High Efficiency Transformerless Photovoltaic DC/AC Converter with Common Mode Leakage Current Elimination: Analysis and Implementation
Abstract
:1. Introduction
2. Studied Inverter
2.1. Operating Principles and Topology Modeling
- At first S4 = 1;
- Then S1 = 0;
- To end S5 = 1.
- Initially S5 = 1;
- Then S3 = 0;
- To end S2 = S4 = 1.
3. Topology Design
3.1. Capacitor C
3.2. LCL Filter
3.3. Semiconductors and Sensors
4. Control Strategy
4.1. Combinational Logic Circuit
4.2. Controller Stage
5. Simulated and Experimental Results
6. Comparison with Other Schemes
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IEA. World Energy 2020, IEA, Paris. 2020. Available online: https://bit.ly/3cxpHnK (accessed on 1 April 2022).
- Renewable Energy Policy Network for the 21st Century, “Renewable 2020 Global Status Report”. Available online: http://t.ly/wR9R (accessed on 1 April 2022).
- Raju, M.D.; Sumanth, R.; Saikrishna, K.V.; Kumar, A.G.; Reddy, K.I.; Sudharshan, K. MCH-bridge multilevel PV inverter with distributed MPPT for grid-connected applications. J. Resour. Manag. Technol. 2021, 12, 148–161. [Google Scholar]
- Jones, E.S.; Gong, H.; Ionel, D.M. Optimal combinations of utility level renewable generators for a net zero energy microgrid considering different utility charge rates. In Proceedings of the 2019 8th International Conference on Renewable Energy Research and Applications (ICRERA), Brasov, Romania, 3–6 November 2019; pp. 1014–1017. [Google Scholar]
- Hasan, M.M.; Abu-Siada, A.; Islam, S.M.; Dahidah, M.S.A. A New Cascaded Multilevel Inverter Topology with Galvanic Isolation. IEEE Trans. Ind. Appl. 2018, 54, 3463–3472. [Google Scholar] [CrossRef]
- Khan, M.N.H.; Forouzesh, M.; Siwakoti, Y.P.; Li, L.; Kerekes, T.; Blaabjerg, F. Transformerless inverter topologies for single-phase photovoltaic systems: A comparative review. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 805–835. [Google Scholar] [CrossRef]
- Roy, J.; Xia, Y.; Ayyanar, R. Performance evaluation of single-phase transfomer-less PV inverter topologies. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018; pp. 3250–3255. [Google Scholar]
- Jin, X.; Bai, Q.; Yang, J.; Wang, Z.; Ouyang, L.; Ma, J.; Wang, H.; Yang, H. Theoretical insight into leakage current of solar module under high system voltage. In Proceedings of the 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), Calgary, AB, Canada, 15 June–21 August 2020; pp. 0109–0112. [Google Scholar]
- SMA Solar Technology AG. Leading Leakage Currents. Technical Information, Version 2.6; SMA Solar Technology AG: Northern Hesse, Germany, 2022. [Google Scholar]
- Yao, Z.; Zhang, Y.; Hu, X. Transformerless grid-connected pv inverter without common mode leakage current and shoot-through problems. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 3257–3261. [Google Scholar] [CrossRef]
- Vosoughi, N.; Hosseini, S.H.; Sabahi, M. Single-phase common-grounded transformerless grid-tied inverter for PV application. IET Power Electron. 2020, 13, 157–167. [Google Scholar] [CrossRef]
- Vázquez, J.; Vázquez, N.; Vaquero, J. Convertidor Integrado en Modo Común Para la Inyección de Energía a la Red Eléctrica. Master’s Thesis, Celaya, Gto., Tecnológico Nacional de México Instituto Tecnológico de Celaya, Celaya, Mexico, June 2016. [Google Scholar]
- Chen, K.; Huang, Z.; Hang, L.; Xie, X.; Han, Q.; Lu, Q.; Gan, Y.; Yang, G.; Shen, P. Cascaded iH6 multilevel inverter with leakage current reduction for transformerless grid-connected photovoltaic system. In Proceedings of the 2017 IEEE 12th International Conference on Power Electronics and Drive Systems (PEDS), Honolulu, HI, USA, 12–15 December 2017; pp. 613–617. [Google Scholar]
- Yang, B.; Li, W.; Gu, Y.; Cui, W.; He, X. Improved transformerless inverter with common-mode leakage current elimination for a photovoltaic grid-connected power system. IEEE Trans. Power Electron. 2012, 27, 752–762. [Google Scholar] [CrossRef]
- Guo, X.; Wang, N.; Zhang, J.; Wang, B.; Nguyen, M. A novel transformerless current source inverter for leakage current reduction. IEEE Access 2019, 7, 50681–50690. [Google Scholar] [CrossRef]
- Azary, M.T.; Sabahi, M.; Babaei, E.; Meinagh, F.A.A. Modified single-phase single-stage grid-tied flying inductor inverter with MPPT and suppressed leakage current. IEEE Trans. Ind. Electron. 2018, 65, 221–231. [Google Scholar] [CrossRef]
- Meraj, M.; Rahman, S.; Iqbal, A.; Ben-Brahim, L. Common mode voltage reduction in a single-phase quasi z-source inverter for transformerless grid-connected solar PV applications. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 7, 1352–1363. [Google Scholar] [CrossRef]
- Chen, B.; Lai, J.-S. A family of single-phase transformerless inverters with asymmetric phase-legs. In Proceedings of the 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA, 15–19 March 2015; pp. 2200–2205. [Google Scholar]
- Tey, K.S.; Mekhilef, S. A reduced leakage current transformerless photovoltaic inverter. Renew. Energy 2016, 86, 1103–1112. [Google Scholar] [CrossRef]
- Li, H.; Zeng, Y.; Zhang, B.; Zheng, T.Q.; Hao, R.; Yang, Z. An improved H5 topology with low common-mode current for transformerless PV grid-connected inverter. IEEE Trans. Power Electron. 2019, 34, 1254–1265. [Google Scholar] [CrossRef]
- Ardashir, J.F.; Sabahi, M.; Hosseini, S.H.; Blaabjerg, F.; Babaei, E.; Gharehpetian, G.B. A single-phase transformerless inverter with charge pump circuit concept for grid-tied PV applications. IEEE Trans. Ind. Electron. 2017, 64, 5403–5415. [Google Scholar] [CrossRef]
- Mostaan, A.; Alizadeh, E.; Qu, Y.; Soltani, M. A transformer-less single phase inverter for photovoltaic systems. In Proceedings of the 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe), Warsaw, Poland, 11–14 September 2017; pp. P.1–P.9. [Google Scholar]
- Algaddafi, A.; Elnaddab, K.; Al Ma’mari, A.; Esgiar, A.N. Comparing the performance of bipolar and unipolar switching frequency to drive DC-AC Inverter. In Proceedings of the 2016 International Renewable and Sustainable Energy Conference (IRSEC), Marrakech, Morocco, 14–17 November 2016; pp. 680–685. [Google Scholar]
- Sivachidambaranathan, V.; Geetha, V. Double frequency SPWM inverter topology for PV systems. In Proceedings of the 2017 International Conference on Computation of Power, Energy Information and Commuincation (ICCPEIC), Melmaruvathur, India, 22–23 March 2017; pp. 800–803. [Google Scholar]
- El-Zohri, E.H.; Mosbah, M.A. Comparison and performance analysis of unipolar and bipolar digitally-controlled single-phase inverters. In Proceedings of the 2017 Nineteenth International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 19–21 December 2017; pp. 1138–1144. [Google Scholar]
- Palanivel, P.; Dash, S.S. Multicarrier pulse width modulation methods based three phase cascaded multilevel inverter including over modulation and low modulation indices. In Proceedings of the TENCON 2009—2009 IEEE Region 10 Conference, Singapore, 23–26 January 2009; pp. 1–6. [Google Scholar]
- Bhaskar, M.S.; Padmanaban, S.; Fedák, V.; Blaabjerg, F.; Wheeler, P. Transistor clamped five-level inverter using non-inverting double reference single carrier PWM Technique for photovoltaic applications. In Proceedings of the 2017 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) & 2017 Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP), Brasov, Romania, 25–27 May 2017; pp. 777–782. [Google Scholar]
- Zhu, T.; Ji, Y.; Wang, J.; Liu, Y. A novel constant-frequency quasi-resonant converter. IEEE Access 2018, 6, 39635–39642. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, J.; Wang, G.; Wang, H.; See, K.Y. LCL filter design and analysis of grid-connected converter for power quality and EMI compliance. In Proceedings of the 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), Shenzhen, China, 17–21 May 2016; pp. 142–144. [Google Scholar]
- Villanueva, I.; Vázquez, N.; Vaquero, J.; Hernández, C.; López, H.; Osorio, R. L vs. LCL filter for photovoltaic grid-connected inverter: A reliability study. Int. J. Photoenergy 2020, 2020, 7872916. [Google Scholar] [CrossRef] [Green Version]
- Sule, P.; Batool, M.; Fan, Y. Modeling and Performance assessment of an efficient photovoltaic based grid-connected inverter system with integration of LCL filter. In Proceedings of the 2021 31st Australasian Universities Power Engineering Conference (AUPEC), Perth, Australia, 26–30 September 2021; pp. 1–6. [Google Scholar]
- Kabalci, E.; Boyar, A. Design and analysis of a single phase flyback micro inverter. In Proceedings of the 2018 6th International Conference on Control Engineering & Information Technology (CEIT), Istambul, Turkey, 25–27 October 2018; pp. 595–600. [Google Scholar]
- Dursun, M.; DÖŞOĞLU, M.K. LCL Filter Design for Grid Connected Three-Phase Inverter. In Proceedings of the 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 19–21 October 2018. [Google Scholar]
- Fairchild Semiconductor. Datasheet MUR840, Fairchild semiconductor. 8A, 400 V–600 V, Ultrafast Diodes. Available online: https://t.ly/6HFD (accessed on 16 April 2022).
- Wolfspeed. Datasheet C3M0065090D, Silicon Carbide Power MOSFET C3M Planar MOSFET Technology N-Channel Enhancement Mode. Available online: https://t.ly/fbgQ (accessed on 16 April 2022).
- LEM. Transductor de Corriente, LA, 25A, −36A a 36A, 0.5%, Salida Lazo Cerrado, 14,25 Vdc a 15.75 Vdc. Available online: https://t.ly/0ahS (accessed on 16 April 2022).
- LEM. Transductor de Tensión, Serie LV, 25 mA, −14 mA a 14 mA, 15 Vdc, 0.9%. Available online: https://t.ly/JlPe (accessed on 16 April 2022).
- Parvez, M.; Elias, M.F.M.; Rahim, N.A. Performance analysis of PR current controller for single-phase inverters. In Proceedings of the 4th IET Clean Energy and Technology Conference (CEAT 2016), Kuala Lumpur, Malaysia, 14–15 November 2016; pp. 1–8. [Google Scholar]
- Guo, S.; Liu, D. Proportional-resonant based high-performance control strategy for voltage-quality in dynamic voltage restorer system. In Proceedings of the 2nd International Symposium on Power Electronics for Distributed Generation Systems, Hefei, China, 16–18 June 2010; pp. 721–726. [Google Scholar]
- Trung-Kien, V.; Seong, S. Comparison of PI and PR controller based current control schemes for single-phase grid-connected PV inverter. J. Korea Acad.-Ind. Coop. Soc. 2010, 11, 2968–2974. [Google Scholar]
- Patiño, D.G.; Erira, E.G.; Fuelagän, J.R.; Rosero, E.E. Implementation a HERIC inverter prototype connected to the grid controlled by SOGI-FLL. In Proceedings of the 2015 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), Bogota, Colombia, 2–4 June 2015; pp. 1–6. [Google Scholar]
- Teodorescu, R.; Blaabjerg, F.; Borup, U.; Liserre, M. A new control structure for grid-connected LCL PV inverters with zero steady-state error and selective harmonic compensation. In Proceedings of the Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2004. APEC’04., Anaheim, CA, USA, 22–26 February 2004; pp. 580–586. [Google Scholar]
- Shi, Y.; Wang, L.; Xie, R.; Li, H. Design and implementation of a 100 kW SiC filter-less PV inverter with 5 kW/kg power density and 99.2% CEC efficiency. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018; pp. 393–398. [Google Scholar]
- Chen, B.; Gu, B.; Zhang, L.; Zahid, Z.U.; Lai, J.S.; Liao, Z.; Hao, R. A high-efficiency MOSFET transformerless inverter for nonisolated microinverter applications. IEEE Trans. Power Electron. 2015, 30, 3610–3622. [Google Scholar] [CrossRef]
- Kumar, S.; Kirubakaran, A.; Subrahmanyam, N. Bi-directional clamping based H5, HERIC and H6-type transformerless inverter topologies with improved modulation technique. In Proceedings of the 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020), Cochin, India, 2–4 January 2020. [Google Scholar]
- Villanueva, I.; Vazquez, N.; Vaquero, J.; Hernández, C.; López, H.; Osorio, R.; Pinto, S. On the reliability of transformerless photovoltaic DC/AC converters based on mission profile. Int. J. Photoenergy 2021, 2021, 9926316. [Google Scholar] [CrossRef]
- Dummer, G.W.A.; Tooley, M.H.; Winton, R.C. An Elementary Guide to Reliability, 5th ed.; British Library Cataloguing: Oxford, UK, 2005; pp. 19–30. [Google Scholar]
State | Switching States | Voltages of Interest | |||||
---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | VC [V] | Inverter output [V] | |
1 | ON | OFF | OFF | OFF | OFF | Without changes | VPV |
2 | OFF | OFF | OFF | ON | ON | Without changes | Zero |
3 | OFF | OFF | ON | OFF | OFF | Discharge | −VC = −VPV |
4 | OFF | ON | OFF | ON | ON | Charge | Zero |
System Parameter | Values |
---|---|
System output frequency, fg | 60 Hz |
Inverter switching frequency, fs | 30 kHz |
Inverter input voltage DC, VPV | 240 V |
System output voltage (RMS), Vorms | 170 V |
System Power, P | 700 W |
LCL filter and Internal Capacitor | Values |
Internal capacitor, C | 5 µF |
Inverter side inductor, Lf1 | 2.36 mH |
Load side inductor, Lf2 | 1.42 mH |
Filter capacitance, Cf | 3.13 µF |
Cut off frequency, fres | 3 kHz |
System Parameter | Values |
---|---|
System output frequency, fg | 60 Hz |
Inverter switching frequency, fs | 30 kHz |
Inverter input voltage DC, VPV | 240 V |
System output voltage (RMS), Vorms | 170 V |
System Power, P | 300 W |
LCL filter and Internal Capacitor | Values |
Internal capacitor, C | 5 µF |
Inverter side inductor, Lf1 | 2.36 mH |
Load side inductor, Lf2 | 1.42 mH |
Filter capacitance, Cf | 3.13 µF |
Component | % per 1000 h |
---|---|
Capacitors | 0.01 |
Inductors | 0.05 |
Transistors | 0.01–0.1 |
Diodes | 0.05 |
Average | Maximum | Minimum | Increase | |
---|---|---|---|---|
S1 | 32.89 | 36 | 30 | 6 |
S2, S3 | 36.82 | 41.3 | 30.5 | 10.8 |
S4, S5 | 38.75 | 42.8 | 31.4 | 11.4 |
C | 35.57 | 39.4 | 31 | 8.4 |
Lf1 | 33.85 | 36.2 | 29 | 7.2 |
Lf2 | 30.14 | 31.5 | 28.5 | 3 |
Cf | 28.62 | 30.3 | 27.9 | 2.4 |
Topology | Semiconductor Devices | Passive Elements | Filter | Semiconductors Operating at the Same Time | Leakage Current [mA] | Maximum Efficiency [%] | THD [%] | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Switches | Diodes | C | L | C | L | Minimum | Maximum | ||||
Proposed inverter | 5 | 1 | 1 | 0 | 1 | 2 | 1 | 3 | ≈0 | 98.2 @ 300 VA | 0.1 |
HBVS [7] | 5 | 1 | 1 | 2 | 1 | 2 | 3 | 3 | <77 | 94.5 @ 1 kVA | 11.6 |
H6 DC side [14] | 6 | 0 | 2 | 0 | 1 | 2 | 2 | 4 | <200 | 95.9 @ 300 VA | 2.54 |
CH6 [15] | 6 | 0 | 0 | 2 | 1 | 2 | 2 | 3 | <140 | NM @ 720 VA | 3.77 |
Topology in [16] | 5 | 0 | 2 | 1 | 1 | 1 | 2 | 2 | ≈0 | 92.5 @ 200 VA | -- |
qZSI Modified [17] | 6 | 3 | 2 | 2 | 1 | 2 | 3 | 7 | ≈0 | 91.4 @ 500 kVA | 6.2 |
Heric parallel AC switch [18] | 6 | 2 | 0 | 0 | 1 | 2 | 2 | 2 | <20 | 98.7% @ 9 kVA | -- |
Heric back-to-back [18] | 6 | 0 | 0 | 0 | 1 | 2 | 2 | 2 | <20 | 97.5%@ 9 kVA | -- |
H5 [18] | 5 | 0 | 0 | 0 | 1 | 2 | 2 | 3 | <35 | 98.1 @ 300 VA | -- |
H6 [18] | 6 | 2 | 0 | 0 | 1 | 2 | 2 | 4 | <40 | 96.35 @ 200 VA | -- |
Hybrid bridge [19] | 6 | 2 | 1 | 0 | 1 | 2 | 2 | 3 | <17.4 | 94.75 @ 1 kVA | -- |
H5-D [20] | 5 | 1 | 2 | 0 | 0 | 2 | 3 | 3 | ≈60 | 96 @ 650 VA | -- |
S4 Topology [21] | 4 | 2 | 3 | 0 | 1 | 1 | 1 | 3 | ≈0 | 97.2 @ 500 VA | 2.1 |
Inverter in [22] | 5 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | ≈0 | -- | 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso, J.; Orosco, R.; Vazquez, N.; López, H.; Hernandez, C.; Vaquero, J. High Efficiency Transformerless Photovoltaic DC/AC Converter with Common Mode Leakage Current Elimination: Analysis and Implementation. Energies 2022, 15, 3177. https://doi.org/10.3390/en15093177
Cardoso J, Orosco R, Vazquez N, López H, Hernandez C, Vaquero J. High Efficiency Transformerless Photovoltaic DC/AC Converter with Common Mode Leakage Current Elimination: Analysis and Implementation. Energies. 2022; 15(9):3177. https://doi.org/10.3390/en15093177
Chicago/Turabian StyleCardoso, Jorge, Rodolfo Orosco, Nimrod Vazquez, Héctor López, Claudia Hernandez, and Joaquin Vaquero. 2022. "High Efficiency Transformerless Photovoltaic DC/AC Converter with Common Mode Leakage Current Elimination: Analysis and Implementation" Energies 15, no. 9: 3177. https://doi.org/10.3390/en15093177
APA StyleCardoso, J., Orosco, R., Vazquez, N., López, H., Hernandez, C., & Vaquero, J. (2022). High Efficiency Transformerless Photovoltaic DC/AC Converter with Common Mode Leakage Current Elimination: Analysis and Implementation. Energies, 15(9), 3177. https://doi.org/10.3390/en15093177