Machine Learning Assisted Chemical Process Parameter Mapping on Lignin Hydrogenolysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Pre-Processing
2.2. Machine Learning Algorithm and Evaluation Indicators
2.2.1. Algorithms
2.2.2. Evaluation Indicators
2.2.3. Chemical Parameter Mapping
3. Results and Discussion
3.1. Prediction Curve and Analysis of Solid Residue
3.2. Prediction Curve and Analysis of Aromatic Products
3.3. Contributions of Feature to the Machine Learning Performances
3.4. Reaction Parameter Mapping
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IEA. Key World Energy Statistics 2021; IEA: Paris, France, 2021. Available online: https://www.iea.org/reports/key-world-energy-statistics-2021 (accessed on 1 July 2022).
- Clementine, C.L.; Chen, M.; Fennell, P.S.; Hallett, J.P. Efficient Fractionation of Lignin- and Ash-Rich Agricultural Residues Following Treatment with a Low-Cost Protic Ionic Liquid. Front. Chem. 2019, 7, 246. [Google Scholar] [CrossRef] [Green Version]
- Tofani, G.; Cornet, I.; Tavernier, S. Separation and recovery of lignin and hydrocarbon derivatives from cardboard. Biomass Conv. Bioref. 2022, 12, 3409–3424. [Google Scholar] [CrossRef]
- Anderson, W.F.; Akin, D.E. Structural and Chemical Properties of Grass Lignocelluloses Related to Conversion for Biofuels. J Ind. Microbiol. Biotechnol. 2008, 35, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Shrotri, A.; Kobayashi, H.; Fukuoka, A. Cellulose Depolymerization over Heterogeneous Catalysts. Acc. Chem. Res. 2018, 51, 761–768. [Google Scholar] [CrossRef] [Green Version]
- De Jong, E.; Gosselink, R.J.A. Lignocellulose-Based Chemical Products. In Bioenergy Research: Advances and Applications; Elsevier: Amsterdam, The Netherlands, 2014; pp. 277–313. [Google Scholar]
- Cheng, C.; Shen, D.; Gu, S.; Luo, K.H. State-of-the-Art Catalytic Hydrogenolysis of Lignin for the Production of Aromatic Chemicals. Catal. Sci. Technol. 2018, 8, 6275–6296. [Google Scholar] [CrossRef]
- DeLucia, N.A.; Das, N.; Overa, S.; Paul, A.; Vannucci, A.K. Low Temperature Selective Hydrodeoxygenation of Model Lignin Monomers from a Homogeneous Palladium Catalyst. Catal. Today 2018, 302, 146–150. [Google Scholar] [CrossRef]
- Kaur, P.; Singh, G.; Arya, S.K. Tandem catalytic approaches for lignin depolymerization: A review. Biomass Convers. Biorefinery 2022, 1–12. [Google Scholar] [CrossRef]
- Hu, L.; Wei, X.-Y.; Kang, Y.-H.; Guo, X.-H.; Xu, M.-L.; Zong, Z.-M. Mordenite-Supported Ruthenium Catalyst for Selective Hydrodeoxygenation of Lignin Model Compounds and Lignin-Derived Bio-Oil to Produce Cycloalkanes. J. Energy Inst. 2021, 96, 269–279. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, S.; Wang, S.; He, Y.; Liu, Y.; Wang, J.; Fan, W.; Lv, Y. Low Temperature Hydrodeoxygenation of Guaiacol into Cyclohexane over Ni/SiO2 Catalyst Combined with Hβ Zeolite. RSC Adv. 2019, 9, 3868–3876. [Google Scholar] [CrossRef] [Green Version]
- Klimenko, K.; Marcou, G.; Horvath, D.; Varnek, A. Chemical Space Mapping and Structure–Activity Analysis of the ChEMBL Antiviral Compound Set. J. Chem. Inf. Model. 2016, 56, 1438–1454. [Google Scholar] [CrossRef]
- Kartal, F.; Özveren, U. An improved machine learning approach to estimate hemicellulose, cellulose, and lignin in biomass. Carbohydr. Polym. Technol. Appl. 2021, 2, 2666–8939. [Google Scholar] [CrossRef]
- Guolin, K.; Qi, M.; Thomas, F.; Taifeng, W.; Wei, C.; Weidong, M.; Qiwei, Y.; Tie-Yan, L. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. Curran Associates, Inc. 2017, p. 30. Available online: https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf (accessed on 28 November 2022).
- Suzuki, K.; Toyao, T.; Maeno, Z.; Takakusagi, S.; Shimizu, K.; Takigawa, I. Statistical Analysis and Discovery of Heterogeneous Catalysts Based on Machine Learning from Diverse Published Data. ChemCatChem 2019, 11, 4537–4547. [Google Scholar] [CrossRef]
- Liudmila, P.; Gleb, G.; Aleksandr, V.; Anna V., D.; Andrey, G. CatBoost: Unbiased Boosting with Categorical Features. Adv. Neural Inf. Process. Syst. 2018, 31. [Google Scholar] [CrossRef]
- Castro Garcia, A.; Shuo, C.; Cross, J.S. Machine Learning Based Analysis of Reaction Phenomena in Catalytic Lignin Depolymerization. Bioresour. Technol. 2022, 345, 126503. [Google Scholar] [CrossRef] [PubMed]
- Asawaworarit, P.; Daorattanachai, P.; Laosiripojana, W.; Sakdaronnarong, C.; Shotipruk, A.; Laosiripojana, N. Catalytic Depolymerization of Organosolv Lignin from Bagasse by Carbonaceous Solid Acids Derived from Hydrothermal of Lignocellulosic Compounds. Chem. Eng. J. 2019, 356, 461–471. [Google Scholar] [CrossRef]
- Wang, X.; Du, B.; Pu, L.; Guo, Y.; Li, H.; Zhou, J. Effect of Particle Size of HZSM-5 Zeolite on the Catalytic Depolymerization of Organosolv Lignin to Phenols. J. Anal. Appl. Pyrolysis 2018, 129, 13–20. [Google Scholar] [CrossRef]
- Li, W.; Dou, X.; Zhu, C.; Wang, J.; Chang, H.; Jameel, H.; Li, X. Production of Liquefied Fuel from Depolymerization of Kraft Lignin over a Novel Modified Nickel/H-Beta Catalyst. Bioresour. Technol. 2018, 269, 346–354. [Google Scholar] [CrossRef]
- Shen, X.-J.; Wen, J.-L.; Huang, P.-L.; Zheng, K.; Wang, S.-F.; Liu, Q.-Y.; Charlton, A.; Sun, R.-C. Efficient and Product-Controlled Depolymerization of Lignin Oriented by Raney Ni Cooperated with Cs x H3−x PW12O40. Bioenergy Res. 2017, 10, 1155–1162. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Dou, X.; Li, W.; Liu, X.; Li, Q.; Ma, J.; Liu, Q.; Ma, L. Efficient Depolymerization of Kraft Lignin to Liquid Fuels over an Amorphous Titanium-Zirconium Mixed Oxide Supported Partially Reduced Nickel-Cobalt Catalyst. Bioresour. Technol. 2019, 284, 293–301. [Google Scholar] [CrossRef]
- Kong, L.; Zhang, L.; Gu, J.; Gou, L.; Xie, L.; Wang, Y.; Dai, L. Catalytic Hydrotreatment of Kraft Lignin into Aromatic Alcohols over Nickel-Rhenium Supported on Niobium Oxide Catalyst. Bioresour. Technol. 2020, 299, 122582. [Google Scholar] [CrossRef]
- Kong, L.; Liu, C.; Gao, J.; Wang, Y.; Dai, L. Efficient and Controllable Alcoholysis of Kraft Lignin Catalyzed by Porous Zeolite-Supported Nickel-Copper Catalyst. Bioresour. Technol. 2019, 276, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Limarta, S.O.; Ha, J.-M.; Park, Y.-K.; Lee, H.; Suh, D.J.; Jae, J. Efficient Depolymerization of Lignin in Supercritical Ethanol by a Combination of Metal and Base Catalysts. J. Ind. Eng. Chem. 2018, 57, 45–54. [Google Scholar] [CrossRef]
- Lv, W.; Zhu, Y.; Liu, J.; Wang, C.; Xu, Y.; Zhang, Q.; Chen, G.; Ma, L. Modifying MgO with Carbon for Valorization of Lignin to Aromatics. ACS Sustain. Chem. Eng. 2019, 7, 5751–5763. [Google Scholar] [CrossRef]
- Dou, X.; Jiang, X.; Li, W.; Zhu, C.; Liu, Q.; Lu, Q.; Zheng, X.; Chang, H.; Jameel, H. Highly Efficient Conversion of Kraft Lignin into Liquid Fuels with a Co-Zn-Beta Zeolite Catalyst. Appl. Catal. B 2020, 268, 118429. [Google Scholar] [CrossRef]
- Du, B.; Chen, C.; Sun, Y.; Yu, M.; Yang, M.; Wang, X.; Zhou, J. Catalytic Conversion of Lignin to Bio-Oil over PTA/MCM-41 Catalyst Assisted by Ultrasound Acoustic Cavitation. Fuel Process. Technol. 2020, 206, 106479. [Google Scholar] [CrossRef]
- Nandiwale, K.Y.; Danby, A.M.; Ramanathan, A.; Chaudhari, R.v.; Subramaniam, B. Zirconium-Incorporated Mesoporous Silicates Show Remarkable Lignin Depolymerization Activity. ACS Sustain. Chem. Eng. 2017, 5, 7155–7164. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Park, S.Y.; Choi, I.-G.; Choi, J.W. Evaluation of RuxNi1-x/SBA-15 Catalysts for Depolymerization Features of Lignin Macromolecule into Monomeric Phenols. Chem. Eng. J. 2018, 336, 640–648. [Google Scholar] [CrossRef]
- Limarta, S.O.; Kim, H.; Ha, J.-M.; Park, Y.-K.; Jae, J. High-Quality and Phenolic Monomer-Rich Bio-Oil Production from Lignin in Supercritical Ethanol over Synergistic Ru and Mg-Zr-Oxide Catalysts. Chem. Eng. J. 2020, 396, 125175. [Google Scholar] [CrossRef]
- Tran, M.H.; Phan, D.-P.; Nguyen, T.H.; Kim, H.B.; Kim, J.; Park, E.D.; Lee, E.Y. Catalytic Hydrogenolysis of Alkali Lignin in Supercritical Ethanol over Copper Monometallic Catalyst Supported on a Chromium-Based Metal–Organic Framework for the Efficient Production of Aromatic Monomers. Bioresour. Technol. 2021, 342, 125941. [Google Scholar] [CrossRef]
- Luo, B.; Zhou, L.; Tian, Z.; He, Y.; Shu, R. Hydrogenolysis of Cornstalk Lignin in Supercritical Ethanol over N-Doped Micro-Mesoporous Biochar Supported Ru Catalyst. Fuel Process. Technol. 2022, 231, 107218. [Google Scholar] [CrossRef]
- Jiang, W.; Cao, J.-P.; Zhu, C.; Xie, J.-X.; Zhao, L.; Zhang, C.; Zhao, X.-Y.; Zhao, Y.-P.; Bai, H.-C. Selective Hydrogenolysis of C-O Bonds in Lignin and Its Model Compounds over a High-Performance Ru/AC Catalyst under Mild Conditions. Chem. Eng. Sci. 2022, 253, 117554. [Google Scholar] [CrossRef]
- Su, S.; Xiao, L.; Chen, X.; Wang, S.; Chen, X.; Guo, Y.; Zhai, S. Lignin-First Depolymerization of Lignocellulose into Monophenols over Carbon Nanotube-Supported Ruthenium: Impact of Lignin Sources. ChemSusChem 2022, 15, e202200365. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.-P.; Liu, F.-J.; Bie, L.-L.; Si, X.-G.; Li, Y.-H.; Song, P.; Liu, N.; Zhao, Y.-P.; Huang, Z.-X.; Cao, J.-P.; et al. Selective Cleavage of C–O Bond in Lignin and Lignin Model Compounds over Iron/Nitrogen Co-Doped Carbon Supported Ni Catalyst. Fuel 2022, 316, 123338. [Google Scholar] [CrossRef]
- Jiang, W.; Cao, J.-P.; Yang, Z.; Xie, J.-X.; Zhao, L.; Zhu, C.; Zhang, C.; Zhao, X.-Y.; Zhao, Y.-P.; Zhang, J.-L. Hydrodeoxygenation of Lignin and Its Model Compounds to Hydrocarbon Fuels over a Bifunctional Ga-Doped HZSM-5 Supported Metal Ru Catalyst. Appl. Catal. A Gen. 2022, 633, 118516. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, X.; Fu, Y.; Chang, J. Study on Selective Preparation of Phenolic Products from Lignin over Ru–Ni Bimetallic Catalysts Supported on Modified HY Zeolite. Ind. Eng. Chem. Res. 2022, 61, 3206–3217. [Google Scholar] [CrossRef]
- Zeng, Z.; Xie, J.; Guo, Y.; Rao, R.; Chen, B.; Cheng, L.; Xie, Y.; Ouyang, X. Hydrogenolysis of Lignin to Produce Aromatic Monomers over Fe Pd Bimetallic Catalyst Supported on HZSM-5. Fuel Process. Technol. 2021, 213, 106713. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, P.; Lv, W.; Wang, C.; Ma, L.; Zhang, Q. Hydrogenolysis of Organosolv Hydrolyzed Lignin over High-Dispersion Ni/Al-SBA-15 Catalysts for Phenolic Monomers. Chin. J. Chem. Eng. 2021, 32, 307–314. [Google Scholar] [CrossRef]
- Luo, B.; Huang, Z.; Shu, R.; Cheng, Y.; Tian, Z.; Wang, C.; Chen, Y. Effects of Metal Sites and Acid Sites on the Hydrogenolysis of Cornstalks in Supercritical Ethanol during Lignin-First Fractionation. Sustain. Energy Fuels 2021, 5, 6097–6106. [Google Scholar] [CrossRef]
- Jiang, W.; Cao, J.-P.; Xie, J.-X.; Zhao, L.; Zhang, C.; Zhao, X.-Y.; Zhao, Y.-P.; Zhang, J.-L. Catalytic Hydrodeoxygenation of Lignin and Its Model Compounds to Hydrocarbon Fuels over a Metal/Acid Ru/HZSM-5 Catalyst. Energy Fuels 2021, 35, 19543–19552. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-L. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef]
- Zhao, C.; Huang, J.; Yang, L.; Yue, F.; Lu, F. Revealing Structural Differences between Alkaline and Kraft Lignins by HSQC NMR. Ind. Eng. Chem. Res. 2019, 58, 5707–5714. [Google Scholar] [CrossRef]
- Lin, F.; Ma, Y.; Sun, Y.; Zhao, K.; Gao, T.; Zhu, Y. Heterogeneous Ni–Ru/H-ZSM-5 One-Pot Catalytic Conversion of Lignin into Monophenols. Renew Energy 2021, 170, 1070–1080. [Google Scholar] [CrossRef]
Catalyst Support | Metal | Solid Yield | Aromatics Yield | Published Year | Ref. |
---|---|---|---|---|---|
CSA (carbonaceous solid acids) | none | 0~12.40 | 9.11~32.83 | 2019 | [18] |
HZSM-5 (zeolite) | none | 15.36~19.80 | 10.50~12.29 | 2018 | [19] |
H-beta (zeolite) | Ni | 9.52~54.68 | 3.43~11.79 | 2018 | [20] |
PTA (Terephthalic acid) | Ni, Cs | 0~21.61 | 12.10~20.28 | 2017 | [21] |
TiO2, ZrO2 | Ni, Co | 7.25~54.13 | 3.4~18.18 | 2019 | [22] |
Nb2O5 | Ni, Re | 2.38~27.01 | 9.93~30.4 | 2020 | [23] |
Zeolites (H-Beta, HZSM-5, MAS-7, MCM-41 SAPO-11) | Ni, Cu | 0.04~27.01 | 0~20.10 | 2019 | [24] |
Active carbon, MgO, ZrO2, Al2O3 | Ru | 1.75~6.1 | 8.8~47.3 | 2018 | [25] |
MgO, AC | Pd | ~4.32 | ~24.49 | 2019 | [26] |
de-aluminum H-beta (zeolite) | Co, Zn | 8.60~51.63 | 2.39~12.21 | 2020 | [27] |
MCM-41, PTA | none | 3.33~44.46 | 0.27~8.79 | 2020 | [28] |
Zeolites (H-FER, H-MOR, H-Beta) | none | 29.0~41.0 | 1~3.4 | 2017 | [29] |
SBA-15 (mesoporous silica) | Ni, Ru | 3.37~30.52 | 5.8~12.7 | 2018 | [30] |
Active carbon, MgO, ZrO2, Al2O3 | Ni, Ru, Pd | 4.2~42.8 | 7.44~35.49 | 2020 | [31] |
Cr2O3 | Cu, Pd | 25.31~56.16 | 2.37~11.24 | 2021 | [32] |
Nitrogen doped biochar | Ru | 19.3~26.5 | 16.9~29.4 | 2022 | [33] |
Activate carbon | Ru | ~56.1 | ~13.24 | 2022 | [34] |
Carbon nanotube | Ru | 4.7~32.6 | 1.2~42.7 | 2022 | [35] |
Nitrogen-iron doped carbon nanotube | Ni | ~60.5 | ~20.2 | 2022 | [36] |
Ga-doped ZSM-5 (zeolite) | Ru | ~40.5 | ~26.76 | 2022 | [37] |
HY (zeolite) | Ni, Ru | 5.23~18.3 | 5.5~20.2 | 2022 | [38] |
Iron dispersed HZSM-5 (zeolite) | Pd | 1~39.06 | 8.37~27.93 | 2021 | [39] |
Al-SBA-15 | Ni | 15.25~20.17 | 17.87~21.56 | 2021 | [40] |
Activate carbon | none | 6.61~56.68 | 18.76~40.4 | 2021 | [41] |
HZSM-5 (zeolite) | Ru | ~48.7 | ~19.95 | 2021 | [42] |
Variable Name | Abbreviation | Range | Unit |
---|---|---|---|
Reaction temperature | TEMP | 160–400 | °C |
Reaction time | TIME | 0.5–36 | h |
Hydrogen pressure | HPRE | 0–4 | MPa |
Solvent-to-Reactor Ratio | SRR | 0.16–0.6 | - |
Lignin-to-Solvent Ratio | LSR | 1.75–50 | - |
Solvent of Water Ratio | SOWR | 0.1667–1 | - |
Solvent of Alcohol Ratio | SOAR | 0–1 | - |
Solvent of Organic Ratio | SOOR | 0–1 | - |
Catalyst-to-Lignin Ratio | TCR | 0.01–2 | - |
Average pore size | POSZ | 0.43–20.4 | nm |
Average pore volume | PRVL | 0.005–1.95 | cm3/g |
BET surface area | BETS | 4.2–3349 | m2/g |
Total acidity | ACID | 0–49 | mmol NH3/g |
Cobalt ratio in catalyst | MCOR | 0–4.59 | - |
Nickel ratio in catalyst | MNIR | 0–0.5 | - |
Ruthenium ratio in catalyst | MRUR | 0–0.2 | - |
Palladium ratio in catalyst | MPDR | 0–0.05 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Cheng, S.; Cross, J.S. Machine Learning Assisted Chemical Process Parameter Mapping on Lignin Hydrogenolysis. Energies 2023, 16, 256. https://doi.org/10.3390/en16010256
Liu Y, Cheng S, Cross JS. Machine Learning Assisted Chemical Process Parameter Mapping on Lignin Hydrogenolysis. Energies. 2023; 16(1):256. https://doi.org/10.3390/en16010256
Chicago/Turabian StyleLiu, Yin, Shuo Cheng, and Jeffrey Scott Cross. 2023. "Machine Learning Assisted Chemical Process Parameter Mapping on Lignin Hydrogenolysis" Energies 16, no. 1: 256. https://doi.org/10.3390/en16010256
APA StyleLiu, Y., Cheng, S., & Cross, J. S. (2023). Machine Learning Assisted Chemical Process Parameter Mapping on Lignin Hydrogenolysis. Energies, 16(1), 256. https://doi.org/10.3390/en16010256