Calorific Value of Festuca rubra Biomass in the Phytostabilization of Soil Contaminated with Nickel, Cobalt and Cadmium Which Disrupt the Microbiological and Biochemical Properties of Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Samples
2.2. Experimental Design
2.3. Microbiological Analyses of Soil Samples
2.4. Biochemical Analyses of Soil Samples
2.5. Physicochemical and Chemical Analyses of Soil Samples
2.6. Chemical Analyses of Plant Samples
2.7. Statistical Analysis and Calculations
(heavy metal content of roots × root yields)
3. Results
3.1. Response of Festuca rubra to Soil Contamination with Ni2+, Co2+ and Cd2+
3.2. Responses of Microorganisms to Soil Contamination with Ni2+, Co2+ and Cd2+
3.3. Enzyme Responses to Soil Contamination with Ni2+, Co2+ and Cd2+
3.4. Physicochemical Properties of Soil Contaminated with Ni2+, Co2+ and Cd2+
4. Discussion
4.1. The Effectiveness of Festuca rubra in Remediating Soil Contaminated with Ni2+, Co2+ and Cd2+
4.2. The Effects of Ni2+, Co2+, Cd2+ and Compost on the Microbiological and Biochemical Properties of Soil
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Sarwar, N.; Imran, M.; Shaheen, M.R.; Ishaque, W.; Kamran, M.A.; Matloob, A.; Rehim, A.; Hussain, S. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere 2017, 171, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Pasricha, S.; Mathur, V.; Garga, A.; Lenka, S.; Verma, K.; Agarwal, S. Molecular mechanisms underlying heavy metal uptake, translocation and tolerance in hyperaccumulators-an analysis heavy metal tolerance in hyperaccumulators. Environ. Chall. 2021, 4, 10019. [Google Scholar] [CrossRef]
- Prasad, M.N.V.; Freitas, H. Trace Elements in the Environment: Biogeochemistry, Biotechnology and Bioremediation; Humana Press: New York, NY, USA, 2006; p. 301. [Google Scholar]
- Gołda, S.; Korzeniowska, J. Comparison of phytoremediation potential of three grass species in soil contaminated with cadmium. Environ. Protect. Nat. Res. 2016, 27, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Touceda-Gonzalez, M.; Alvarez-Lopeza, V.; Prieto-Fernandez, A.; Rodríguez-Garrido, B.; Trasar-Cepeda, C.; Mench, M.; Puschenreiter, M.; Quintela-Sabarís, C.; Macías-García, F.; Kidd, P.S. Aided phytostabilisation reduces metal toxicity, improves soil fertility and enhances microbial activity in Cu-rich mine tailings. J. Environ. Manag. 2017, 186, 301–313. [Google Scholar] [CrossRef]
- Wong, Y.; Lam, E.; Tam, N. Physiological effects of copper treatment and its uptake pattern in Festuca rubra cv. Merlin. Resour. Conserv. Recycl. 1994, 11, 311–319. [Google Scholar] [CrossRef]
- Padmavathiamma, P.; Li, L. Phytoremediation of metal-contaminated soil in temperate regions of British Columbia, Canada. Int. J. Phytoremediat. 2009, 11, 575–590. [Google Scholar] [CrossRef]
- Yin, L.; Ren, A.; Wei, M.; Wu, L.; Zhou, Y.; Li, X.; Gao, Y. Neotyphodium coenophialum-infected tall fescue and its potential application in the phytoremediation of saline soils. Int. J. Phytoremediat. 2014, 16, 235–246. [Google Scholar] [CrossRef]
- Christou, A.; Theologides, C.P.; Costa, C.; Kalavrouziotis, I.K.; Varnavas, S.P. Assessment of toxic heavy metals concentrations in soils and wild and cultivated plant species in Limni abandoned copper mining site, Cyprus. J. Geochem. Explor. 2017, 178, 16–22. [Google Scholar] [CrossRef]
- Gil-Loaiza, J.; White, S.A.; Root, R.A.; Solís-Dominguez, F.A.; Hammond, C.M.; Chorover, J.; Maier, R.M. Phytostabilization of mine tailings using compost-assisted direct planting: Translating greenhouse results to the field. Sci. Total Environ. 2016, 565, 451–461. [Google Scholar] [CrossRef] [Green Version]
- Boros-Lajszner, E.; Wyszkowska, J.; Kucharski, J. Application of white mustard and oats in the phytostabilization of soil contaminated with cadmium with the addition of cellulose and urea. J. Soils Sediments 2020, 20, 931–942. [Google Scholar] [CrossRef] [Green Version]
- Cundy, A.B.; Bardos, R.P.; Church, A.; Puschenreiter, M.; Friesl-Hanl, W.; Müller, I.; Neu, S.; Mench, M.; Witters, N.; Vangronsveld, J. Developing principles of sustainability and stakeholder engagement for “gentle” remediation approaches: The European context. J. Environ. Manag. 2013, 129, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals–concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Seth, C.S.; Remans, T.; Keunen, E.; Jozefczak, M.; Gielen, H.; Opdenakker, K.; Weyens, N.; Vangronsveld, J.; Cuypers, A. Phytoextraction of toxic metals: A central role for glutathione. Plant, Cell Environ. 2012, 35, 334–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Zhou, Q.; Xu, Y.; Wang, L.; Liang, X. The role of EDTA on cadmium phytoextraction in a cadmium-hyperaccumulator Rorippa globosa. J. Environ. Chem. Ecotoxicol. 2011, 3, 45–51. [Google Scholar] [CrossRef]
- Lange, B.; van der Ent, A.; Baker, A.J.M.; Echevarria, G.; Mahy, G.; Malaisse, F.; Meets, P.; Pourret, O.; Verbruggen, N.; Faucon, M.-P. Copper and cobalt accumulation in plants: A critical assessment of the current state of knowledge. New Phytol. 2017, 213, 537–551. [Google Scholar] [CrossRef]
- Sobariu, D.L.; Fertu, D.I.T.; Diaconu, M.; Pavel, I.V.; Hlihor, R.-M.; Dragoi, E.N.; Curteanu, S.; Lenz, M.; Corvini, P.F.-X.; Gavrilescu, M. Rhizobacteria and plant symbiosis in heavy metals uptake and its implications for soil bioremediation. New Biotechnol. 2017, 39, 125–134. [Google Scholar] [CrossRef]
- Boros-Lajszner, E.; Wyszkowska, J.; Kucharski, J. Use of zeolite to neutralise nickel in a soil environment. Environ. Monit. Assess. 2018, 190, 54. [Google Scholar] [CrossRef] [Green Version]
- Stolarski, M.J.; Krzyżaniak, M.; Szczukowski, S.; Tworkowski, J.; Załuski, D.; Bieniek, A.; Gołaszewski, J. Effect of Increased Soil Fertility on the Yield and Energy Value of Short-Rotation Woody Crop. Bioenerg. Res. 2015, 8, 1136–1147. [Google Scholar] [CrossRef] [Green Version]
- Kalita, D.; Saikia, C.N. Chemical constituents and energy content of some latex bearing plants. Bioresour. Technol. 2004, 92, 219–227. [Google Scholar] [CrossRef]
- Jasinskas, A.; Kleiza, V.; Streikus, D.; Domeika, R.; Vaiciukevičius, E.; Gramauskas, G.; Valentin, M.T. Assessment of Quality Indicators of Pressed Biofuel Produced from Coarse Herbaceous Plants and Determination of the Influence of Moisture on the Properties of Pellets. Sustainability 2022, 14, 1068. [Google Scholar] [CrossRef]
- Bräutigam, K.R.; Jörissen, J.; Priefer, C. The extent of food waste generation across EU-27: Different calculation methods and the reliability of their results. Waste Manag. Res. 2014, 32, 683–694. [Google Scholar] [CrossRef] [PubMed]
- Morales-Polo, C.; del Mar Cledera-Castro, M.; Hueso-Kortekaas, K.; Revuelta-Aramburu, M. Anaerobic digestion in wastewater reactors of separated organic fractions from wholesale markets waste. Compositional and batch characterization. Energy and environmental feasibility. Sci. Total Environ. 2020, 726, 138567. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Zhang, R.; El-Mashad, H.M.; Sun, H.; Yinga, Y. Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation. Int. J. Hydrog. Energy 2008, 33, 6968–6975. [Google Scholar] [CrossRef]
- Naroznova, I.; Møller, J.; Scheutz, C. Characterisation of the biochemical methane potential (BMP) of individual material fractions in Danish source-separated organic household waste. Waste Manag. 2016, 50, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Morales-Polo, G.; del Mar Cledera-Castro, M.; Revuelta-Aramburu, M.; Hueso-Kortekaas, K. Enhancing energy recovery in form of biogas, from vegetable and fruit wholesale markets by-products and wastes, with pretreatments. Plants 2021, 10, 1298. [Google Scholar] [CrossRef]
- De Sanctis, M.; Chimienti, S.; Pastore, C.; Piergrossi, V.; Di Iaconi, C. Energy efficiency improvement of thermal hydrolysis and anaerobic digestion of Posidonia oceanica residues. App. Energy 2019, 25, 113457. [Google Scholar] [CrossRef]
- Morales-Polo, M.; del Mar Cledera-Castro, M.; Revuelta-Aramburu, M.; Hueso-Kortekaas, K. Bioconversion process of barley crop residues into biogas—energetic-environmental potential in Spain. Agronomy 2021, 11, 640. [Google Scholar] [CrossRef]
- Morales-Polo, M.; del Mar Cledera-Castro, M. An optimized water reuse and waste valorization method for a sustainable development of poultry slaughtering plants. Desalin. Water Treat. 2015, 2702–2711. [Google Scholar] [CrossRef] [Green Version]
- Iacovidou, E.; Ohandja, D.-G.; Voulvoulis, N. Food waste co-digestion with sewage sludge e Realising its potential in the UK. J. Environ. Manag. 2012, 112, 267–274. [Google Scholar] [CrossRef]
- Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J.; Park, J.; Makino, T.; Kirkham, M.B.; Scheckel, K. Remediation of heavy metals(lois)s contaminated soils—To mobilized or to immobilize? J. Hazard. Mater. 2014, 266, 141–166. [Google Scholar] [CrossRef]
- Stritsis, B.; Steingrobe, B.; Claassen, N. Cadmium fractions in an acid sandy soil and Cd in soil solution as affected by plant growth. J. Plant Nutr. Soil Sci. 2014, 177, 431–437. [Google Scholar] [CrossRef]
- Li, Z.; Jia, M.; Christie, P.; Luo, Y. Changes in metals availability, desorption kinetics and speciation in contaminated soils during repeated phytoextraction with the Zn/Cd hyperaccumulator Sedum plumbizincicola. Environ. Pollut. 2016, 209, 123–131. [Google Scholar] [CrossRef]
- Bothe, H. Plants in Heavy Metal Soils; Springer: Berlin/Heidelberg, Germany, 2011; pp. 35–57. [Google Scholar]
- Dalvi, A.A.; Bhalerao, S.A. Response of plants towards heavy metal toxicity: An overview of avoidance, tolerance and uptake mechanism. Ann. Plant Sci. 2013, 2, 362–368. [Google Scholar]
- Bartkowiak, A.; Lemanowicz, J.; Breza-Boruta, B. Evaluation of the content Zn, Cu, Ni and Pb as well as the enzymatic activity of forest soil exposed to the effect of road traffic pollution. Environ. Sci. Pollut. Res. 2017, 24, 23893–23902. [Google Scholar] [CrossRef] [Green Version]
- Kucharski, J.; Wieczorek, K.; Wyszkowska, J. Changes in the enzymatic activity in sandy loam soil exposed to zinc pressure. J. Elem. 2011, 16, 577–589. [Google Scholar] [CrossRef]
- Boros-Lajszner, E.; Wyszkowska, J.; Kucharski, J. Phytoremediation of soil contaminated with nickel, cadmium and cobalt. Int. J. Phytoremediat. 2021, 23, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Zaborowska, M.; Wyszkowska, J.; Kucharski, J. Soil enzyme response to bisphenol F contamination in the soil bioaugmented using bacterial and mould fungal consortium. Environ. Monit. Assess. 2020, 192, 20. [Google Scholar] [CrossRef]
- Wyszkowska, J.; Borowik, A.; Kucharski, M.; Kucharski, J. Applicability of biochemical indices to quality assessmnet of soil pulluted with heavy metals. J. Elem. 2013, 18, 733–756. [Google Scholar] [CrossRef]
- Wyszkowska, J.; Boros-Lajszner, E.; Borowik, A.; Kucharski, J.; Baćmaga, M.; Tomkiel, M. Changes in the microbiological and biochemical properties of soil contaminated with zinc. J. Elem. 2017, 22, 437–451. [Google Scholar] [CrossRef]
- Regulation of the Minister of the Environment of 1 September 2016 Applicable in Poland (Journal of Laws 2016 Item 1395). ISAP—Internet System of Legal Acts. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20160001395 (accessed on 11 March 2020).
- Barbieri, M. The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. J. Geol. Geophys. 2016, 5, 237. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Mukherjee, A. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Marchand, L.; Pelosi, C.; Gonzalez-Centeno, M.R.; Maillard, A.; Ourry, A.; Galland, W.; Teissedre, P.-L.; Bessoule, J.-J.; Mongrand, S.; Morvan-Bertrand, A.; et al. Trace element bioavailability, yield and seed quality of rapeseed (Brassica napus L.) modulated by biochar incorporation into a contaminated technosol. Chemosphere 2016, 156, 150–162. [Google Scholar] [CrossRef] [PubMed]
- Nadgórska-Socha, A.; Kandziora-Ciupa, M.; Ciepał, R.; Barczyk, G. Robinia pseudoacacia and Melandrium album in trace elements biomonitoring and air pollution tolerance index study. Int. J. Environ. Sci. Technol. 2016, 13, 1741–1752. [Google Scholar] [CrossRef] [Green Version]
- Nadgórska-Socha, A.; Kandziora-Ciupa, M.; Ciepał, R. Element accumulation, distribution, and phytoremediation potential in selected metallophytes growing in a contaminated area. Environ. Monit. Assess. 2015, 187, 441. [Google Scholar] [CrossRef] [PubMed]
- Nadgórska-Socha, A.; Ptasiński, B.; Kita, A. Heavy metal bioaccumulation and antioxidative responses in Cardaminopsis arenosa and Plantago lanceolata leaves from metalliferous and non-metalliferous sites: A field study. Ecotoxicology 2013, 22, 1422–1434. [Google Scholar] [CrossRef] [Green Version]
- Alexander, M. Microorganisms and chemical pollution. Bioscience 1973, 23, 335–344. [Google Scholar] [CrossRef]
- Parkinson, D.; Gray, F.R.G.; Williams, S.T. Methods of Studying Ecology of Soil Microorganism; IBP Handbook; Blackweel Scientific Publication: Oxford, UK; Edinburgh, UK, 1971; p. 19. [Google Scholar]
- Martin, J. Use of acid rose bengal and streptomycin in the plate method for estimating soil fungi. Soil Sci. 1950, 69, 215–232. [Google Scholar] [CrossRef]
- Öhlinger, R. Dehydrogenase activity with the substrate TTC. In Methods in Soil Biology; Schinner, F., Öhlinger, R., Kandeler, E., Margesin, R., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 241–243. [Google Scholar]
- Alef, K.; Nannipieri, P. Enzyme Activities. In Methods in Applied Soil Microbiology and Biochemistry; Alef, K., Nannipieri, P., Eds.; Academic Press Harcourt Brace & Company Publishers: London, UK, 1998; pp. 316–365. [Google Scholar]
- Eivazi, F.; Tabatabai, M.A. Phosphatases in soils. Soil Biochem. 1977, 9, 167–172. [Google Scholar]
- Zaborowska, M.; Wyszkowska, J.; Borowik, A.; Kucharski, J. Bisphenol A—A dangerous pollutant distorting the biological properties of soil. Int. J. Mol. Sci. 2021, 22, 12753. [Google Scholar] [CrossRef]
- PN-R-04032; Soil and Mineral Materials—Sampling and Determination of Particle Size Distribution. Polish Committee for Standardization: Warsaw, Poland, 1998.
- ISO 11464; Soil Quality—Pre-Treatment of Samples for Physico-Chemical Analysis. International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 10390; In Soil Quality—Determination of pH. International Organization for Standardization: Geneva, Switzerland, 2005.
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Method of Soil Analysis: Chemical Methods; Sparks, D.L., Ed.; American Society of Agronomy: Madison, WI, USA, 1996; pp. 1201–1229. [Google Scholar]
- ISO 11261; Soil Quality—Determination of Total Nitrogen—Modified Kjeldahl Method. International Organization for Standardization: Geneva, Switzerland, 1995.
- Carter, M.R. Soil Sampling and Methods of Analysis; Canadian Society of Soil Science: London, UK; Lewis Publishers: London, UK, 1993. [Google Scholar]
- Klute, A. Methods of Soil Analysis; Agronomy Monograph 9; American Society of Agronomy: Madison, WI, USA, 1996. [Google Scholar]
- PN-ISO 11047; Soil Quality—Determination of Cadmium, Chromium, Cobalt, Copper, Lead, Manganese, Nickel and Zinc in Aqua Regia Extracts of Soil—Flame and Electrothermal Atomic Absorption Spectrometric Methods. 2001P. International Organization for Standardization: Geneva, Switzerland, 2016.
- PN-EN 14084. 2004 (N); Nickel, Cadmium and Cobalt Content in Above-Ground Parts and in Roots Determined by Flame Atomic Absorption Spectrometry and by Graphite Furnace Atomic Absorption Spectroscopy (FAAS and GFAAS) following Microwave Mineralization. International Organization for Standardization: Geneva, Switzerland, 2016. Available online: https://pzn.pkn.pl/kt/info/published/9000128800 (accessed on 20 April 2021).
- PN-EN ISO 18125:2017-07; Solid Biofuels—Determination of Calorific Value. European Committee for Standardization: Brussels, Belgium, 2017. Available online: https://pkn.pl/pn-en-iso-18125-2017-07 (accessed on 10 May 2021).
- PN-G-04584; Oznaczanie Zawartości Siarki Całkowitej i Popiołowej Automatycznymi Analizatorami. Determination of Total Sulphur and Ash Sulphur in Automatic Analyzers. National Standards Body in Poland: Warszaw, Poland, 2001. (In Polish)
- PN-G-04517; Węgiel Kamienny-Oznaczanie Wskaźników Dylatometrycznych. Bituminous Coal. Determination of Dilatometric Features. National Standards Body in Poland: Warszaw, Poland, 1981. (In Polish)
- PN-EN ISO 20483; Oznaczanie Zawartości Azotu i Przeliczanie na Zawartość Białka Surowego—Metoda Kjeldahla. Determination of Dilatometric Features. National Standards Body in Poland: Warsaw, Poland, 2014. (In Polish)
- Protásio, T.P.; Bufalino, L.; Tonoli, G.H.D.; Couto, A.M.; Trugilho, P.F.; Guimarães, M., Jr. Relação entre o poder calorífico superior e os componentes elementares e minerais da biomassa vegetal. Pesq. Flor. Bras. 2011, 31, 113–122. [Google Scholar] [CrossRef]
- Dell Inc. Dell Statistica (Data Analysis Software System), Version 13.1; Dell Inc.: Tulsa, OK, USA, 2016. [Google Scholar]
- Sarathchandra, S.; Burch, G.; Cox, N. Growth patterns of bacterial communities in the rhizoplane and rhizosphere of white clover (Trifolium repens L.) and perennial ryegrass (Lolium perenne L.) in long-term pasture. Appl. Soil Ecol. 1997, 6, 293–299. [Google Scholar] [CrossRef]
- De Leij, F.A.A.M.; Whipps, J.M.; Lynch, J.M. The use of colony development for the characterization of bacterial communities in soil and on roots. Microb. Ecol. 1994, 27, 81–97. [Google Scholar] [CrossRef]
- Kopetz, H.; Jossart, J.; Ragossnig, H.; Metschina, C. European Biomass Statistics 2007; European Biomass Association: Brussels, Belgium, 2007. [Google Scholar]
- Renella, G.; Landi, L.; Ascher, J.; Ceccherini, M.; Pietramellara, G.; Mench, M.; Nannipieri, P. Long-term effects of aided phytostabilisation of trace elements on microbial biomass and activity, enzyme activities, and composition of microbial community in the Jales contaminated mine spoils. Environ. Pollut. 2008, 152, 702–712. [Google Scholar] [CrossRef] [PubMed]
- Lopareva-Pohu, A.; Pourrut, B.; Waterlot, C.; Garcon, G.; Bidar, G.; Pruvot, C.; Shirali, P.; Douajy, F. Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial Part 1. Influence on soil parameters and metal extractability. Sci. Total Environ. 2011, 409, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Padmavathiamma, P.; Li, L. Rhizosphere influence and seasonal impact on phytostabilisation of metals—A field study. Water Air Soil Pollut. 2012, 223, 107–124. [Google Scholar] [CrossRef]
- Siebielec, G.; Chaney, R. Testing amendments for remediation of military range contaminated soil. J. Environ. Manag. 2012, 108, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Borowik, A.; Wyszkowska, J.; Kucharski, J. Impact of various grass species on soil bacteriobiome. Diversity 2020, 12, 212. [Google Scholar] [CrossRef]
- Borowik, A.; Wyszkowska, J.; Kucharski, M.; Kucharski, J. The role of Dactylis glomerata and diesel oil in the formation of microbiome and soil enzyme activity. Sensors 2020, 20, 3362. [Google Scholar] [CrossRef]
- Wójcikowska-Kapusta, A.; Urban, D.; Baran, S.; Bik-Małodzińska, M.; Żukowska, G.; Pawłowski, A.; Czechowska-Kosacka, A. Evaluation of the influence of composts made of sewage sludge, ash from power plant, and sawdust on floristic composition of plant communities in the plot experiment. Environ. Prot. Eng. 2017, 43, 2. [Google Scholar] [CrossRef]
- Pusz, A.; Wiśniewska, M.; Rogalski, D. Assessment of the accumulation ability of Festuca rubra L. and Alyssum saxatile L. tested on soils contaminated with Zn, Cd, Ni, Pb, Cr, and Cu. Resources 2021, 10, 46. [Google Scholar] [CrossRef]
- Boros-Lajszner, E.; Wyszkowska, J.; Borowik, A.; Kucharski, J. Energetic value of Elymus elongatus L. and Zea mays L. grown on soil polluted with Ni2+, Co2+, Cd2+, and Sensitivity of rhizospheric bacteria to heavy metals. Energies 2021, 14, 4903. [Google Scholar] [CrossRef]
- Vassilev, S.; Baxter, D.; Andersen, L.; Vassileva, C.G. An overview of the chemical composition of biomass. Fuel 2010, 89, 913–933. [Google Scholar] [CrossRef]
- Vassilev, S.; Baxter, D.; Andersen, L.; Vassileva, C.; Morgan, T. An overview of the organic and inorganic phase composition of biomass. Fuel 2012, 94, 1–33. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Snieg, M.; Krzyżaniak, M.; Tworkowski, J.; Szczukowski, S.; Graban, L.; Lajszner, W. Short rotation coppices, grasses and other herbaceous crops: Biomass properties versus 26 genotypes and harvest time. Ind. Crops Prod. 2018, 119, 22–32. [Google Scholar] [CrossRef]
- Arif, M.S.; Riaz, M.; Shahzad, S.M.; Yasmeen, T.; Ashraf, M.; Siddique, M.; Mubarik, M.S.; Bragazza, L.; Buttler, A. Fresh and composted industrial sludge restore soil functions in surface soil of degraded agricultural land. Sci. Total Environ. 2018, 619, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Gusiatin, Z.M.; Kulikowska, D. Behaviors of heavy metals (Cd, Cu, Ni, Pb and Zn) in soil amended with composts. Environ. Technol. 2016, 37, 2337–2347. [Google Scholar] [CrossRef]
- Hagner, M.; Uusitalo, M.; Ruhanen, H.; Heiskanen, J.; Peltola, R.; Tiilikkala, K.; Hyvönen, J.; Sarala, P.; Mäkitalo, K. Amending mine tailing cover with compost and biochar: Effects on vegetation establishment and metal bioaccumulation in the Finnish subarctic. Environ. Sci. Pollut. Res. 2021, 28, 59881–59898. [Google Scholar] [CrossRef]
- Komorowicz, M.; Wróblewska, H.; Pawłowski, J. Chemical composition and energetic properties of biomass from selected renewable energy sources. Ochr. Środ. Zas. Nat. 2009, 40, 402–410. (In Polish) [Google Scholar]
- Stolarski, M. Agrotechnical and Economic Aspects of Biomass Production from Willow Coppice (Salix spp.) as an Energy Source; Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn: Olsztyn, Poland, 2009. (In Polish) [Google Scholar]
- Tworkowski, J.; Kus, J.; Szczukowski, S.; Stolarski, M. Productivity of energy crops. In Modern Technologies of Obtaining and Energetic Use of Biomass; Bocian, P., Golec, T., Rakowski, J., Eds.; Instytut Energetyki: Warsaw, Poland, 2010; pp. 34–49. (In Polish) [Google Scholar]
- Szyszlak-Barglowicz, J.; Zajac, G.; Piekarski, W. Energy biomass characteristics of chosen plants. Int. Agrophys. 2012, 26, 175–179. [Google Scholar] [CrossRef] [Green Version]
- Abujabhah, I.S.; Doyle, R.B.; Bound, S.A.; Bowman, J.P. Assessment of bacterial community composition, methanotrophic and nitrogen-cycling bacteria in three soils with different biochar application rates. J. Soil Sediment. 2018, 18, 48–158. [Google Scholar] [CrossRef]
- Huang, D.; Liu, L.; Zeng, G.; Xu, P.; Huang, C.; Deng, L.; Wang, R.; Wan, J. The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment. Chemosphere 2017, 174, 545–553. [Google Scholar] [CrossRef]
- Liu, S.-H.; Zeng, G.-M.; Niu, Q.-Y.; Liu, Y.; Zhou, L.; Jiang, L.-H.; Tan, X.-F.; Xu, P.; Zhang, C.; Cheng, M. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review. Bioresour. Technol. 2017, 224, 25–33. [Google Scholar] [CrossRef]
- Yang, K.; Zhu, L.; Zhao, Y.; Wei, Z.; Chen, X.; Yao, C.; Meng, Q.; Zhao, R. A novel method for removing heavy metals from composting system: The combination of functional bacteria and adsorbent materials. Bioresour. Technol. 2019, 293, 122095. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zhao, Y.; Zhao, X.; Gao, X.; Zheng, Y.; Zuo, H.; Wei, Z. Roles of different humin and heavy-metal resistant bacteria from composting on heavy metal removal Yuquan. Bioresour. Technol. 2020, 296, 122375. [Google Scholar] [CrossRef] [PubMed]
- Baker, L.; White, P.; Pierzynski, G. Changes in microbial properties after manure, lime, and bentonite application to a heavy metal-contaminated mine waste. Appl. Soil Ecol. 2011, 48, 1–10. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; Fuente, C.; Bernal, M.P. Improvement of soil quality after “alperujo” compost application to two contaminated soils characterised by differing heavy metal solubility. J. Environ. Manag. 2011, 92, 733–741. [Google Scholar] [CrossRef]
- Tiana, W.; Wanga, L.; Lia, Y.; Zhuanga, K.; Lia, G.; Zhanga, J.; Xiaoa, X.; Xi, Y. Responses of microbial activity, abundance, and community in wheat soil after three years of heavy fertilization with manure-based compost and inorganic nitrogen. Agric. Ecosyst. Environ. 2015, 213, 219–227. [Google Scholar] [CrossRef]
- Gondek, K.; Mierzwa-Hersztek, M.; Kopeć, M. Mobility of heavy metals in sandy soil after application of composts produced from maize straw, sewage sludge and biochar. J. Environ. Manag. 2018, 210, 87–95. [Google Scholar] [CrossRef]
- Bai, X.; Wang, J.; Dong, H.; Chen, J.; Ge, Y. Relative importance of soil properties and heavy metals/metalloids to modulate microbial community and activity at a smelting site. J. Soil. Sediment. 2020, 21, 1–12. [Google Scholar] [CrossRef]
- Song, D.; Xi, X.; Zheng, Q.; Liang, G.; Zhou, W.; Wang, X. Soil nutrient and microbial activity responses to two years after maize straw biochar application in a calcareous soil. Ecotoxicol. Environ. Saf. 2019, 180, 278–285. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, J.; Ren, L.; Zhou, Y.; Gao, J.; Luo, L.; Yang, Y.; Peng, Q.; Huang, H.; Chen, A. Diagnosis of soil contamination using microbiological indices: A review on heavy metal pollution. J. Environ. Manag. 2019, 242, 121–130. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, L.; Zhang, J.; Ren, L.; Zhou, Y.; Zheng, Y.; Luo, L.; Yang, Y.; Huang, H.; Chen, A. Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost. Sci. Total Environ. 2020, 701, 134751. [Google Scholar] [CrossRef]
- Zeng, G.; Wu, H.; Liang, J.; Guo, S.; Huang, L.; Xu, P.; Liu, Y.; Yuan, Y.; He, X.; He, Y. Efficiency of biochar and compost (or composting) combined amendments for reducing Cd, Cu, Zn and Pb bioavailability, mobility and ecological risk in wetland soil. Rsc. Adv. 2015, 5, 34541–34548. [Google Scholar] [CrossRef]
- Liang, J.; Yang, Z.; Tang, L.; Zeng, G.; Yu, M.; Li, X.; Wu, H.; Qian, Y.; Li, X.; Luo, Y. Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost. Chemosphere 2017, 181, 281–288. [Google Scholar] [CrossRef]
- Garau, G.; Porceddu, A.; Sanna, M.; Silvetti, M.; Castaldi, P. Municipal solid wastes as a resource for environmental recovery: Impact of water treatment residuals and compost on the microbial and biochemical features of As and trace metal-polluted soils. Ecotoxicol. Environ. Saf. 2019, 174, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Ren, L.; Zhang, J.; Luo, L.; Qin, P.; Zhou, Y.; Huang, C.; Tang, J.; Huang, H.; Chen, A. Population characteristics and influential factors of nitrogen cycling functional genes in heavy metal contaminated soil remediated by biochar and compost. Sci. Total Environ. 2019, 651, 2166–2174. [Google Scholar] [CrossRef] [PubMed]
Heavy Metals | Aerial Parts | Roots | Soil |
---|---|---|---|
Soil not contaminated with metals, not fertilized with compost | |||
Nickel | 3.34 g | 8.59 f | 7.55 f |
Cobalt | 5.00 e | 5.00 h | 9.75 e |
Cadmium | 0.17 k | 0.82 j | 0.60 i |
Soil contaminated with metals, not fertilized with compost | |||
Nickel | 17.34 b | 73.53 d | 320.03 b |
Cobalt | 7.45 d | 99.04 b | 51.49 d |
Cadmium | 1.68 i | 2.07 i | 1.53 i |
Soil not contaminated with metals, fertilized with compost | |||
Nickel | 2.00 h | 13.30 e | 5.39 h |
Cobalt | 5.00 e | 6.81 g | 9.50 e |
Cadmium | 0.97 j | 0.84 f | 0.60 i |
Soil contaminated with metals, fertilized with compost | |||
Nickel | 27.39 a | 82.55 c | 328.04 a |
Cobalt | 14.45 c | 101.07 a | 58.53 c |
Cadmium | 3.73 f | 5.12 h | 6.55 g |
Heavy Metals | D µg kg−1 | TF | BFA | BFR | AF |
---|---|---|---|---|---|
Soil not contaminated with metals, not fertilized with compost | |||||
Ni2+ | 63.090 f | 0.389 d | 0.442 bc | 1.138 e | 1.580 e |
Co2+ | 61.157 g | 1.000 b | 0.513 b | 0.513 h | 1.026 h |
Cd2+ | 4.833 k | 0.207 ef | 0.283 de | 1.367 d | 1.650 e |
Soil contaminated with metals, not fertilized with compost | |||||
Ni2+ | 232.418 c | 0.236 e | 0.054 f | 0.230 i | 0.284 i |
Co2+ | 61.542 g | 0.075 f | 0.145 ef | 1.923 b | 2.068 c |
Cd2+ | 20.774 i | 0.812 c | 1.098 a | 1.353 d | 2.451 b |
Soil not contaminated with metals, fertilized with compost | |||||
Ni2+ | 92.321 d | 0.150 fg | 0.371 cd | 2.468 a | 2.839 a |
Co2+ | 81.379 e | 0.734 c | 0.526 b | 0.717 g | 1.243 g |
Cd2+ | 13.074 j | 1.153 a | 1.128 a | 0.978 f | 2.106 c |
Soil contaminated with metals, fertilized with compost | |||||
Ni2+ | 387.968 a | 0.332 d | 0.083 f | 0.252 i | 0.335 i |
Co2+ | 338.670 b | 0.143 fg | 0.247 de | 1.727 c | 1.974 d |
Cd2+ | 53.642 h | 0.729 c | 0.569 b | 0.782 g | 1.351 f |
Heavy Metals | Heat of Combustion (Q) | Calorific Value (Hv) | Energy Yield (YEP) MJ kg−1 |
---|---|---|---|
MJ kg−1 Air-Dry Matter Plants | |||
Soil not fertilized with compost | |||
Control | 18.210 bc | 16.310 ab | 0.130 ab |
Ni2+ | 18.211 bc | 16.311 ab | 0.087 bc |
Co2+ | 18.452 ab | 16.645 a | 0.059 c |
Cd2+ | 18.495 ab | 16.454 ab | 0.125 ab |
Soil fertilized with compost | |||
Control | 18.137 bc | 16.306 ab | 0.140 a |
Ni2+ | 17.696 c | 15.924 b | 0.093 bc |
Co2+ | 18.576 a | 16.790 a | 0.089 bc |
Cd2+ | 18.402 ab | 16.557 ab | 0.131 ab |
Heavy Metals | Carbon | Hydrogen | Sulfur | Nitrogen | Oxygen | Ash |
---|---|---|---|---|---|---|
% d.m. | ||||||
Soil not fertilized with compost | ||||||
Control | 47.37 a | 6.07 a | 0.15 | 3.08 bc | 34.36 bc | 8.98 d |
Ni2+ | 44.26 c | 5.81 a | 0.23 a | 3.88 a | 36.04 a | 9.78 bc |
Co2+ | 46.47 b | 5.95 a | 0.18 b | 3.84 a | 34.13 bc | 9.43 c |
Cd2+ | 46.64 b | 5.99 a | 0.20 ab | 3.36 b | 35.06 b | 8.74 d |
Soil fertilized with compost | ||||||
Control | 47.02 a | 6.00 a | 0.17 b | 3.14 bc | 33.47 c | 10.20 b |
Ni2+ | 43.57 d | 5.56 ab | 0.24 a | 4.33 a | 33.69 c | 12.60 a |
Co2+ | 46.65 b | 5.90 a | 0.19 ab | 3.42 b | 34.64 bc | 9.20 c |
Cd2+ | 46.43 b | 6.02 a | 0.17 b | 2.87 c | 35.36 b | 9.16 cd |
Heavy Metals | Dehydrogenases μmol TFF kg−1 d.m. h−1 | Catalase mol O2 kg−1 d.m. h−1 | Urease mmol N-NH4 kg−1 d.m. h−1 | Acid Phosphatase | Alkaline Phosphatase | β-Glucosidase | Arylsulfatase | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mmol PNP kg−1 d.m. h−1 | ||||||||||||||
Sown Soil | Unsown Soil | Sown Soil | Unsown Soil | Sown Soil | Unsown Soil | Sown Soil | Unsown Soil | Sown Soil | Unsown Soil | Sown Soil | Unsown Soil | Sown Soil | Unsown Soil | |
Soil not fertilized with compost | ||||||||||||||
Control | 4.147 c | 1.976 fg | 0.225 bc | 0.203 bc | 0.725 e | 0.539 g | 1.388 de | 1.201 fg | 0.435 fg | 0.292 gh | 1.183 b | 1.119 ef | 0.186 b | 0.091 ef |
Ni2+ | 1.409 gh | 0.606 i | 0.220 bc | 0.183 bc | 0.824 d | 0.501 g | 1.027 hi | 0.998 i | 0.784 bc | 0.206 h | 1.126 e | 1.095 h | 0.160 cd | 0.081 fg |
Co2+ | 2.911 e | 1.453 gh | 0.208 bc | 0.198 bc | 0.693 ef | 0.685 ef | 1.435 de | 1.419 de | 0.788 bc | 0.301 gh | 1.125 e | 1.072 i | 0.169 bc | 0.072 g |
Cd2+ | 3.951 cd | 1.756 fg | 0.209 bc | 0.171 c | 0.690 ef | 0.648 f | 1.073 ghi | 1.036 hi | 0.606 de | 0.580 def | 1.107 fgh | 1.099 h | 0.177 b | 0.072 g |
Soil fertilized with compost | ||||||||||||||
Control | 7.020 a | 2.048 f | 0.297 a | 0.229 bc | 1.031 a | 0.687 ef | 2.198 a | 1.502 d | 0.790 bc | 0.406 g | 1.320 a | 1.128 e | 0.219 a | 0.145 d |
Ni2+ | 2.047 f | 0.924 hi | 0.246 ab | 0.213 bc | 0.841 d | 0.500 g | 1.138 gh | 1.116 ghi | 1.405 a | 0.446 efg | 1.129 de | 1.104 gh | 0.178 b | 0.090 ef |
Co2+ | 3.520 d | 1.683 fg | 0.218 bc | 0.225 bc | 0.913 c | 0.686 ef | 1.740 c | 1.718 c | 0.796 bc | 0.646 cd | 1.141 cd | 1.120 ef | 0.209 a | 0.099 e |
Cd2+ | 5.445 b | 2.130 f | 0.248 ab | 0.218 bc | 1.000 ab | 0.949 bc | 2.023 b | 1.313 ef | 0.891 b | 0.709 cd | 1.148 c | 1.116 efg | 0.207 a | 0.095 ef |
Heavy Metals | pHKCl | Corg | Ntotal | HAC | EBC | CEC | BS |
---|---|---|---|---|---|---|---|
(g kg−1) | (mmol(+) kg−1 soil) | % | |||||
Unsown soil | |||||||
Soil not fertilized with compost | |||||||
Control | 7.35 bcd | 7.13 bcd | 0.84 ab | 4.13 f | 114.00 b | 118.13 b | 96.51 a |
Ni2+ | 7.15 ef | 6.40 gh | 0.76 def | 6.19 bc | 89.00 gh | 95.19 gh | 93.50 g |
Co2+ | 7.05 f | 6.35 hi | 0.82 abcd | 7.13 a | 90.00 g | 97.13 g | 92.66 h |
Cd2+ | 7.30 cd | 6.07 i | 0.75 efg | 5.81 cd | 87.00 h | 92.81 h | 93.74 g |
Soil fertilized with compost | |||||||
Control | 7.40 abc | 7.66 a | 0.88 a | 4.13 f | 119.00 a | 124.06 a | 95.92 bc |
Ni2+ | 7.30 cd | 6.98 bcde | 0.87 a | 5.44 de | 109.00 c | 114.44 c | 95.25 de |
Co2+ | 7.25 de | 7.16 bc | 0.65 abc | 5.06 e | 106.00 d | 110.13 d | 96.25 ab |
Cd2+ | 7.30 cd | 7.09 bcde | 0.85 ab | 5.06 e | 113.00 b | 118.06 b | 95.71 c |
Sown soil | |||||||
Soil not fertilized with compost | |||||||
Control | 7.45 ab | 6.95 cde | 0.75 efg | 4.50 f | 90.00 g | 94.50 gh | 95.24 de |
Ni2+ | 7.25 de | 6.65 fg | 0.69 g | 6.56 b | 66.00 k | 72.56 k | 90.96 i |
Co2+ | 7.15 ef | 6.81 ef | 0.73 fg | 7.50 a | 67.00 k | 74.50 k | 89.93 j |
Cd2+ | 7.40 abc | 6.29 hi | 0.73 fg | 6.19 bc | 74.00 j | 80.19 j | 92.28 h |
Soil fertilized with compost | |||||||
Control | 7.50 a | 7.89 a | 0.88 a | 4.50 f | 101.00 e | 106.44 e | 94.89 e |
Ni2+ | 7.40 abc | 7.10 bcde | 0.80 bcde | 5.81 cd | 83.00 i | 88.81 i | 93.45 g |
Co2+ | 7.35 bcd | 7.25 b | 0.78 cdef | 5.44 de | 98.00 f | 102.50 f | 95.61 cd |
Cd2+ | 7.40 abc | 6.85 def | 0.78 cdef | 5.44 de | 91.00 g | 96.44 g | 94.36 f |
Plant | Calorific Value MJ kg−1 | Reference |
---|---|---|
Euphorbia nerrifolia | 21.487 | [20] |
Nerium indicum | 18.443 | [20] |
Mimusops elengi L. | 19.217 | [20] |
Miscanthus sinensis | 17.840; 17.960 | [21,89] |
Sida hermaphrodita | 17.430 | [21] |
Silphium perfoliatum L. | 16.820 | [21] |
Salix alba | 19.200 | [90] |
Virginia fanpetals | 17.170; 18.500 | [91,92] |
Festuca rubra | 16.310 | Own research |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wyszkowska, J.; Boros-Lajszner, E.; Kucharski, J. Calorific Value of Festuca rubra Biomass in the Phytostabilization of Soil Contaminated with Nickel, Cobalt and Cadmium Which Disrupt the Microbiological and Biochemical Properties of Soil. Energies 2022, 15, 3445. https://doi.org/10.3390/en15093445
Wyszkowska J, Boros-Lajszner E, Kucharski J. Calorific Value of Festuca rubra Biomass in the Phytostabilization of Soil Contaminated with Nickel, Cobalt and Cadmium Which Disrupt the Microbiological and Biochemical Properties of Soil. Energies. 2022; 15(9):3445. https://doi.org/10.3390/en15093445
Chicago/Turabian StyleWyszkowska, Jadwiga, Edyta Boros-Lajszner, and Jan Kucharski. 2022. "Calorific Value of Festuca rubra Biomass in the Phytostabilization of Soil Contaminated with Nickel, Cobalt and Cadmium Which Disrupt the Microbiological and Biochemical Properties of Soil" Energies 15, no. 9: 3445. https://doi.org/10.3390/en15093445
APA StyleWyszkowska, J., Boros-Lajszner, E., & Kucharski, J. (2022). Calorific Value of Festuca rubra Biomass in the Phytostabilization of Soil Contaminated with Nickel, Cobalt and Cadmium Which Disrupt the Microbiological and Biochemical Properties of Soil. Energies, 15(9), 3445. https://doi.org/10.3390/en15093445