printing techniques and applications. Adv. Colloid Interface Sci. 2018, 261, 41–61. [Google Scholar] [CrossRef] [PubMed]
- Michael, G.B.; MarkáRodger, P. Inhibition of crystal growth in methane hydrate. J. Chem. Soc. Faraday Trans. 1995, 91, 3449–3460. [Google Scholar]
- Wang, M.; Bai, J.; Shao, K.; Tang, W.; Zhao, X.; Lin, D.; Huang, S.; Chen, C.; Ding, Z.; Ye, J. Poly(vinyl alcohol) Hydrogels: The Old and New Functional Materials. Int. J. Polym. Sci. 2021, 2021, 1–16. [Google Scholar] [CrossRef]
- Su, N.; Zhu, P.; Pan, Y.; Li, F.; Li, B. 3D-printing of shape-controllable thermoelectric devices with enhanced output performance. Energy 2020, 195, 116892. [Google Scholar] [CrossRef]
- Kenel, C.; Al Malki, M.; Dunand, D. Microstructure evolution during reduction and sintering of 3D-extrusion-printed Bi2O3+TeO2 inks to form Bi2Te3. Acta Mater. 2021, 221, 117422. [Google Scholar] [CrossRef]
- Horst, T.A.; Rottengruber, H.; Seifert, M.; Ringler, J. Dynamic heat exchanger model for performance prediction and control system design of automotive waste heat recovery systems. Appl. Energy 2013, 105, 293–303. [Google Scholar] [CrossRef]
- Dai, D.; Zhou, Y.; Liu, J. Liquid metal based thermoelectric generation system for waste heat recovery. Renew. Energy 2011, 36, 3530–3536. [Google Scholar] [CrossRef]
- Su, Q.; Chang, S.; Zhao, Y.; Zheng, H.; Dang, C. A review of loop heat pipes for aircraft anti-icing applications. Appl. Therm. Eng. 2018, 130, 528–540. [Google Scholar] [CrossRef]
- Garofalo, E.; Bevione, M.; Cecchini, L. Waste heat to power: Technologies, current applications, and future potential. Energy Technol. 2020, 8, 2000413. [Google Scholar] [CrossRef]
- Asif, S.; Chansoria, P.; Shirwaiker, R. Ultrasound-assisted vat photopolymerization 3D printing of preferentially organized carbon fiber reinforced polymer composites. J. Manuf. Process. 2020, 56, 1340–1343. [Google Scholar] [CrossRef]
- Davoudinejad, A. Vat photopolymerization methods in additive manufacturing. In Additive Manufacturing; Elsevier: Amsterdam, The Netherlands, 2021; pp. 159–181. [Google Scholar]
- He, M.; Zhao, Y.; Wang, B.; Xi, Q.; Zhou, J.; Liang, Z. 3D printing fabrication of amorphous thermoelectric materials with ultralow thermal conductivity. Small 2015, 11, 5889–5894. [Google Scholar] [CrossRef] [PubMed]
- Park, D.; Lee, S.; Kim, J. Thermoelectric and mechanical properties of PEDOT: PSS-coated Ag2Se nanowire composite fabricated via digital light processing based 3D printing. Compos. Commun. 2022, 30, 101084. [Google Scholar] [CrossRef]
- Ferhat, M.; Nagao, J. Thermoelectric and transport properties of β-Ag2Se compounds. J. Appl. Phys. 2000, 88, 813–816. [Google Scholar] [CrossRef]
- Park, D.; Lee, S.; Kim, J. Enhanced thermoelectric performance of UV-curable silver (I) selenide-based composite for energy harvesting. Sci. Rep. 2021, 11, 16683. [Google Scholar] [CrossRef] [PubMed]
- Medellin, A.; Du, W.; Miao, G.; Zou, J.; Pei, Z.; Ma, C. Vat Photopolymerization 3D Printing of Nanocomposites: A Literature Review. J. Micro Nano-Manuf. 2019, 7, 031006. [Google Scholar] [CrossRef]
- Lou, S.; Jiang, X.; Sun, W.; Zeng, W.; Pagani, L.; Scott, P. Characterisation methods for powder bed fusion processed surface topography. Precis. Eng. 2018, 57, 1–15. [Google Scholar] [CrossRef]
- Mueller, B. Additive manufacturing technologies–rapid prototyping to direct digital manufacturing. Assem. Autom. 2012, 32. [Google Scholar] [CrossRef]
- Chueh, Y.-H.; Zhang, X.; Ke, J.C.-R.; Li, Q.; Wei, C.; Li, L. Additive manufacturing of hybrid metal/polymer objects via multiple-material laser powder bed fusion. Addit. Manuf. 2020, 36, 101465. [Google Scholar] [CrossRef]
- Sorrentino, R.; Peverini, O.A. Additive manufacturing: A key enabling technology for next-generation microwave and millimeter-wave systems [point of view]. Proc. IEEE 2016, 104, 1362–1366. [Google Scholar] [CrossRef]
- Takaichi, A.; Suyalatu; Nakamoto, T.; Joko, N. Microstructures and mechanical properties of Co–29Cr–6Mo alloy fabricated by selective laser melting process for dental applications. J. Mech. Behav. Biomed. Mater. 2013, 21, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Bertoli, U.S. Process-Structure-Properties Relationships in Laser Powder Bed Fusion Additive Manufacturing; University of California: Irvine, CA, USA, 2018. [Google Scholar]
- Van Elsen, M.; Al-Bender, F.; Kruth, J. Application of dimensional analysis to selective laser melting. Rapid Prototyp. J. 2008, 14, 15–22. [Google Scholar] [CrossRef]
- Mukherjee, T.; Manvatkar, V.; De, A.; Debroy, T. Dimensionless numbers in additive manufacturing. J. Appl. Phys. 2017, 121, 064904. [Google Scholar] [CrossRef] [Green Version]
- Gomell, L.; Roscher, M.; Bishara, H.; Jägle, E.A.; Scheu, C.; Gault, B. Properties and influence of microstructure and crystal defects in Fe2VAl modified by laser surface remelting. Scr. Mater. 2020, 193, 153–157. [Google Scholar] [CrossRef]
- Feng, B.; Li, G.; Hu, X. Improvement of thermoelectric and mechanical properties of BiCuSeO-based materials by SiC nanodispersion. J. Alloy. Compd. 2020, 818, 152899. [Google Scholar] [CrossRef]
- Read, A.L. Selective Laser Melting Parameters for Use in the Manufacture of Thermoelectric Materials; The George Washington University: Washington, DC, USA, 2015. [Google Scholar]
- El-Desouky, A.; Read, A.L.; Bardet, P.M. Selective laser melting of a bismuth telluride thermoelectric materials. In Proceedings of the Solid Free Symp, Solid Freeform Fabrication Symposium, Austin, TX, USA, 10–12 August 2015; pp. 1043–1050. [Google Scholar]
- El-Desouky, A.; Carter, M.; Andre, M.A.; Bardet, P.M.; LeBlanc, S. Rapid processing and assembly of semiconductor thermoelectric materials for energy conversion devices. Mater. Lett. 2016, 185, 598–602. [Google Scholar] [CrossRef]
- El-Desouky, A.; Carter, M.; Mahmoudi, M.; Elwany, A.; LeBlanc, S. Influences of energy density on microstructure and consolidation of selective laser melted bismuth telluride thermoelectric powder. J. Manuf. Process. 2017, 25, 411–417. [Google Scholar] [CrossRef]
- Zhang, H.; Hobbis, D.; Nolas, G.S.; LeBlanc, S. Laser additive manufacturing of powdered bismuth telluride. J. Mater. Res. 2018, 33, 4031–4039. [Google Scholar] [CrossRef]
- Welch, R.; Hobbis, D.; Nolas, G.; Leblanc, S. Meso-, micro-, and nano-structures induced in bismuth telluride thermoelectric materials by laser additive manufacturing. In Energy Harvesting and Storage: Materials, Devices, and Applications X; International Society for Optics and Photonics: Washington, DC, USA, 2020; Volume 11387, p. 1138710. [Google Scholar] [CrossRef]
- Welch, R.; Hobbis, D.; Birnbaum, A.J. Nano-and Micro-Structures Formed during Laser Processing of Selenium Doped Bismuth Telluride. Adv. Mater. Interfaces 2021, 8, 2100185. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, S.; Taylor, P.J.; Yang, J.; LeBlanc, S. Selective laser melting of half-Heusler thermoelectric materials. In Energy Harvesting and Storage: Materials, Devices, and Applications VIII; International Society for Optics and Photonics: Bellingham, WA, USA, 2018; Volume 10663, p. 106630B. [Google Scholar]
- Thimont, Y.; Presmanes, L.; Baylac, V.; Tailhades, P.; Berthebaud, D.; Gascoin, F. Thermoelectric Higher Manganese Silicide: Synthetized, sintered and shaped simultaneously by selective laser sintering/Melting additive manufacturing technique. Mater. Lett. 2018, 214, 236–239. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Chen, X.; Wang, W.; Chen, H. A new rapid synthesis of thermoelectric Sb2Te3 ingots using selective laser melting 3D printing. Mater. Sci. Semicond. Process. 2020, 123, 105551. [Google Scholar] [CrossRef]
- Clare, A.T.; Chalker, P.R.; Davies, S.; Sutcliffe, C.J.; Tsopanos, S. Selective laser sintering of barium titanate–polymer composite films. J. Mater. Sci. 2008, 43, 3197–3202. [Google Scholar] [CrossRef]
- Dong, Y.; Jiang, H.; Chen, A.; Yang, T.; Zou, T.; Xu, D. Porous Al2O3 ceramics with spontaneously formed pores and enhanced strength prepared by indirect selective laser sintering combined with reaction bonding. Ceram. Int. 2020, 46, 15159–15166. [Google Scholar] [CrossRef]
- Xiong, X.; Zhu, L.; Wang, G.; Liu, D.; Zhang, Q.; Feng, W. Microstructure and properties of n-type Bi2Te3-based thermoelectric material fabricated by selective laser sintering. Mater. Res. Express 2020, 7, 066504. [Google Scholar] [CrossRef]
- Qiu, J.; Yan, Y.; Luo, T.; Tang, K.; Yao, L.; Zhang, J.; Zhang, M.; Su, X.; Tan, G.; Xie, H.; et al. 3D Printing of highly textured bulk thermoelectric materials: Mechanically robust BiSbTe alloys with superior performance. Energy Environ. Sci. 2019, 12, 3106–3117. [Google Scholar] [CrossRef]
- Wu, K.; Yan, Y.; Zhang, J.; Mao, Y.; Xie, H.; Yang, J.; Zhang, Q.; Uher, C.; Tang, X. Preparation of n-type Bi2Te3 thermoelectric materials by non-contact dispenser printing combined with selective laser melting. Phys. Status solidi (RRL)–Rapid Res. Lett. 2017, 11, 1700067. [Google Scholar] [CrossRef]
- Mao, Y.; Yan, Y.; Wu, K.; Xie, H.; Xiu, Z.; Yang, J.; Zhang, Q.; Uher, C.; Tang, X. Non-equilibrium synthesis and characterization of n-type Bi2Te2.7Se0.3 thermoelectric material prepared by rapid laser melting and solidification. RSC Adv. 2017, 7, 21439–21445. [Google Scholar] [CrossRef] [Green Version]
- Greifzu, M.; Tkachov, R.; Stepien, L.; López, E.; Brückner, F.; Leyens, C. Laser Treatment as Sintering Process for Dispenser Printed Bismuth Telluride Based Paste. Materials 2019, 12, 3453. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Ke, H.; Yang, J. Fabrication and thermoelectric properties of n-type CoSb2. 85Te0. 15 using selective laser melting. ACS Appl. Mater. Interfaces 2018, 10, 13669–13674. [Google Scholar] [CrossRef]
- Yan, Y.; Geng, W.; Qiu, J.; Ke, H.; Luo, C.; Yang, J.; Uher, C.; Tang, X. Thermoelectric properties of n-type ZrNiSn prepared by rapid non-equilibrium laser processing. RSC Adv. 2018, 8, 15796–15803. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.-L.; Luo, C.; Yan, Y.-G.; Yang, J.-H.; Zhang, Q.-J.; Uher, C.; Tang, X.-F. Rapid fabrication and thermoelectric performance of SnTe via non-equilibrium laser 3D printing. Rare Met. 2018, 37, 300–307. [Google Scholar] [CrossRef]
- Murr, L.E.; Martinez, E.; Gaytan, S.M.; Ramirez, D.A.; Machado, B.I.; Shindo, P.W.; Martinez, J.L.; Medina, F.; Wooten, J.; Ciscel, D.; et al. Microstructural Architecture, Microstructures, and Mechanical Properties for a Nickel-Base Superalloy Fabricated by Electron Beam Melting. Met. Mater. Trans. A 2011, 42, 3491–3508. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; An, Q.; Li, W.; Goddard, I.W.A.; Zhai, P.; Zhang, Q.; Snyder, G.J. Brittle Failure Mechanism in Thermoelectric Skutterudite CoSb3. Chem. Mater. 2015, 27, 6329–6336. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; An, Q.; Goddard, W.A., III. Atomistic explanation of brittle failure of thermoelectric skutterudite CoSb3. Acta Mater. 2016, 103, 775–780. [Google Scholar] [CrossRef] [Green Version]
- Pei, W.; Zhengying, W.; Zhen, C.; Junfeng, L.; Shuzhe, Z.; Jun, D. Numerical simulation and parametric analysis of selective laser melting process of AlSi10Mg powder. Appl. Phys. A 2017, 123, 540. [Google Scholar] [CrossRef]
- Li, Y.; Gu, D. Thermal behavior during selective laser melting of commercially pure titanium powder: Numerical simulation and experimental study. Addit. Manuf. 2014, 1, 99–109. [Google Scholar] [CrossRef]
- Khan, M.; Sheikh, N.A.; Jaffery, S. Numerical simulation of meltpool instability in the selective laser melting (slm) process. Lasers Eng. 2014, 28, 319–336. [Google Scholar]
- Ansari, P.; Salamci, M.U. On the selective laser melting based additive manufacturing of AlSi10Mg: The process parameter investigation through multiphysics simulation and experimental validation. J. Alloy. Compd. 2021, 890, 161873. [Google Scholar] [CrossRef]
- Leitz, K.-H.; Singer, P.; Plankensteiner, A.; Tabernig, B.; Kestler, H.; Sigl, L. Multi-physical simulation of selective laser melting. Met. Powder Rep. 2017, 72, 331–338. [Google Scholar] [CrossRef]
- Yuan, P.; Gu, D. Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: Simulation and experiments. J. Phys. D Appl. Phys. 2015, 48, 035303. [Google Scholar] [CrossRef]
- Tang, Q.; Chen, P.; Chen, J.; Chen, Y.; Chen, H. Numerical simulation of selective laser melting temperature conduction behavior of H13 steel in different models. Optik 2019, 201, 163336. [Google Scholar] [CrossRef]
- King, W.; Anderson, A.T.; Ferencz, R.M.; Hodge, N.E.; Kamath, C.; Khairallah, S.A. Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory. Mater. Sci. Technol. 2015, 31, 957–968. [Google Scholar] [CrossRef]
Method | Used for | Principle | Advantages | Disadvantages | Ref | Highest ZT Reported |
---|---|---|---|---|---|---|
Material Extrusion | Composites, Polymers, Ceramics | Deposition through a nozzle in filament/ink form | Widespread, inexpensive, adaptable | Anisotropy, High Surface Roughness, Low resolution | [25] | 1.7 at 485 °C [26] |
Vat Photopolymerization | Polymers, Ceramics | Photocuring of the resin material | High resolution, excellent surface finish | Support structure needed, post-processing required, poor strength. | [27] | 1.0 at 27 °C [28] |
Powder Bed Fusion | Metals, Polymers, Ceramics, Composites | Fusion of powders via a high energy beam | High resolution, wide range of printable materials | High investment cost, size limitations | [29] | 1.29 at 50 °C [30] |
Binder Jetting | Metals, Polymers, Ceramics, Composites | Selective deposition of a binding agent onto powder layers | Low cost, high speed | Poor strength, post-processing needed | [31] | N/A |
Material Jetting | Polymers, Ceramics, Composites | Layer-by-layer solidification of droplets deposited using a dispenser | High accuracy, low waste, multi-material | Support material needed | [32] | N/A |
Sheet Lamination | Polymers, Metals, Ceramics | Consolidation of sheet layers into bulk structures | High speed, low cost | Post-processing needed | [32] | N/A |
Direct Energy Deposition | Metals | Beam/Arc melting of a material deposited through a high degree of freedom nozzle in powder/wire form | High processing rate, large parts manufacturable | Coarse surface finish | [33] | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oztan, C.; Welch, R.; LeBlanc, S. Additive Manufacturing of Bulk Thermoelectric Architectures: A Review. Energies 2022, 15, 3121. https://doi.org/10.3390/en15093121
Oztan C, Welch R, LeBlanc S. Additive Manufacturing of Bulk Thermoelectric Architectures: A Review. Energies. 2022; 15(9):3121. https://doi.org/10.3390/en15093121
Chicago/Turabian StyleOztan, Cagri, Ryan Welch, and Saniya LeBlanc. 2022. "Additive Manufacturing of Bulk Thermoelectric Architectures: A Review" Energies 15, no. 9: 3121. https://doi.org/10.3390/en15093121
APA StyleOztan, C., Welch, R., & LeBlanc, S. (2022). Additive Manufacturing of Bulk Thermoelectric Architectures: A Review. Energies, 15(9), 3121. https://doi.org/10.3390/en15093121