Acoustic Signature and Impact of High-Speed Railway Vehicles in the Vicinity of Transport Routes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Technical Specification of the Research Objects
2.2. Methodology of the Conducted Research Area
- curved section (R = 4000 m)—approx. 18 + 600 km (loc. Świnice, Długa str.);
- straight section—approx. 21 + 300 km (loc. Szeligi, Dojazdowa str.).
- acoustic camera Noise Inspector Bionic M-112;
- two Svantek sound-level meters SVAN 979;
- Svantek four-channel sound-level meter SVAN 958A;
- two Svantek sound-level meters SVAN 955;
- measurement microphones (electroacoustic transducers) from Svantek—8 pieces;
- Svantek 1st class acoustic calibrator SV 36;
- speedometer;
- weather station from Davis Instruments Vantage Pro2.
3. Results and Discussion
3.1. Identification of Main Noise Sources
3.2. Noise Propagation in the Immediate Vicinity
- LEK—exposure level of the acoustic pressure [dB];
- LEki—level of the acoustic pressure in the n-th one-third octave band [dB].
3.3. Model of Sound Propagation
- −
- linear (1st degree);
- −
- using a 2nd degree polynomial;
- −
- using a 3rd degree polynomial;
- −
- power model with a free expression.
- Li—acoustic pressure level in the i-th frequency band;
- ai, bi, ci—experimental coefficient of the model for t-th frequency band;
- r—distance from sound source.
- Lxi—experimentally determined noise level at distance x from the source [dB];
- Lri—sound-level value measured at the reference point r [dB];
- z—source type factor (for a linear source z = 1);
- x—distance of observation point from noise source [m];
- r—distance of reference point from noise source [m];
- kpi—level correction for the analysed i-th frequency band [dB].
- s(1)—noise level at the reference point, Lri [dB];
- s(2)—frequency-band correction value, kpi [dB].
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Peris, E. Environmental Noise in Europe—2020, European Environment Agency Raport; European Union: Luxembourg, 2020; No 22/2019. [Google Scholar]
- Polak, K.; Korzeb, J. Identification of the major noise energy sources in rail vehicles moving at a speed of 200 km/h. Energies 2021, 14, 3957. [Google Scholar] [CrossRef]
- Polak, K.; Korzeb, J. Measurements of noise from high-speed rail vehicles, Railway Problems. Pomiary hałasu pochodzącego od pojazdów kolejowych zwiększonych prędkości. Probl. Kolejnictwa 2019, 184, 33–38. [Google Scholar]
- Żurkowski, A. Central Trunk Line (CMK) 200km/h. Traffic, timetable and operations. Tech. Transp. Szyn. 2015, nr 6/2015, 24–25. [Google Scholar]
- Graf, H.R.; Czolbe, C. Pass-by noise source identification for railroad cars using array measurements. In Proceedings of the 23rd International Congress on Acoustics, Aachen, Germany, 9–13 September 2019; pp. 1574–1581. [Google Scholar]
- Jiang, S.; Yang, S.; Wu, D.; Wen, B.-C. Prediction and validation for the aerodynamic noise of high-speed train power car. Transp. Probl. 2018, 13, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Thompson, D.; Xie, Y.; Zhu, Q.; Luo, Z.; Lei, Z. Influence of rail fastener stiffness on railway vehicle interior noise. Appl. Acoust. 2019, 145, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Maillard, J.; Van-Maercke, D.; Poisson, F.; Regairaz, J.-P.; Dufour, J.B. Comparison of pass-by railway noise indicators obtained from standard engineering methods with measured values. In Proceedings of the Forum Acusticum, Lyon, France, 7–11 December 2020; pp. 2477–2483. [Google Scholar] [CrossRef]
- Uda, T.; Kitagawa, T.; Saito, S.; Wakabayashi, Y. Low frequency aerodynamic noise from high speed trains. Q. Rep. RTRI 2018, 59, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Zea, E.; Manzari, L.; Squicciarini, G.; Feng, L.; Thompson, D.; Arteaga, L.I. Wavenumber–domain separation of rail contributionto pass-by noise. J. Sound Vib. 2017, 409, 24–42. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Xiao, X.; Wang, D.; Yang, Y.; Fan, J. Source contribution analysis for exterior noise of a high-speed train: Experiments and simulations. Shock. Vib. 2018, 2018, 5319460. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Wang, P.; Yi, Q.; Sheng, X.; Lu, J. A detailed experimental study of the validity and applicability of slotted stand-off layer rail dampers in reducing railway vibration and noise. J. Low Freq. Noise Vib. Act. Control. 2018, 37, 896–910. [Google Scholar] [CrossRef] [Green Version]
- EN ISO 3095; 2013 Acoustics—Railway Applications—Measurement of Noise Emitted by Railbound Vehicles. CEN: Brussels, Belgium, 2013.
- Li, M.; Zhong, S.; Deng, T.; Zhu, Z.; Sheng, X. Analysis of source contribution to pass-by noise for a moving highspeed train based on microphone array measurement Measurement. J. Int. Meas. Confed. 2021, 174, 109058. [Google Scholar] [CrossRef]
- Sheng, X.; Cheng, G.; Thompson, D.J. Modelling wheel/rail rolling noise for a highspeed train running along an infinitel long periodic slab track. J. Acoust. Soc. Am. 2020, 148, 174–190. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xiao, X.; Sheng, X.; Li, Z. Sound source localisation for a high-speed train and its transfer path to interior noise. Chin. J. Mech. Eng. 2019, 32, 1–16. [Google Scholar] [CrossRef]
- Wawrzyniak, A. ETR610 electric multiple units of the ED250 series for PKP Intercity, S.A. Elektrycznepoci ągizespołowe ETR610 serii ED250 dla PKP Intercity S.A. Tech. Transp. Szyn. 2013, 9, 20–24. (In Polish) [Google Scholar]
- Pachla, F. Transmission of vibrations from the ground to the foundation from the movement of passenger trains. Vibroengineering Procedia 2019, 27, 93–96. [Google Scholar] [CrossRef]
- Graff, M. The New Electric Multiple Units for Long-Distance and Regional Traffic in Poland in 2015. Tech. Transp. Szyn. 2016, nr 1-2/2016, 22–33. [Google Scholar]
- Czarnecki, M.; Witold, G.; Massel, A.; Walczak, S. Introduction of High-Speed Rolling Stock into Operation on the Polish Railway Network. In High-Speed Rail in Poland: Advances and Perspectives; Zurkowski, A., Ed.; CRC Press: Warsaw, Poland, 2018; pp. 203–228. [Google Scholar] [CrossRef]
- Raczyński, J. The ED250 (Pendolino) Experiences in Poland—First Years of Exploitation, Technika Transportu Szynowego. 2018. no 4/2018. pp. 30–32. Available online: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-9b7e36f1-647f-4ee4-aaf5-b0e7d9495dcd/c/Raczynski1TTS4en.pdf (accessed on 22 February 2022).
- Id-12 (D-29). The List of Lines, Introduced by Order No. 1/2009 of the Management Board of PKP PolskieLinieKolejowe, S.A. of 9 February 2009, as AMENDED., PKP Polskie Linie Kolejowe. 2009. Available online: https://www.plk-sa.pl/files/public/user_upload/pdf/Akty_prawne_i_przepisy/Instrukcje/Wydruk/Id-12_Wykaz_linii_06.2021.pdf (accessed on 22 February 2022). (In Polish).
- Gade, S.; Ginn, B.; Gomes, J.; Hald, J. Recent advances in rail vehicle moving source beamforming. Instrumentation Reference. Sound Vib. 2015, 4, 8–14. [Google Scholar]
- Le Courtois, F.; Thomas, J.-H.; Poisson, F.; Pascal, J.-C. Genetic optimisation of a plane array geometry for beamforming. Application to source localisation in a high speed train. J. Sound Vib. 2016, 371, 78–93. [Google Scholar] [CrossRef]
- Meng, F.; Wefers, F.; Vorlaender, M. Acquisition of exterior multiple soundsources for train auralization based on beamforming. In Proceedings of the the 10th European Congress and Exposition on Noise Control Engineering, Maastricht, The Netherlands, 31 May–3 June 2015; pp. 1703–1708. [Google Scholar]
- Go, Y.-J.; Choi, J.-S. An acoustic source localization method using a drone-mounted phased microphone array. Drones 2021, 5, 75. [Google Scholar] [CrossRef]
- Zhang, J.; Squicciarini, G.; Thompson, D.J. Implications of the directivity of railway noise sources for their quantification using conventional beamforming. J. Sound Vib. 2019, 459, 114841. [Google Scholar] [CrossRef]
- Chiariotti, P.; Martarell, M.; Castellini, P. Acoustic beamforming for noise source localization—reviews, methodology and applications. Mech. Syst. Signal Process 2019, 120, 422–448. [Google Scholar] [CrossRef]
- Polak, F.; Sikorski, W.; Siodła, K. Prototype measurement system for locating sources of acoustic emission-microphone matrix. Poznan University of Technology Academic Journals. Electr. Eng. 2015, 84, 207–214. (In Polish) [Google Scholar]
- Aczel, A.D. Statistics in Management, 2nd ed.; PWN: Warszawa, Poland, 2018. (In Polish) [Google Scholar]
- Ozimek, E. Sound and its perception. In Physical and Psychoacoustic Aspects; PWN: Warszawa, Poland, 2018. (In Polish) [Google Scholar]
- Sobczyk, M. Statistic; PWN: Warszawa, Poland, 2021; EAN: 9788301151997. (In Polish) [Google Scholar]
- Kokowski, P.; Laboratory of Applied Acoustics. Theoretical Introduction; UAM: Poznań, Poland, 2003. (In Polish) [Google Scholar]
- Ordinance of the Minister of the Environment of 16 June 2011 on the requirements for carrying out measurements of the levels of substances or energy in the environment by the manager of a road, railway line, tramway line, airport or port. J. Laws 2011, 140, 824.
- Bobowski, Z. Selected Methods of Descriptive Statistics and Statistical Inference; WWSZiP: Wałbrzych, Poland, 2004. (In Polish) [Google Scholar]
- Muciek, A. Determination of Mathematical Models from Experimental Data; Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 2012. (In Polish) [Google Scholar]
- Borwin, M.; Komorski, P.; Szymański, G. Modeling of the sound propagation for a railway vehicle moving on the track. Pojazdy Szyn. 2019, 3, 60–68. [Google Scholar] [CrossRef]
One-Third Octave Bands [Hz] | 5 | 10 | 20 | 40 |
---|---|---|---|---|
20 | 99.8 | 95.4 | 94 | 89.7 |
25 | 99.8 | 96.6 | 94.3 | 90.9 |
31.5 | 100.6 | 97.1 | 95.1 | 91 |
40 | 101.4 | 98.3 | 95.9 | 92 |
50 | 102 | 99.1 | 96.3 | 92.6 |
63 | 100.5 | 100 | 94.9 | 91.2 |
80 | 100 | 98.5 | 94.3 | 89.9 |
100 | 98.3 | 97.9 | 93.6 | 89.6 |
125 | 96 | 95.1 | 91.4 | 85.4 |
160 | 93.2 | 92.5 | 90.7 | 83.7 |
200 | 91.6 | 90.5 | 88.3 | 81.4 |
250 | 93.3 | 89.4 | 85.8 | 79.2 |
315 | 94.1 | 88.4 | 83.3 | 76.7 |
400 | 94.2 | 87.3 | 82.5 | 75.7 |
500 | 95 | 88 | 83.5 | 77.3 |
630 | 95.9 | 90.2 | 85.2 | 77.6 |
800 | 97.9 | 93.9 | 87.4 | 79.8 |
1000 | 96.5 | 94.5 | 87.9 | 80.5 |
1250 | 97.4 | 95.2 | 88.8 | 81.2 |
1600 | 100.3 | 98.5 | 92.7 | 86.9 |
2000 | 101.6 | 99.7 | 95.4 | 88.1 |
2500 | 103 | 100.1 | 93.8 | 87.1 |
3150 | 99.8 | 97.3 | 89 | 86.3 |
4000 | 96.6 | 93.4 | 84.5 | 80.4 |
5000 | 93.8 | 90.1 | 80.7 | 77 |
6300 | 92 | 87.7 | 77.6 | 72.6 |
8000 | 91.6 | 87.4 | 76.5 | 68.9 |
10,000 | 88.4 | 84.4 | 71.5 | 65.1 |
12,500 | 84.8 | 80 | 66.4 | 58.7 |
16,000 | 80.7 | 75.6 | 57.5 | 55.2 |
20,000 | 78.1 | 70.2 | 54.6 | 58.3 |
Frequency Band [Hz] | Straight Section | |||
---|---|---|---|---|
Rail-Head Level | 4 m over the Rail-Head Level | |||
Lri | kpi | Lri | kpi | |
20 | 93,787 | −2539 | 93,280 | −0881 |
25 | 83,886 | −1302 | 80,973 | −2334 |
31.5 | 84,330 | −1372 | 81,341 | −2241 |
40 | 85,373 | −1833 | 82,482 | −2143 |
50 | 86,555 | −1622 | 83,016 | −2006 |
63 | 87,256 | −1503 | 83,276 | −2099 |
80 | 86,230 | −1306 | 82,747 | −1995 |
100 | 85,367 | −1520 | 82,383 | −1821 |
125 | 83,842 | −0822 | 80,865 | −1577 |
160 | 81,222 | −1256 | 78,744 | −1538 |
200 | 78,642 | −0850 | 77,625 | −1258 |
250 | 76,956 | −1113 | 76,530 | −1164 |
315 | 77,569 | −2319 | 76,662 | −1483 |
400 | 77,320 | −3356 | 77,054 | −1671 |
500 | 76,886 | −3900 | 77,805 | −1235 |
630 | 77,455 | −3988 | 78,788 | −1146 |
800 | 78,176 | −3703 | 79,415 | −1394 |
1000 | 81,087 | −3202 | 81,476 | −1173 |
1250 | 79,912 | −2528 | 81,934 | −0613 |
1600 | 81,170 | −2677 | 83,766 | −0588 |
2000 | 84,022 | −2291 | 86,171 | −0287 |
2500 | 85,353 | −2153 | 88,165 | −0385 |
3150 | 86,717 | −2800 | 87,037 | −0854 |
4000 | 83,389 | −2522 | 84,840 | −0648 |
5000 | 79,897 | −3163 | 80,953 | −1246 |
6300 | 77,242 | −3355 | 77,234 | −2008 |
8000 | 74,420 | −3992 | 74,351 | −2188 |
10,000 | 73,401 | −4356 | 73,220 | −2652 |
12,500 | 69,884 | −4770 | 68,740 | −2810 |
16,000 | 65,911 | −5444 | 63,984 | −3596 |
20,000 | 61,175 | −5888 | 57,827 | −4307 |
LAEq | 58,976 | −5511 | 54,284 | −3867 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polak, K.; Korzeb, J. Acoustic Signature and Impact of High-Speed Railway Vehicles in the Vicinity of Transport Routes. Energies 2022, 15, 3244. https://doi.org/10.3390/en15093244
Polak K, Korzeb J. Acoustic Signature and Impact of High-Speed Railway Vehicles in the Vicinity of Transport Routes. Energies. 2022; 15(9):3244. https://doi.org/10.3390/en15093244
Chicago/Turabian StylePolak, Krzysztof, and Jarosław Korzeb. 2022. "Acoustic Signature and Impact of High-Speed Railway Vehicles in the Vicinity of Transport Routes" Energies 15, no. 9: 3244. https://doi.org/10.3390/en15093244
APA StylePolak, K., & Korzeb, J. (2022). Acoustic Signature and Impact of High-Speed Railway Vehicles in the Vicinity of Transport Routes. Energies, 15(9), 3244. https://doi.org/10.3390/en15093244