A State-of-the-Art Review on Technology for Carbon Utilization and Storage
Abstract
:1. Introduction
2. CO2 Storage Methods
2.1. Geological Storage
2.1.1. Depleted Oil or Gas Reservoirs
2.1.2. Deep Unmineable Coal Beds
2.1.3. Saline Aquifers
2.2. Oceanic Storage
2.3. Mineral Storage
3. CO2 Mineralization Methods
3.1. Direct Carbonation
3.1.1. Direct Gas–Solid Carbonation
3.1.2. Direct Aqueous Carbonation
3.2. Indirect Carbonation
3.2.1. Indirect Gas–Solid Carbonation
3.2.2. Indirect Aqueous Carbonation
3.3. CO2 Mineralization Capacity
4. Simultaneous Injection of CO2 and Industrial Waste
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kapila, S.; Oni, A.O.; Gemechu, E.D.; Kumar, A. Development of net energy ratios and life cycle greenhouse gas emissions of large–scale mechanical energy storage systems. Energy 2019, 170, 592–603. [Google Scholar] [CrossRef]
- IPCC. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre–Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Potner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Shukla, P.R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Solomon, S.; Plattner, G.K.; Knutti, R.; Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA 2009, 106, 1704–1709. [Google Scholar] [CrossRef]
- Bernstein, L.; Bosch, P.; Canziani, O.; Chen, Z.; Christ, R.; Riahi, K. IPCC, 2007: Climate Change 2007: Synthesis Report; IPCC: Geneva, Switzerland, 2008; ISBN 2-9169-22-4. Available online: https://edepot.wur.nl/62320 (accessed on 1 February 2023).
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. Planetary Boundaries: Exploring the Safe Operating Space for Humanity. Ecol. Soc. 2009, 14, 1–33. [Google Scholar]
- National Oceanic and Atmospheric Administration, Earth System Research Laboratory, NOAA–ESRL (2020–7–30). Available online: https://www.esrl.noaa.gov/gmd/ccgg/trends/ (accessed on 1 February 2023).
- IEA. World Energy Outlook 2018; IEA: Paris, France, 2018; Available online: https://www.iea.org/reports/world-energy-outlook-2018 (accessed on 1 February 2023).
- Kramer, G.J.; Haigh, M. No quick switch to low-carbon energy. Nature 2009, 462, 568–569. [Google Scholar] [CrossRef]
- Tan, Y.; Nookuea, W.; Li, H.; Thorin, E.; Yan, J. Property impacts on carbon capture and storage (CCS) processes: A review. Energy Convers. Manag. 2016, 118, 204–222. [Google Scholar] [CrossRef]
- Riaz, A.; Cinar, Y. Carbon dioxide sequestration in saline formations: Part I-review of the modeling of solubility trapping. J. Pet. Scikit. Eng. 2014, 124, 367–380. [Google Scholar] [CrossRef]
- Belhaj, H.; Bera, A. A brief review of mechanisms for carbon dioxide sequestration into aquifer reservoirs. Int. J Pet. Eng. 2017, 3, 49–66. [Google Scholar] [CrossRef]
- Aminu, M.D.; Nabavi, S.A.; Rochelle, C.A.; Manovic, V. A review of developments in carbon dioxide storage. Appl. Energy 2017, 208, 1389–1419. [Google Scholar] [CrossRef]
- Thakur, I.S.; Kumar, M.; Varjani, S.J.; Wu, Y.; Gnansounou, E.; Ravindran, S. Sequestration and utilization of carbon dioxide by chemical and biological methods for biofuels and biomaterials by chemoautotrophs: Opportunities and challenges. Bioresour. Technol. 2018, 256, 478–490. [Google Scholar] [CrossRef]
- Sanna, A.; Uibu, M.; Caramanna, G.; Kuusik, R.; Maroto-Valer, M. A review of mineral carbonation technologies to sequester CO2. Chem. Soc. Rev. 2014, 43, 8049–8080. [Google Scholar] [CrossRef]
- Pham, L.H.H.P.; Rusli, R.; Keong, L.K. Consequence study of CO2 leakage from ocean storage. Procedia Eng. 2016, 148, 1081–1088. [Google Scholar] [CrossRef]
- Bickle, M.J. Geological carbon storage. Nat. Geosci. 2009, 2, 815–818. [Google Scholar] [CrossRef]
- Ehlig–Economides, C.; Economides, M.J. Sequestering carbon dioxide in a closed underground volume. J. Petrol. Sci. Eng. 2010, 70, 123–130. [Google Scholar] [CrossRef]
- Roh, K.; Lim, H.; Chung, W.; Oh, J.; Yoo, H.; Al-Hunaidy, A.S.; Imran, H.; Lee, J.H. Sustainability analysis of CO2 capture and utilization processes using a computer aided tool. J. CO2 Util. 2018, 26, 60–69. [Google Scholar] [CrossRef]
- IEA. Carbon Capture, Utilisation and Storage: The Opportunity in Southeast Asia; IEA: Paris, France, 2018; Available online: https://www.iea.org/reports/carbon-capture-utilisation-and-storage-the-opportunity-in-southeast-asia (accessed on 1 February 2023).
- Biswal, T.; Shadangi, K.P.; Sarangi, P.K.; Rajesh K. Srivastava, R.K. Conversion of carbon dioxide to methanol: A comprehensive review. Chemosphere 2022, 298, 134299. [Google Scholar] [CrossRef]
- Szima, S.; Cormos, C.C. CO2 Utilization Technologies: A Techno-Economic Analysis for Synthetic Natural Gas Production. Energies 2021, 14, 1258. [Google Scholar] [CrossRef]
- Shi, C.J.; Wu, Y.Z. Studies on some factors affecting CO2 curing of lightweight concrete products. Resour. Conserv. Recycl. 2008, 52, 1087–1092. [Google Scholar] [CrossRef]
- IEA. Energy Technology Perspectives 2008; International Energy Agency: Paris, France, 2008; Available online: https://www.iea.org/reports/energy–technology-perspectives-2008 (accessed on 1 February 2023).
- Wan, Y.H. A techno-economic review on carbon capture, utilization and storage systems for achieving a net–zero CO2 emissions future. Carbon Capture Sci. Technol. 2022, 3, 100044. [Google Scholar] [CrossRef]
- Chen, G.L.; Song, X.F.; Sun, S.Y.; Xu, Y.X.; Yu, J.G. Solubility and diffusivity of CO2 in n-butanol +N235 system and absorption mechanism of CO2 in a coupled reaction–extraction process. Front. Chem. Sci. Eng. 2016, 10, 480–489. [Google Scholar] [CrossRef]
- Liu, W.Z.; Teng, L.M.; Rohani, S.; Qin, Z.F.; Zhao, B.; Xu, C.C.; Ren, S.; Liu, Q.C.; Liang, B. CO2 mineral carbonation using industrial solid wastes: A review of recent developments. Chem. Eng. J. 2021, 416, 129093. [Google Scholar] [CrossRef]
- Lal, R. Sequestration of atmospheric CO2 in global carbon pools. Energy Environ. Sci. 2008, 1, 86–100. [Google Scholar]
- Zhu, X.G.; Long, S.P.; Ort, D.R. Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant Biol. 2010, 61, 235–261. [Google Scholar]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-smart soils. Nature 2016, 532, 49–57. [Google Scholar]
- Bachu, S. Overview of CO2 storage in geological media. Energy Convers. Manag. 2000, 41, 633–640. [Google Scholar]
- Lehmann, A. Ocean carbon dioxide storage: Geological and chemical aspects. Encycl. Ocean Sci. 2007, 3, 1795–1803. [Google Scholar]
- IPCC. IPCC Special Report on Carbon Dioxide Capture and Storage; Prepared by Working Group III of the intergovernmental panel on climate change; Metz, B., Davidson, O., de Coninck, H.C., Loos, M., Meyer, L.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2005. [Google Scholar]
- Gale, J.; Abanades, J.C.; Bachu, S.; Jenkins, C. Special Issue commemorating the 10th year anniversary of the publication of the Intergovernmental Panel on Climate Change Special Report on CO2 Capture and Storage. Int. J. Greenh. Gas Control 2015, 40, 1–5. [Google Scholar] [CrossRef]
- Bui, M.; Adjiman, C.S.; Bardow, A.; Anthony, E.J.; Boston, A.; Brown, S.; Fennell, P.S.; Fuss, S.; Galindo, A.; Hackett, L.A.; et al. Carbon capture and storage (CCS): The way forward. Energy Environ. Sci. 2008, 11, 1062–1176. [Google Scholar] [CrossRef]
- Chunbao Charles, X.U.; Cang, D.Q. A brief overview of low CO2 emission technologies for iron and steel making. J. Iron Steel Res. Int. 2010, 17, 1–7. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, A.; Mandal, A. Characterizations of surfactant synthesized from Jatropha oil and its application in enhanced oil recovery. AIChE J. 2017, 63, 2731–2741. [Google Scholar] [CrossRef]
- Bai, M.; Zhang, Z.; Fu, X. A review on well integrity issues for CO2 geological storage and enhanced gas recovery. Renew. Sustain. Energy Rev. 2016, 59, 920–926. [Google Scholar] [CrossRef]
- Wildgust, N.; Gilboy, C.; Tontiwachwuthikul, P. Introduction to a decade of research by the IEAGHG Weyburn–Midale CO2 monitoring and storage project. Int. J. Greenh. Gas Control 2013, 16, S1–S4. [Google Scholar] [CrossRef]
- Ryerson, F.J.; Lake, J.; Whittaker, S.D.; Johnson, J.W. Natural CO2 accumulations in the western Williston Basin: A mineralogical analog for CO2 injection at the Weyburn site. Int. J. Greenh. Gas Control 2013, 16, S25–S34. [Google Scholar] [CrossRef]
- Hawkes, C.D.; Gardner, C. Pressure transient testing for assessment of wellbore integrity in the IEAGHG Weyburn–Midale CO2 monitoring and storage project. Int. J. Greenh. Gas Control 2013, 16, S50–S61. [Google Scholar] [CrossRef]
- Li, Z.W.; Dong, M.Z.; Li, S.L.; Huang, S. CO2 sequestration in depleted oil and gas reservoirs–caprock characterization and storage capacity. Energy Convers. Manag. 2006, 47, 1372–1382. [Google Scholar] [CrossRef]
- White, C.M.; Strazisar, B.R.; Granite, E.J.; Hoffman, J.S.; Pennline, H.W. Separation and capture of CO2 from large stationary sources and sequestration in geological formations-Coalbeds and deep saline aquifers. J. Air Waste Manag. Assoc. 2003, 53, 645–715. [Google Scholar] [CrossRef]
- Chiaramonte, L.; Zoback, M.; Friedmann, J.; Stamp, V.; Zahm, C. Fracture characterization and fluid flow simulation with geomechanical constraints for a CO2-EOR and sequestration project Teapot Dome Oil Field, Wyoming, USA. Energy Procedia 2011, 4, 3973–3980. [Google Scholar] [CrossRef]
- Cantucci, B.; Montegrossi, G.; Vaselli, O.; Tassi, F.; Quattrocchi, F.; Perkins, E.H. Geochemical modeling of CO2 storage in deep reservoirs: The Weyburn Project (Canada) case study. Chem. Geol. 2009, 265, 181–197. [Google Scholar] [CrossRef]
- Klusman, R.W. Evaluation of leakage potential from a carbon dioxide EOR/sequestration project. Energy Convers. Manag. 2003, 44, 1921–1940. [Google Scholar] [CrossRef]
- Igunnu, E.T.; Chen, G.Z. Produced water treatment technologies. Int. J. Low-Carbon Technol. 2014, 9, 157. [Google Scholar] [CrossRef]
- Baran, P.; Zarębska, K.; Krzystolik, P.; Hadro, J.; Nunn, A. CO2-ECBM and CO2 Sequestration in Polish Coal Seam–Experimental Study. J. Sustain. Min. 2014, 13, 22–29. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, L. Carbon dioxide sequestration in unmineable coal seams: A review. Int. J. Coal Geol. 2017, 173, 118–134. [Google Scholar]
- Liu, J.; Qin, Y.; Zhang, J.; Zhou, L. Carbon dioxide sequestration in deep unmineable coal seams: A review. Energy Sci. Eng. 2017, 5, 157–172. [Google Scholar]
- Bao, L.; Liu, D.; Liu, J.; Lu, Y.; Wei, Y. CO2 sequestration potential in deep coal seams: A review. Fuel 2019, 235, 1037–1050. [Google Scholar]
- Jia, Y.; Li, X.; Zhang, L.; Chen, Y.; Sun, X.; Gao, F. Enhanced coal bed methane recovery and CO2 storage potential in coal seams: A review. Fuel 2018, 215, 251–263. [Google Scholar]
- Singh, N. Deep saline aquifiers for sequestration of carbon dioxide. In Proceedings of the International Geological Congress, Oslo, Norway, 6–14 August 2008. [Google Scholar]
- De Silva, G.P.D.; Ranjith, P.G.; Perera, M.S.A. Geochemical aspects of CO2 sequestration in deep saline aquifers: A review. Fuel 2015, 155, 128–143. [Google Scholar] [CrossRef]
- Celia, M.A.; Bachu, S.; Nordbotten, J.M.; Bandilla, K.W. Status of CO2 storage in deep saline aquifers with emphasis on modeling approaches and practical simulations. Water Resour. Res. 2015, 51, 6846–6892. [Google Scholar] [CrossRef]
- Davison, J.; Freund, P.; Smith, A. Putting Carbon Back in the Ground; IEA Greenhouse Gas R & D Programme: Cheltenham, UK, 2001; ISBN 1898373280. [Google Scholar]
- Pruess, K.; Xu, T.; Apps, J.; Garcia, J. Numerical modeling of aquifer disposal of CO2. SPE J. 2003, 8, 49–60. [Google Scholar] [CrossRef]
- Gunter, W.D.; Bachu, S.; Benson, S. The role of hydrogeological and geochemical trapping in sedimentary basins for secure geological storage of carbon dioxide. Geol. Soc. Lond. Spec. Publ. 2004, 233, 129–145. [Google Scholar] [CrossRef]
- Yang, F.; Bai, B.J.; Tang, D.Z.; Dunn–Norman, S.; Wronkiewicz, D. Characteristics of CO2 sequestration in saline aquifers. Pet. Sci. 2010, 7, 83–92. [Google Scholar] [CrossRef]
- Rackley, S.A. Carbon Capture and Storage; Butterworth-Heinemann: Oxford, UK; Elsevier: Burlington, VT, USA, 2010; ISBN 9781856176361. [Google Scholar]
- Gunter, W.D. CO2 Sequestration in Deep Unmineable Coal Seams; Alberta Research Council: Edmonton, AB, Canada, 2000. [Google Scholar]
- Reichle, D.; Houghton, J.; Kane, B.; Ekmann, J.; Benson, S.; Clarke, J.; Dahlman, R.; Hendrey, G.; Herzog, H.; Hunter-Cevera, J.; et al. Carbon Sequestration Research and Development; Report; National Technical Information Service: Springfield, VA, USA, 1999; Available online: https://digital.library.unt.edu/ark:/67531/metadc739790/ (accessed on 1 February 2023).
- Liu, D.; Fernandez, Y.; Ola, O.; Mackintosh, S.; Maroto-Valer, M.M.; Parlett, C.M.A.; Lee, A.F.; Wu, J.C.S. On the impact of Cu dispersion on CO2 photoreduction over Cu/TiO2. Catal. Commun. 2012, 25, 78–82. [Google Scholar] [CrossRef]
- Szulczewski, M.L.; MacMinn, C.W.; Juanes, R. Theoretical analysis of how pressure buildup and CO2 migration can both constrain storage capacity in deep saline aquifers. Int. J. Greenh. Gas Control 2014, 23, 113–118. [Google Scholar] [CrossRef]
- Bachu, S.; Bonijoly, D.; Bradshaw, J.; Burruss, R.; Holloway, S.; Christensen, N.P.; Mathiassen, O.M. CO2 storage capacity estimation: Methodology and gaps. Int. J. Greenh. Gas Control 2007, 1, 430–443. [Google Scholar] [CrossRef]
- Herzog, H.J. Carbon capture and storage from fossil fuel use. Encycl. Energy 2009, 1, 429–437. [Google Scholar]
- Park, S. CO2 reduction-conversion to precipitates and morphological control through the application of the mineral carbonation mechanism. Energy 2018, 153, 413–421. [Google Scholar] [CrossRef]
- Lee, J.S.; Choi, E.C. CO2 leakage environmental damage cost-A CCS project in South Korea. Renew. Sustain. Energy Rev. 2018, 93, 753–758. [Google Scholar] [CrossRef]
- Kump, L.R.; Brantley, S.L.; Arthur, M.A.; Balter, V.; Feinberg, J.M.; Fischer, W.W.; Zachos, J.C. The Paleogene transformation of the oceanic carbonate system. Earth Planet. Sci. Lett. 2011, 301, 299–312. [Google Scholar]
- McNeil, B.I.; Matear, R.J. Southern Ocean acidification: A tipping point at 450-ppm atmospheric CO2. Proc. Natl. Acad. Sci. USA 2008, 105, 18860–18864. [Google Scholar]
- Goldthorpe, S. Potential for Very Deep Ocean Storage of CO2, Without Ocean Acidification: A Discussion Paper. Energy Procedia 2017, 114, 5417–5429. [Google Scholar] [CrossRef]
- Keith, D.W.; Ha-Duong, M. Climate strategy with CO2 capture from the air. Clim. Change 2003, 59, 251–265. [Google Scholar]
- Lovelock, J.E.; Rapley, C.G. Ocean pipes could help the earth to cure itself: An idea from the 1970s for tackling climate change could be dusted off and given a new lease of life. Nature 2007, 449, 403. [Google Scholar]
- Caldeira, K.; Wickett, M.E. Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J. Geophys. Res. Ocean. 2005, 110, C09S04. [Google Scholar]
- Friedel, G. Sur la carbonatation des silicates et de l’aluminate de chaux. Comptes Rendus Académie Sci. 1923, 177, 157–159. [Google Scholar]
- Seifritz, W. CO2 Disposal by Means of Silicates. Nature 1990, 345, 486. [Google Scholar] [CrossRef]
- Kandji, E.H.B.; Plante, B.; Bussière, B.; Beaudoin, G.; Dupont, P. Geochemical behavior of ultramafic waste rocks with carbon sequestration potential: A case study of the Dumont Nickel Project, Amos, Québec. Environ. Scikit. Pollut. Res. 2017, 24, 11734–11751. [Google Scholar] [CrossRef]
- Lackner, K.S. Carbonate chemistry for sequestering fossil carbon. Annu. Rev. Energy Environ. 2002, 27, 193–232. [Google Scholar] [CrossRef]
- Pandey, S.; Srivastava, V.C.; Kumar, V. Comparative thermodynamic analysis of CO2 based dimethyl carbonate synthesis routes. Can. J. Chem. Eng. 2021, 99, 467–478. [Google Scholar] [CrossRef]
- Bobicki, E.R.; Liu, Q.; Xu, Z.; Zeng, H. Carbon capture and storage using alkaline industrial wastes. Prog. Energy Combust. Sci. 2012, 38, 302–320. [Google Scholar] [CrossRef]
- Surampalli, R.Y.; Zhang, T.C.; Tyagi, R.D.; Naidu, R.; Gurjar, B.R.; Ojha, C.S.P.; Yan, S.; Brar, S.K.; Ramakrishnan, A.; Kao, C.M. Carbon Capture and Storage: Physical, Chemical, and Biological Methods; American Society of Civil Engineers: Reston, VA, USA, 2015; ISBN 9780784478912. [Google Scholar]
- Galina, N.R.; Arce, G.L.A.F.; Ávila, I. Evolution of carbon capture and storage by mineral carbonation: Data analysis and relevance of the theme. Miner. Eng. 2019, 142, 105879. [Google Scholar] [CrossRef]
- Sipilä, J.; Teir, S.; Zevenhoven, R. Carbon Dioxide Sequestration by Mineral Carbonation Literature Review Update 2005–2007; Report Vt1; Åbo Akademi University, Faculty of Technology, Heat Engineering Laboratory: Turku, Finland, 2008; ISBN 978-952-12-2036-4. [Google Scholar]
- Huijgen, W.J.J.; Witkamp, G.J.; Comans, R.N.J. Mineral CO2 sequestration by steel slag carbonation. Environ. Scikit. Technol. 2005, 39, 9676–9682. [Google Scholar] [CrossRef]
- Torróntegui, D.M. Assessing the Mineral Carbonation Science and Technology. Master’s Thesis, Swiss Federal Institute of Process Engineering, Separation Processes Laboratory, Zürich, Switzerland, 2010. [Google Scholar]
- Bodor, M.; Santos, R.M.; Van Gerven, T.; Vlad, M. Recent developments and perspectives on the treatment of industrial wastes by mineral carbonation—A review. Cent. Eur. J. Eng. 2013, 3, 566–584. [Google Scholar] [CrossRef]
- Sanna, A.; Maroto–valer, M. CO2 Sequestration by Ex–Situ Mineral Carbonation; World Scientific Publishing: Singapore, 2017; ISBN 978-1-78634-160-0. [Google Scholar]
- Wang, F.; Dreisinger, D.B.; Jarvis, M.; Hitchins, T. The technology of CO2 sequestration by mineral carbonation: Current status and future prospects. Can. Metall. Q. 2018, 57, 46–58. [Google Scholar] [CrossRef]
- Li, J.J.; Hitch, M.; Power, I.; Pan, Y. Integrated mineral carbonation of ultramafic mine deposits—A review. Minerals 2018, 8, 147. [Google Scholar] [CrossRef]
- Ibrahim, M.H.; El–Naas, M.; Benamor, A.; AI-Sobhi, S.; Zhang, Z.E. Carbon mineralization by reaction with steel–making waste: A review. Processes 2019, 7, 115. [Google Scholar] [CrossRef]
- Dindi, A.; Quang, D.V.; Vega, L.F.; Nashef, E.; Abu-Zahra, M.R.M. Applications of fly ash for CO2 capture, utilization, and storage. J. CO2 Util. 2019, 29, 82–102. [Google Scholar] [CrossRef]
- Azdarpour, A.; Asadullah, M.; Mohammadian, E.; Hamidi, H.; Junin, R.; Karaei, M.A. A review on carbon dioxide mineral carbonation through pH–swing process. Chem. Eng. J. 2015, 279, 615–630. [Google Scholar] [CrossRef]
- Naraharisetti, P.K.; Yeo, T.Y.; Bu, J. Factors influencing CO2 and energy penalties of CO2 mineralization processes. Chem. Phys. Chem. 2017, 18, 3189–3202. [Google Scholar] [CrossRef]
- Ncongwane, M.S.; Broadhurst, J.L.; Petersen, J. Assessment of the potential carbon footprint of engineered processes for the mineral carbonation of PGM tailings. Int. J. Greenh. Gas Control 2018, 77, 70–81. [Google Scholar] [CrossRef]
- Hitch, M.; Dipple, G.M. Economic feasibility and sensitivity analysis of integrating industrial scale mineral carbonation into mining operations. Miner. Eng. 2012, 39, 268–275. [Google Scholar] [CrossRef]
- Pasquier, L.C.; Mercier, G.; Blais, J.F.; Cecchi, E.; Kentish, S. Technical & economic evaluation of a mineral carbonation process using southern Québec mining wastes for CO2 sequestration of raw flue gas with by–product recovery. Int. J. Greenh. Gas Control 2016, 50, 147–157. [Google Scholar] [CrossRef]
- Global CCS Institute. The Global Status of CCS: 2020; Global CCS Institute: Melbourne, Australia, 2020; Available online: https://www.globalccsinstitute.com/wp-content/uploads/2021/03/Global-Status-of-CCS-Report-English.pdf (accessed on 1 February 2023).
- Saran, R.K.; Arora, V.; Yadav, S. CO2 sequestration by mineral carbonation: A review. Glob. NEST J. 2018, 20, 497–503. [Google Scholar] [CrossRef]
- Yadav, S.; Mehra, A. A review on ex situ mineral carbonation. Environ. Scikit. Pollut. Res. 2021, 28, 12202–12231. [Google Scholar] [CrossRef]
- Snæbjörnsdóttir, S.Ó.; Oelkers, E.H.; Mesfin, K.; Aradóttir, E.S.; Dideriksen, K.; Gunnarsson, I.; Gunnlaugsson, E.; Matter, J.M.; Stute, M.; Gislason, S.R. The chemistry and saturation states of subsurface fluids during the in-situ mineralisation of CO2 and H2S at the CarbFix site in SW-Iceland. Int. J. Greenh. Gas Control 2017, 58, 7–102. [Google Scholar] [CrossRef]
- Chen, Z.; Song, H.S.; Portillo, M.; Lim, C.J.; Grace, J.R.; Anthony, E.J. Long–term calcination/carbonation cycling and thermal pretreatment for CO2 capture by limestone and dolomite. Energy Fuels 2009, 23, 1437–1444. [Google Scholar] [CrossRef]
- Veetil, S.P.; Pasquier, L.C.; Blais, J.F.; Cecchi, C.; Kentish, S.; Mercier, G. Direct gas–solid carbonation of serpentinite residues in the absence and presence of water vapor: A feasibility study for carbon dioxide sequestration. Environ. Scikit. Pollut. Res. 2015, 22, 13486–13495. [Google Scholar] [CrossRef]
- Dean, C.C.; Blamey, J.; Florin, N.H.; AL-Jeboori, M.J.; Fennell, P.S. The calcium looping cycle for CO2 capture from power generation, cement manufacture and hydrogen production. Chem. Eng. Res. Des. 2011, 89, 836–855. [Google Scholar] [CrossRef]
- Gerdemann, S.J.; O’Connor, W.K.; Dahlin, D.C.; Penner, L.R.; Rush, H. Ex situ aqueous mineral carbonation. Environ. Sci. Technol. 2007, 41, 2587–2593. [Google Scholar] [CrossRef]
- Huijgen, W.J.J. Carbon Dioxide Sequestration by Mineral Carbonation; Energy Research Centre of the Netherlands: Petten, The Netherlands, 2007; ISBN 90-8504-573-8. [Google Scholar]
- Lackner, K.S.; Butt, D.P.; Wendt, C.H. Progress on binding CO2 in mineral substrates. Energy Convers. Manag. 1997, 38, S259–S264. [Google Scholar]
- Liu, W.; Su, S.; Xu, K.; Chen, Q.; Xu, J.; Sun, Z.J.; Wang, Y.; Hu, S.; Wang, X.L.; Xue, Y.T.; et al. CO2 sequestration by direct gas–solid carbonation of fly ash with steam addition. J. Clean. Prod. 2018, 178, 98–107. [Google Scholar] [CrossRef]
- Lim, M.; Han, G.C.; Ahn, J.W.; You, K.S. Environmental remediation and conversion of carbon dioxide (CO2) into useful green products by accelerated carbonation technology. Int. J. Environ. Res. Public Health 2010, 7, 203–228. [Google Scholar] [CrossRef]
- Zevenhoven, R.; Kavaliauskaite, I. Mineral carbonation for long-term CO2 storage: An exergy analysis. Int. J. Thermodyn. 2004, 7, 23–31. Available online: https://dergipark.org.tr/en/pub/ijot/issue/5751/76664 (accessed on 1 February 2023).
- Kwon, S.; Fan, M.; Dacosta, H.F.M.; Russell, A.G. Factors affecting the direct mineralization of CO2 with olivine. J. Environ. Sci. 2011, 23, 1233–1239. [Google Scholar] [CrossRef]
- Wang, F.; Dreisinger, D.; Jarvis, M.; Hitchins, T. Quantifying kinetics of mineralization of carbon dioxide by olivine under moderate conditions. Chem. Eng. J. 2019, 360, 452–463. [Google Scholar] [CrossRef]
- Myers, C.A.; Nakagaki, T.; Akutsu, K. Quantification of the CO2 mineralization potential of ironmaking and steelmaking slags under direct gas–solid reactions in flue gas. Int. J. Greenh. Gas Control 2019, 87, 100–111. [Google Scholar] [CrossRef]
- Li, J.J.; Jacobs, A.D.; Hitch, M. Direct aqueous carbonation on olivine at a CO2 partial pressure of 6.5 MPa. Energy 2019, 173, 902–910. [Google Scholar] [CrossRef]
- Gadikota, G.; Matter, J.; Kelemen, P.; Park, A.H.A. Chemical and morphological changes during olivine carbonation for CO2 storage in the presence of NaCl and NaHCO3. Phys. Chem. Chem. Phys. 2014, 16, 4679–4693. [Google Scholar] [CrossRef]
- Ferrufino, G.L.A.A.; Okamoto, S.; Santos, J.C.D.; Carvalho, J.A.D., Jr.; Avila, I.; Luna, C.M.R.; Neto, T.G.S. CO2 sequestration by pH-swing mineral carbonation based on HCl/NH4OH system using iron–rich lizardite 1T. J. CO2 Util. 2018, 24, 164–173. [Google Scholar] [CrossRef]
- Martín, D.; Aparicio, P.; Galán, E. Accelerated carbonation of ceramic materials. Application to bricks from Andalusian factories (Spain). Constr. Build. Mater. 2018, 181, 598–608. [Google Scholar] [CrossRef]
- Wang, L.; Liu, W.; Hu, J.; Liu, Q.; Yue, H.R.; Liang, B.; Zhang, G.Q.; Luo, D.M.; Xie, H.P.; Li, C. Indirect mineral carbonation of titanium-bearing blast furnace slag coupled with recovery of TiO2 and Al2O3. Chinese. J. Chem. Eng. 2018, 26, 583–592. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Wu, M.F.; Guo, X.; Zhang, Y.; Ji, Z.Y.; Wang, J.; Liu, J.; Liu, J.L.; Wang, Z.R.; Chi, Q.F.; et al. Separation and purification technology thorough conversion of CO2 through two–step accelerated mineral. Sep. Purif. Technol. 2019, 210, 343–354. [Google Scholar] [CrossRef]
- Teir, S. Fixation of Carbon Dioxide by Producting Carbonates from Minerals and Steelmaking Slags. Ph.D. Thesis, Department of Energy Technology, Helsinki University of Technology, Helsinki, Finland, 2008. [Google Scholar]
- Butt, D.P.; Lackner, K.S.; Wendt, C.H.; Vaidya, R.; Pile, D.L.; Park, Y.; Holesinger, T.; Harradine, D.M.; Koji, N. The kinetics of binding carbon dioxide in magnesium carbonate. In Proceedings of the 23. International Technical Conference on Coal Utilization and Fuel Systems, Clearwater, FL, USA, 9–13 March 1998. [Google Scholar] [CrossRef]
- Eloneva, S.; Teir, S.; Salminen, J.; Fogelholm, C.J.; Zevenhoven, R. Fixation of CO2 by carbonating calcium derived from blast furnace slag. Energy 2008, 33, 1461–1467. [Google Scholar] [CrossRef]
- Park, A.H.A.; Fan, L.S. CO2 mineral sequestration: Physically activated dissolution of serpentine and pH swing process. Chem. Eng. Sci. 2004, 59, 5241–5247. [Google Scholar] [CrossRef]
- O’Connor, W.K.; Dahlin, D.C.; Nilsen, D.N.; Gerdemann, S.J.; Rush, G.E.; Walters, R.P.; Turner, P.C. Research status on the sequestration of carbon dioxide by direct aqueous mineral carbonation. In Proceedings of the 18th Annual International Pittsburgh Coal Conference; Newcastle, Australia, 3–7 December 2001. Available online: https://www.osti.gov/servlets/purl/897885 (accessed on 1 February 2023).
- O’Connor, W.K.; Dahlin, D.C.; Nilsen, D.N.; Rush, G.E.; Walters, R.P.; Turner, P.C. Carbon dioxide sequestration by direct mineral carbonation: Results from recent studies and current status. In Proceedings of the First National Conference on Carbon Sequestration; Washington, DC, USA, 14–17 May 2001. Available online: https://www.osti.gov/servlets/purl/897125 (accessed on 1 February 2023).
- Maroto-Valer, M.M.; Fauth, D.J.; Kuchta, M.E.; Zhang, Y.; Andrésen, J.M. Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration. Fuel Process. Technol. 2005, 86, 1627–1645. [Google Scholar] [CrossRef]
- Wang, X.L.; Maroto-Valer, M.M. Integration of CO2 capture and mineral carbonation by using recyclable ammonium salts. Chem. Sus. Chem. 2011, 4, 1291–1300. [Google Scholar] [CrossRef]
- Sanna, A.; Dri, M.; Maroto-Valer, M.M. Carbon dioxide capture and storage by pH swing aqueous mineralisation using a mixture of ammonium salts and antigorite source. Fuel 2013, 114, 153–161. [Google Scholar] [CrossRef]
- Hemmati, A.; Shayegan, J.; Bu, J.; Yeo, T.Y.; Sharratt, P. Process optimization for mineral carbonation in aqueous phase. Int. J. Miner. Process. 2014, 130, 20–27. [Google Scholar] [CrossRef]
- Julcour, C.; Bourgeois, F.; Bonfils, B. Development of an attrition–leaching hybrid process for direct aqueous mineral carbonation. Chem. Eng. J. 2015, 262, 716–726. [Google Scholar] [CrossRef]
- Rashid, M.I.; Benhelal, E.; Farhang, F.; Oliver, T.K.; Rayson, M.S.; Brent, G.F.; Stockenhuber, M.; Kennedy, E.M. Development of concurrent grinding for application in aqueous mineral carbonation. J. Clean Prod. 2019, 212, 51–161. [Google Scholar] [CrossRef]
- Huijgen, W.J.J.; Ruijg, G.J.; Comans, R.N.J.; Witkamp, G.J. Energy consumption and net CO2 sequestration of aqueous mineral carbonation. Ind. Eng. Chem. Res. 2006, 45, 9184–9194. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, J.; Zhao, Y.; Liu, R.; Zheng, C.G. CO2 Sequestration by direct aqueous mineral carbonation under low–medium pressure conditions. J. Chem. Eng. Jpn. 2015, 48, 937–948. [Google Scholar] [CrossRef]
- Ding, W.; Yang, H.; Ouyang, J.; Long, H. Modified wollastonite sequestrating CO2 and exploratory application of the carbonation products. RSC. Adv. 2016, 6, 8090–78099. [Google Scholar] [CrossRef]
- Jung, S.; Dodbiba, G.; Fujita, T. Mineral carbonation by blowing incineration gas containing CO2 into the solution of fly ash and ammonia for ex situ carbon capture and storage. Geosystem Eng. 2014, 17, 125–135. [Google Scholar] [CrossRef]
- Monkman, S.; Shao, Y.J. Assessing the Carbonation Behavior of Cementitious Materials. Civ. Eng. 2006, 18, 768–776. [Google Scholar] [CrossRef]
- Polettini, A.; Pomi, R.; Stramazzo, A. CO2 sequestration through aqueous accelerated carbonation of BOF slag: A factorial study of parameters effects. J. Environ. Manag. 2016, 167, 185–195. [Google Scholar] [CrossRef]
- Chang, E.E.; Pan, S.Y.; Chen, Y.H.; Tan, C.S.; Chiang, P.C. Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed. J. Hazard. Mater. 2012, 227, 97–106. [Google Scholar] [CrossRef]
- Chang, E.E.; Chen, T.L.; Pan, S.Y.; Chen, Y.H.; Chiang, P.C. Kinetic modeling on CO2 capture using basic oxygen furnace slag coupled with cold–rolling wastewater in a rotating packed bed. J. Hazard. Mater. 2013, 260, 937–946. [Google Scholar] [CrossRef]
- Chang, E.E.; Chiu, A.C.; Pan, S.Y.; Chen, Y.H.; Tan, C.S.; Chiang, P.C. Carbonation of basic oxygen furnace slag with metalworking wastewater in a slurry reactor. Int. J. Greenh. Gas Control 2013, 12, 382–389. [Google Scholar] [CrossRef]
- Pan, S.Y.; Liu, H.L.; Chang, E.E.; Kim, H.; Chen, Y.H.; Chiang, P.C. Multiple model approach to evaluation of accelerated carbonation for steelmaking slag in a slurry reactor. Chemosphere 2016, 154, 63–71. [Google Scholar] [CrossRef]
- Pan, S.Y.; Chiang, P.C.; Chen, Y.H.; Tan, C.S.; Chang, E.E. Ex Situ CO2 capture by carbonation of steelmaking slag coupled with metalworking wastewater in a rotating packed bed. Environ. Sci. Technol. 2013, 47, 3308–3315. [Google Scholar] [CrossRef]
- Santos, R.M.; Ling, D.; Sarvaramini, A.; Guo, M.X.; Elsen, J.; Larachi, F.; Beaudoin, G.; Blanpain, B.; Gerven, T.V. Stabilization of basic oxygen furnace slag by hot-stage carbonation treatment. Chem. Eng. J. 2012, 203, 239–250. [Google Scholar] [CrossRef]
- Chang, E.E.; Chen, C.H.; Chen, Y.H.; Pan, S.Y.; Chiang, P.C. Performance evaluation for carbonation of steel-making slags in a slurry reactor. J. Hazard. Mater. 2011, 186, 558–564. [Google Scholar] [CrossRef]
- Santos, R.M.; Francois, D.; Mertens, G.; Elsen, J.; Gerven, T.V. Ultrasound-intensified mineral carbonation. Appl. Therm. Eng. 2013, 57, 154–163. [Google Scholar] [CrossRef]
- Santos, R.M.; Bouwel, J.V.; Vandevelde, E.; Mertens, G.; Elsen, J.; Gerven, T.V. Accelerated mineral carbonation of stainless steel slags for CO2 storage and waste valorization: Effect of process parameters on geochemical properties. Int. J. Greenh. Gas Control 2013, 17, 32–45. [Google Scholar] [CrossRef]
- Kodama, S.; Nishimoto, T.; Yamamoto, N.; Yogo, K.; Yamada, K. Development of a new pH–swing CO2 mineralization process with a recyclable reaction solution. Energy 2008, 33, 776–784. [Google Scholar] [CrossRef]
- Dri, M.; Sanna, A.; Maroto-Valer, M.M. Mineral carbonation from metal wastes: Effect of solid to liquid ratio on the efficiency and characterization of carbonated products. Appl. Energy 2014, 113, 515–523. [Google Scholar] [CrossRef]
- Yadav, S.; Mehra, A. Experimental study of dissolution of minerals and CO2 sequestration in steel slag. Waste Manag. 2017, 64, 348–357. [Google Scholar] [CrossRef]
- Baciocchi, R.; Costa, G.; Di Gianfilippo, M.; Polettini, A.; Pomi, R.; Stramazzo, A. Thin-film versus slurry-phase carbonation of steel slag: CO2 uptake and effects on mineralogy. J. Hazard. Mater. 2015, 283, 302–313. [Google Scholar] [CrossRef]
- Lekakh, S.N.; Rawlins, C.H.; Robertson, D.G.C.; Richards, V.L.; Peaslee, K.D. Kinetics of Aqueous Leaching and Carbonization of Steelmaking Slag. Metall. Mater. Trans. B 2008, 39, 125–134. [Google Scholar] [CrossRef]
- Uliasz-Bocheńczyk, A.; Mokrzycki, E. CO2 mineral sequestration with the use of ground granulated blast furnace slag. Gospod. Surowcami Miner. 2017, 33, 111–124. [Google Scholar] [CrossRef]
- You, K.S.; Lee, S.H.; Hwang, S.H.; Kim, H.S.; Ahn, J.W. CO2 Sequestration via a Surface Modified Ground Granulated Blast Furnace Slag Using NaOH Solution. Mater. Trans. 2011, 52, 1972–1976. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.W.; Chae, S.; Bang, J.H.; Lee, S.-W. CO2 sequestration technology through mineral carbonation: An extraction and carbonation of blast slag. J. CO2 Util. 2016, 16, 336–345. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, W.Z.; Hu, J.P.; Wang, L.; Gao, J.Q.; Liang, B.; Yue, H.R.; Zhang, G.Q.; Luo, D.M.; Li, C. Energy-efficient mineral carbonation of blast furnace slag with high value-added products. J. Clean Prod. 2018, 197, 242–252. [Google Scholar] [CrossRef]
- Bonenfant, D.; Kharoune, L.; Sauve, S.B.; Hausler, R.; Niquette, P.; Mimeault, M.; Kharoune, M. CO2 Sequestration by Aqueous Red Mud Carbonation at Ambient Pressure and Temperature. Ind. Eng. Chem. Res. 2008, 47, 7617–7622. [Google Scholar] [CrossRef]
- Uibu, M.; Kuusik, R.; Andreas, L.; Kirsimäe, K. The CO2 -binding by Ca-Mg-silicates in direct aqueous carbonation of oil shale ash and steel slag. Energy Procedia 2011, 4, 925–932. [Google Scholar] [CrossRef]
- Lyu, X.; Yang, K.; Fang, J.J. Utilization of resources in abandoned coal mines for carbon neutrality. Sci. Total Environ. 2022, 822, 153646. [Google Scholar] [CrossRef]
- Menéndez, J.; Ordónez, A.; Fernández-Oro, J.M.; Loredo, J.; Díaz-Aguado, M.B. Feasibility analysis of using mine water from abandoned coal mines in Spain for heating and cooling of buildings. Renew. Energy 2020, 146, 1166–1176. [Google Scholar] [CrossRef]
- Younger, P.L.; Roddy, D.J.; Gonzalez, G. King coal: Restoring the monarchy by underground gasification coupled to CCS. In Proceedings of the 7th International Petroleum Geology Conference, London, UK, 31 March–2 April 2009. [Google Scholar]
- Roddy, D.J.; Younger, P.L. Underground coal gasification with CCS: A pathway to decarbonising industry. Energy Environ. Sci. 2010, 3, 400–407. [Google Scholar] [CrossRef]
- Seo, S.; Mastiani, M.; Hafez, M.; Kunkel, G.; Asfour, C.G.; Garcia-Ocampo, K.I.; Linares, N.; Saldana, C.; Yang, K.; Kim, M. Injection of in-situ generated CO2 microbubbles into deep saline aquifers for enhanced carbon sequestration. Int. J. Greenh. Gas Control 2019, 83, 256–264. [Google Scholar] [CrossRef]
- Hamanaka, A.H.; Itakura, K.I.; Deguchi, G.T.; Zhao, Y.F.; Takahashi, K.H.; Jun-ich, K.D.; Harada, S.S.; Hama, Y.K.; Kim, J.H.; Yamanaka, S.Y.; et al. Field Trial to Inject CO2 microbubble and Blast Furnace Slag into Goaf in Abandoned Underground Coal Mine. MMIJ Q 2023, 10, 1. Available online: https://confit.atlas.jp/guide/event/mmij2023a/subject/1K0101-07-03/advanced (accessed on 13 March 2023).
- IEA. Energy Technology Perspectives 2021: Special Report on Clean Energy Innovation; International Energy Agency: Paris, France, 2021; Available online: https://www.iea.org/reports/energy-technology-perspectives-2021 (accessed on 1 February 2023).
- Liu, C.; Zhang, X.H.; Chen, X. Advanced Materials and Technologies toward Carbon Neutrality. Acc. Mater. Res. 2022, 3, 913–921. [Google Scholar]
- Luo, A.; Li, Y.M.; Chen, X.; Zhu, Z.Y.; Peng, Y. Review of CO2 sequestration mechanism in saline aquifers. Nat. Gas Ind. B 2022, 9, 383–393. [Google Scholar] [CrossRef]
- He, Y.; Wang, Y.; Zhang, L.; Yang, Z.; Yu, L. Public attitudes toward carbon capture, utilization and storage (CCUS) technology in the United States: A survey-based study. J. Clean. Prod. 2021, 304, 127092. [Google Scholar]
Method | Advantages | Disadvantages | CO2 Capture Value |
---|---|---|---|
CCS | Reduces carbon emissions from large point sources such as power plants and industrial processes | Requires significant energy and resources to capture, transport, and store CO2; long-term stability of stored CO2 and prevention of leakage are concerns | Can capture up to 90% of CO2 emissions from the source |
CCUS | In addition to reducing carbon emissions, captured CO2 can be used in products such as chemicals and fuels, potentially creating a new revenue stream; utilization can reduce the overall cost of carbon capture | Utilization processes can require significant energy and resources; economic viability of utilization depends on various factors | Can capture up to 99% of CO2 emissions from the source |
Option | Gigatons of Carbon (GTC) |
---|---|
Depleted oil or gas reservoirs | 180–250 |
Deep unmineable coal beds | 1–55 |
Saline aquifers | 275–2750 |
Ocean storage | >5000 |
Mineral carbonation | Very large |
Mineral Carbonization Techniques | Advantages | Disadvantages |
---|---|---|
Direct gas–solid carbonation |
|
|
Direct aqueous carbonation |
|
|
Indirect gas–solid carbonation |
|
|
Indirect aqueous carbonation |
|
|
Mineral Ores | Main Oxide Content % | Carbonation Route | CO2 Vol% | Operating Conditions | CE % | Reference |
---|---|---|---|---|---|---|
Serpentine | MgO = 40.8 | DAC | 100 | Pre-treatment: T = 630 °C Carbonation: T = 155 °C, P = 18.75 MPa, t = 0.5 h, D < 37 µm, 0.64 M NaHCO3, 1 M NaCl | 78 | [123] |
DAC | 100 | Pre-treatment: T = 630 °C Carbonation: T = 185 °C, P = 11.65 MPa, t = 0.5 h, D < 37 µm, 0.5 M NaHCO3, 1 M NaCl | 83 | |||
DAC | 100 | Pre-treatment: T = 630 °C Carbonation: T = 185 °C, P = 11.65 MPa, t = 0.5 h, D < 37 µm, Distilled water | 34 | |||
MgO = 45.7 | DAC | 100 | Pre-treatment, T = 630 °C Carbonation: T = 155 °C, P = 18.75 MPa, t = 30 min, D < 37 µm, 0.64 M NaHCO3, 1 M NaCl | 78 | [124] | |
MgO = 38.7 | DAC | 100 | Pre-treatment: T = 650 °C, Steam activated Carbonation: T = 155 °C, P = 12.77 MPa, t = 60 min, D = 75 µm, 0.6 M NaHCO3; 1 M NaCl | 59.4 | [125] | |
MgO = 43.33 | IAC | 100 | Dissolution: T = 100 °C, t = 3 h, 1.4 M NH4HSO4, NH3 Carbonation: T = 140 °C, P = 0.1 MPa, t = 60 min, D = 75 µm, NH4HCO3 | 85 | [115] | |
MgO = 40.1 | IAC | 100 | Dissolution: T = 100 °C, t = 2 h, HCL Carbonation: T = 90 °C, P = 0.1 MPa, t = 60 min, D < 75 µm, NH4OH | 95.9 | [126] | |
MgO = 40.1 | IAC | 100 | Dissolution: T = 100 °C, P = 0.1 MPa, t = 3 h, 1.4 M NH4HSO4, NH4OH Carbonation: T = 80 °C, P = 0.1 MPa, t = 60 min, D = 75–150 µm, NH4HCO3 | 93.5 | [127] | |
MgO = 40.72 | IAC | 100 | Dissolution: T = 80 °C, t = 6 h, 1 M HCl, 1 M NaOH Carbonation: T = 50 °C, P = 0.1 MPa, t = 1 h, D = 10–56 µm, 1 M Na2CO3 | 82.5 | [128] | |
MgO = 44.82 | IAC | 100 | Dissolution: T = 70 °C, t = 1 h, 1 vol% H3PO4, 0.9 wt % C2H2O4, and 0.1 wt % EDTA Carbonation: T = 25 °C, P = 0.101 MPa, t = 10 min, D < 75 µm, NH4OH | 65 | [122] | |
Olivine | MgO = 49.3 | DAC | 10 | T = 150 °C, P = 0.1 MPa, t = 0.5 h, D = 10 µm | 25 | [110] |
MgO = 49.7 | DAC | 100 | T = 185 °C, P = 11.65 MPa, t = 24 h, D < 37 µm, Distilled water | 91 | [123] | |
DAC | 100 | T = 185 °C, P = 11.65 MPa, t = 6 h, D < 37 µm, 0.5 M NaHCO3, 1 M NaCl | 84 | |||
DAC | 100 | T = 155 °C, P = 18.75 MPa, t = 1 h, D < 37 µm 0.64 M NaHCO3, 1 M NaCl | 38 | |||
Unknown | DAC | 100 | T = 185 °C, P = 15.2 MPa, t = 6 h, D < 75 µm | 85 | [104] | |
MgO = 46.4 | DAC | 100 | T = 180 °C, P = 14.08 MPa, t = 24 h, D < 100 µm | 78.8 | [129] | |
MgO = 47.3 | DAC | 99.99 | T = 185 °C, P = 14.08 MPa, t = 3 h, D = 30.02 µm 0.64 M NaHCO3 | 79.7 | [114] | |
MgO = 50.9 | DAC | 100 | T = 185 °C, P = 6.59 MPa, t = 6 h, D < 38 µm 2.5 M NaHCO3, 1 M NaCl | 84.4 | [113] | |
MgO = 45.3 | DAC | 100 | T = 180 °C P = 13.17 MPa, t = 8 h, D = 20–45 µm 0.64 M NaHCO3 | 62.3 | [130] | |
MgO = 48.1 | IAC | 100 | Dissolution: T = 100 °C, t = 3 h, 1.4 M NH4HSO4 Carbonation: T = 90 °C, P = 0.1 MPa, t = 1 h, D = 75–150 µm | 25 | [110] | |
NA | DAC | 100 | Pre-treatment: T = 630 °C Carbonation: T = 185 °C, P = 15.2 MPa, t = 6 h, D < 75 µm | 62 | [104] | |
Wollastonite | CaO = 30 | DAC | 100 | T = 200 °C, P = 2.03 MPa, t = 15 min, D < 38 µm L/S = 2 | 69 | [131] |
CaO = 46.6 | DAC | 100 | T = 150 °C, P = 4.05 MPa, t = 60 min, D < 30 µm | 83.5 | [132] | |
Unknown | DAC | 100 | T = 185 °C, P = 15.2 MPa, t = 1 h, D < 75 µm | 80 | [104] | |
CaO = 46.6 | IAC | 99.9 | Dissolution: T = 80 °C, t = 2 h, 6 M HCl Carbonation: T = 30 °C, P = 0.1 MPa, t = 1 h, D = 75–150 µm, NH4OH | 93 | [133] |
Industrial Residues | Main Oxide Content % | Carbonation Route | CO2 Vol% | Operating Conditions | CE % | Reference |
---|---|---|---|---|---|---|
Fly ash | CaO= 30.42 | DAC | 10 | T = 25 °C, P = 0.1 MPa, t = 3 min, NH4OH | 56.6 | [134] |
CaO = 29.6.0 | DAC | 100 | T = 30 °C, P = 0.1 MPa, t = 2 h, L/S = 0.15 | 51.5 | [135] | |
BOFS | CaO = 31.0 | DAC | 40 | T = 50 °C, P = 0.51 MPa, t = 4 h, D = 63–100 µm | 53.6 | [136] |
CaO = 42.43 | DAC | 99 | T = 65 °C, P = 0.1 MPa, t = 0.5 h, D < 63 µm, L/S = 20 | 93.5 | [137] | |
CaO = 46.45 | DAC | 30 | T = 30 °C, P = 0.1 MPa, t = 20 min, D < 125 µm | 90.7 | [138] | |
CaO = 41.15 | DAC | 100 | T = 25 °C, P = 0.1 MPa, t = 120 min, D < 44 µm | 89.4 | [139] | |
CaO = 41.15 | DAC | 99 | T = 50 °C, P = 0.1 MPa, t = 120 min, D < 44 µm | 57 | [140] | |
CaO = 36.37 | DAC | 98.9 | T = 25 °C, P = 0.1 MPa, t = 1 min, D = 44 µm | 38.08 | [141] | |
CaO = 20.6 | DAC | 60 | T = 650 °C, P = 2.03 MPa, t = 30 min, D < 80 µm | 98 | [142] | |
CaO = 51.11 ± 4.82 | DAC | 100 | T = 60 °C, P = 0.1 MPa, t = 60 min, D < 44 µm, L/S = 10 | 68 | [143] | |
SS | CaO = 54.19 ± 2.73 | DAC | 100 | 48 | ||
CaO= 37.2 | DAC | 99.5 | T = 50 °C, P = 0.1 MPa, t = 4 h, D = 63–200 µm | 61.6 | [144] | |
DAC | 99.5 | Pre-Sonication: 24 Hz, t = 4 h, T = 50 °C, P = 0.1 MPa, t = 4 h, D = 63–200 µm | 73.2 | |||
CaO = 40.6 | DAC | 99.5 | T = 50 °C, P = 0.1 MPa, t = 4 h, D = 63–200 µm | 30.5 | ||
DAC | 99.5 | Pre-Sonication: 24 Hz, t = 4 h, T = 50 °C, P = 0.1 MPa, t = 4 h, D = 63–200 µm | 48.5 | |||
CaO = 54.8 | DAC | 99.5 | T = 90 °C, P = 0.61 MPa, t = 2 h, D < 500 µm | 52 | [145] | |
CaO = 50.0 | DAC | 99.5 | 40 | |||
CaO = 44.5 | IAC | 13 | Dissolution: T = 70 °C, t = 2 h, NH4Cl Carbonation: T = 40 °C, P = 0.1 MPa, t = 1 h, D < 63 µm | 72.8 | [146] | |
CaO = 38.98 | IAC | 100 | Dissolution: T = 50 °C, P = 0.1 MPa, NH4HSO4 Carbonation: T = 65 °C, P = 0.1 MPa, t = 1 h, D = 75–150 µm, NH4HCO3 | 74 | [147] | |
CaO = 31.70 | DAC | 100 | T = 100 °C, P = 1.93 MPa, t = 30 min, D < 38 µm Nanopure-demineralized water | 74 | [84] | |
CaO = 34.28 | DAC | 100 | T = 90 °C, P = 0.1 MPa, t = 4 h, D = 25–37 µm Nanopore-demineralized water | 70 | [148] | |
EAFS | CaO = 35.0 | DAC | 100 | T = 100 °C, P = 1.01 MPa, t = 24 h, D < 150 µm | 72.3 | [149] |
CaO = 32.1 | DAC | 100 | T = 25 °C, P = 0.1 MPa, t = 17 h, D = 45–75 µm | 11.8 | [150] | |
CaO = 36.5 | DAC | 100 | T = 30 °C, P = 0.1 MPa, t = 2 h, L/S = 0.15 | 33.9 | [135] | |
BFS | CaO= 38.5 | DAC | 100 | 15 | ||
CaO = 44.0 | DAC | 100 | T = 20 °C, P = 1 MPa, t = 28 d | 39 | [151] | |
CaO = 41.5 | DAC | 100 | T = 25 °C, P = 0.15 MPa, t = 6 h, D < 35 µm NaOH, L/S = 0.2 | 28 | [152] | |
CaO = 32.9 | IAC | 100 | Dissolution: T = 50 °C, t = 30 min, NH4HSO4 Carbonation: T = 30 °C, P = 0.1 MPa, t = 1 h, L/S = 10 | 13 | [153] | |
CaO = 38.3 | IAC | 100 | Dissolution: T = 100 °C, t = 30 min, NH4HSO4 Carbonation: T = 55 °C, P = 0.1 MPa, t = 0.5 h, D = 75–150 µm, NH4HCO3/NH3 | 97 | [154] | |
CaO = 40.6 | IAC | 100 | Dissolution: T = 70 °C, t = 2 h, CH3COOH Carbonation: T = 30 °C, P = 0.1 MPa, t = 15 min, D < 10 µm, NaOH | 72.5 | [121] | |
CaO = 32.8 | DAC | 15 | T = 20 °C, P = 0.1 MPa, t = 24 h, D = 38–106 µm | 2.2 | [155] | |
LFS | CaO = 58.1 | DAC | 15 | 24.8 | ||
LMFS | CaO = 49.9 | DAC | 100 | T = 25 °C, P = 0.1 MPa, t = 17 h, D = 45–75 µm | 10 | [150] |
PFA | CaO = 51.9 | DAC | 15 | T = 20 °C, P = 0.1 MPa, t = 1 h, D < 100 µm | 33 | [156] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Itakura, K.-i. A State-of-the-Art Review on Technology for Carbon Utilization and Storage. Energies 2023, 16, 3992. https://doi.org/10.3390/en16103992
Zhao Y, Itakura K-i. A State-of-the-Art Review on Technology for Carbon Utilization and Storage. Energies. 2023; 16(10):3992. https://doi.org/10.3390/en16103992
Chicago/Turabian StyleZhao, Yafei, and Ken-ichi Itakura. 2023. "A State-of-the-Art Review on Technology for Carbon Utilization and Storage" Energies 16, no. 10: 3992. https://doi.org/10.3390/en16103992
APA StyleZhao, Y., & Itakura, K. -i. (2023). A State-of-the-Art Review on Technology for Carbon Utilization and Storage. Energies, 16(10), 3992. https://doi.org/10.3390/en16103992