Modeling Thermal Radiation in Combustion Environments: Progress and Challenges
Abstract
:1. Introduction
2. Mathematical Model
2.1. Governing Equations
2.2. The Radiative Transfer Equation (RTE)
2.3. Turbulence–Radiation Interactions (TRIs)
2.3.1. Types of TRI
2.3.2. Approaches to Modeling TRIs
2.4. Summary of Mathematical Model
3. Spectral Radiative Properties
3.1. Gas Radiative Properties
3.2. Radiative Properties of Soot
3.3. Radiative Properties of Fuel Droplets
3.4. Spectral (Nongray) Models
3.5. Summary of Spectral Radiative Properties
4. Solution of the RTE
4.1. P Approximation
4.2. Discrete Ordinates (S Approximation) and Finite Angle Methods
4.3. Monte Carlo (MC) Method
4.4. Hybrid Methods
4.5. Comparison of RTE Solvers
5. Concluding Remarks and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CFD | Computational Fluid Dynamics |
DNS | Direct Numerical Simulation |
DOM | Discrete Ordinates Method |
FAM | Finite Angle Method |
FSK | Full-Spectrum k-distribution |
FSCK | Full-Spectrum Correlated k-distribution |
LBL | Line-by-Line |
LES | Large Eddy Simulation |
MC | Monte Carlo |
NB | Narrow Band |
PDE | Partial Differential Equation |
Probability Density Function | |
PMC | Photon Monte Carlo |
QMC | Quasi-Monte Carlo |
RANS | Reynolds-Averaged Navier–Stokes |
RTE | Radiative Transfer Equation |
SLW | Spectral Line-Weighted |
TRI | Turbulence–Radiation Interaction |
WSGG | Weighted-Sum-of-Gray-Gases |
WB | Wide Band |
References
- Modest, M.F.; Mazumder, S. Radiative Heat Transfer, 4th ed.; Academic Press: New York, NY, USA, 2021. [Google Scholar]
- Modest, M.F.; Haworth, D.C. Radiative Heat Transfer in Turbulent Combustion Systems: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Modest, M.F. Radiative Heat Transfer in Turbulent Combustion 2021 Max Jakob Memorial Award Paper. ASME J. Heat Mass Transf. 2023, 145, 073101. [Google Scholar] [CrossRef]
- Howell, J.R.; Mengüç, M.P.; Daun, K.J.; Siegel, R. Thermal Radiation Heat Transfer, 7th ed.; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Mazumder, S. Numerical Study of Chemically Reactive Turbulent Flows with Radiative Heat Transfer. Ph.D. Thesis, The Pennsylvania State University, State College, PA, USA, 1997. [Google Scholar]
- Modest, M.F. Multiscale Modeling of Turbulence, Radiation, and Combustion Interactions in Turbulent Flames. Int. J. Multiscale Comput. Eng. 2005, 3, 85–106. [Google Scholar] [CrossRef]
- Modest, M.F. Radiative Heat Transfer Models for High-Temperature Combustion Gases. In Annual Review of Heat Transfer; Chen, G., Ed.; Begell Publishing: Danbury, CT, USA, 2005; Volume 14, Chapter I.2; pp. 23–47. [Google Scholar]
- Mazumder, S.; Modest, M.F. A PDF Approach to Modeling Turbulence–Radiation Interactions in Nonluminous Flames. Int. J. Heat Mass Transf. 1999, 42, 971–991. [Google Scholar] [CrossRef]
- Coelho, P.J. Numerical simulation of the interaction between turbulence and radiation in reactive flows. Prog. Energy Combust. Sci. 2007, 33, 311–383. [Google Scholar] [CrossRef]
- Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. Transport Phenomena, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2007. [Google Scholar]
- Whitaker, S. Fundamental Principles of Heat Transfer, 1st ed.; Pergamon Press: New York, NY, USA, 1977. [Google Scholar]
- Fox, R.O. Computational Models for Turbulent Reacting Flows; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Kumar, A.; Mazumder, S. Assessment of Various Diffusion Models for the Prediction of Heterogeneous Combustion in Monolith Tubes. Comput. Chem. Eng. 2008, 32, 1482–1493. [Google Scholar] [CrossRef]
- Kumar, A.; Mazumder, S. Coupled Solution of the Species Conservation Equations Using Unstructured Finite-Volume Method. Int. J. Numer. Methods Fluids 2010, 64, 409–442. [Google Scholar] [CrossRef]
- Wang, A.; Modest, M.F.; Haworth, D.C.; Wang, L. Monte Carlo Simulation of Radiative Heat Transfer and Turbulence Interactions in Methane/Air Jet Flames. J. Quant. Spectrosc. Radiat. Transf. 2008, 109, 269–279. [Google Scholar] [CrossRef]
- Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Wilcox, D.C. Turbulent Modeling for CFD, 3rd ed.; DCW Industries: La Canada, CA, USA, 2006. [Google Scholar]
- Pope, S.B. PDF Methods for Turbulent Reactive Flows. Prog. Energy Combust. Sci. 1985, 11, 119–192. [Google Scholar] [CrossRef]
- Pope, S.B. PDF/Monte Carlo Methods for Turbulent Combustion and Their Implementation on Parallel Computers. In Turbulence and Molecular Processes in Combustion; Takeno, T., Ed.; Elsevier Science Publisher: Amsterdam, The Netherlands, 1993; pp. 51–62. [Google Scholar]
- Cox, G. On Radiant Heat Transfer from Turbulent Flames. Combust. Sci. Technol. 1977, 17, 75–78. [Google Scholar] [CrossRef]
- Mazumder, S.; Modest, M.F. Turbulence–Radiation Interactions in Nonreactive Flow of Combustion Gases. ASME J. Heat Transf. 1999, 121, 726–729. [Google Scholar] [CrossRef]
- Gupta, A.; Modest, M.F.; Haworth, D.C. Large-Eddy Simulation of Turbulence–Radiation Interactions in a Turbulent Planar Channel Flow. ASME J. Heat Transf. 2009, 131, 061704. [Google Scholar] [CrossRef]
- Coelho, P.J. A theoretical analysis of the influence of turbulence on radiative emission in turbulent diffusion flames of methane. Combust. Flame 2013, 160, 610–617. [Google Scholar] [CrossRef]
- Fraga, G.C.; Coelho, P.J.; França, F.H.R. Assessing individual time-averaged emission and absorption correlations for large-scale turbulent pool fires. Int. J. Heat Mass Transf. 2021, 165, 120665. [Google Scholar] [CrossRef]
- Snegirev, A.Y. Statistical modeling of thermal radiation transfer in buoyant turbulent diffusion flames. Combust. Flame 2004, 136, 51–71. [Google Scholar] [CrossRef]
- Kabashnikov, V.P.; Kmit, G.I. Influence of Turbulent Fluctuations of Thermal Radiation. J. Appl. Spectrosc. 1979, 31, 963–967. [Google Scholar] [CrossRef]
- Kabashnikov, V.P.; Myasnikova, G.I. Thermal Radiation in Turbulent Flows—Temperature and Concentration Fluctuations. Heat Transf.-Sov. Res. 1985, 17, 116–125. [Google Scholar]
- Li, G.; Modest, M.F. Application of composition PDF methods in the investigation of turbulence–radiation interactions. J. Quant. Spectrosc. Radiat. Transf. 2002, 73, 461–472. [Google Scholar] [CrossRef]
- Li, G.; Modest, M.F. Importance of Turbulence–Radiation Interactions in Turbulent Diffusion Jet Flames. ASME J. Heat Transf. 2003, 125, 831–838. [Google Scholar] [CrossRef]
- Wang, L.; Modest, M.F.; Haworth, D.C.; Turns, S.R. Modeling Nongray Soot and Gas-Phase Radiation in Luminous Turbulent Nonpremixed Jet Flames. Combust. Theory Model. 2005, 9, 479–498. [Google Scholar] [CrossRef]
- Yang, X.; He, Z.; Dong, S.; Tan, H.P. Prediction of turbulence radiation interactions of CH4–H2/air turbulent flames at atmospheric and elevated pressures. Int. J. Hydrogen Energy 2018, 43, 15537–15550. [Google Scholar] [CrossRef]
- Nmira, F.; Consalvi, J.L.; André, F. Pressure effects on radiative heat transfer in hydrogen/air turbulent diffusion flames. J. Quant. Spectrosc. Radiat. Transf. 2018, 220, 172–179. [Google Scholar] [CrossRef]
- Nmira, F.; Liu, Y.; Consalvi, J.L.; Andre, F.; Liu, F. Pressure effects on radiative heat transfer in sooting turbulent diffusion flames. J. Quant. Spectrosc. Radiat. Transf. 2020, 245, 106906. [Google Scholar] [CrossRef]
- Mehta, R.S.; Wang, A.; Modest, M.F.; Haworth, D.C. Modeling of a Turbulent Ethylene/Air Flame Using Hybrid Finite Volume/Monte Carlo Methods. Comput. Therm. Sci. 2009, 1, 37–53. [Google Scholar] [CrossRef]
- Mehta, R.S.; Haworth, D.C.; Modest, M.F. Composition PDF/photon Monte Carlo Modeling of Moderately Sooting Turbulent Jet Flames. Combust. Flame 2010, 157, 982–994. [Google Scholar] [CrossRef]
- Mehta, R.S.; Modest, M.F.; Haworth, D.C. Radiation Characteristics and Turbulence–Radiation Interactions in Sooting Turbulent Jet Flames. Combust. Theory Model. 2010, 14, 105–124. [Google Scholar] [CrossRef]
- Consalvi, J.L.; Nmira, F. Absorption turbulence–radiation interactions in sooting turbulent jet flames. J. Quant. Spectrosc. Radiat. Transf. 2017, 201, 1–9. [Google Scholar] [CrossRef]
- Nmira, F.; Consalvi, J.L. Local contributions of resolved and subgrid turbulence-radiation interaction in LES/presumed FDF modelling of large-scale methanol pool fires. Int. J. Heat Mass Transf. 2022, 190, 122746. [Google Scholar] [CrossRef]
- Song, T.H.; Viskanta, R. Interaction of Radiation with Turbulence: Application to a Combustion System. AIAA J. Thermophys. Heat Transf. 1987, 1, 56–62. [Google Scholar] [CrossRef]
- Consalvi, J.L. Influence of turbulence–radiation interactions in laboratory-scale methane pool fires. Int. J. Therm. Sci. 2012, 60, 122–130. [Google Scholar] [CrossRef]
- Cumber, P.S. Validation study of a turbulence radiation interaction model: Weak, intermediate and strong TRI in jet flames. Int. J. Heat Mass Transf. 2014, 79, 1034–1047. [Google Scholar] [CrossRef]
- Cumber, P.S. Efficient Modeling of Turbulence-Radiation Interaction in Subsonic Hydrogen Jet Flames. Numer. Heat Transf. Part B 2013, 63, 85–114. [Google Scholar] [CrossRef]
- Consalvi, J.L.; Demarco, R.; Fuentes, A. Modelling thermal radiation in buoyant turbulent diffusion flames. Combust. Theory Model. 2012, 16, 817–841. [Google Scholar] [CrossRef]
- Cumber, P.S.; Onokpe, O. Turbulent radiation interaction in jet flames: Sensitivity to the PDF. Int. J. Heat Mass Transf. 2013, 57, 250–264. [Google Scholar] [CrossRef]
- Young, X.; He, Z.; Niu, Q.; Dong, S.; Tan, H. Numerical analysis of turbulence radiation interaction effect on radiative heat transfer in a swirling oxyfuel furnace. Int. J. Heat Mass Transf. 2019, 141, 1227–1237. [Google Scholar] [CrossRef]
- Sivathanu, Y.R.; Kounalakis, M.E.; Faeth, G.M. Soot and Continuous Radiation Statistics of Luminous Turbulent Diffusion Flames. In Proceedings of the Twenty-Third Symposium (International) on Combustion, Orléans, France, 22–27 July 1990; The Combustion Institute: Pittsburgh, PA, USA, 1990; pp. 1543–1550. [Google Scholar]
- Kounalakis, M.E.; Sivathanu, Y.R.; Faeth, G.M. Infrared Radiation Statistics of Nonluminous Turbulent Diffusion Flames. ASME J. Heat Transf. 1991, 113, 437–445. [Google Scholar] [CrossRef]
- Fraga, G.C.; Coelho, P.J.; Petry, A.P.; França, F.H.R. Development and testing of a model for turbulence-radiation interaction effects on the radiative emission. J. Quant. Spectrosc. Radiat. Transf. 2020, 245, 106852. [Google Scholar] [CrossRef]
- Fraga, G.C.; Centeno, F.R.; Petry, A.P.; Coelho, P.J.; França, F.H.R. On the individual importance of temperature and concentration fluctuations in the turbulence-radiation interaction in pool fires. Int. J. Heat Mass Transf. 2019, 136, 1079–1089. [Google Scholar] [CrossRef]
- Armengol, J.M.; Vicquelin, R.; Coussement, A.; Santos, R.G.; Gicquel, O. Study of turbulence-radiation interactions in a heated jet using direct numerical simulation coupled to a non-gray Monte-Carlo solver. Int. J. Heat Mass Transf. 2020, 162, 187–203. [Google Scholar] [CrossRef]
- Nmira, F.; Burot, D.; Consalvi, J.L. Stochastic Eulerian field method for radiative heat transfer in a propane oxygen-enhanced turbulent diffusion flame. Combust. Theory Model. 2017, 21, 62–78. [Google Scholar] [CrossRef]
- Consalvi, J.L.; Nmira, F. Effects of soot absorption coefficient-Planck function correlation on radiative heat transfer in oxygen-enriched propane turbulent diffusion flame. J. Quant. Spectrosc. Radiat. Transf. 2016, 172, 50–57. [Google Scholar] [CrossRef]
- Nmira, F.; Burot, D.; Consalvi, J.L. Soot emission radiation-turbulence interactions in diffusion jet flames. Combust. Sci. Technol. 2019, 191, 126–136. [Google Scholar] [CrossRef]
- Chandy, A.J.; Glaze, D.J.; Frankel, S.H. A General Semicausal Stochastic Model for Turbulence/ Radiation Interactions in Flames. ASME J. Heat Transf. 1997, 113, 509–516. [Google Scholar] [CrossRef]
- Roger, M.; Silva, C.B.D.; Coelho, P.J. Analysis of the turbulence–radiation interactions for large eddy simulations of turbulent flows. Int. J. Heat Mass Transf. 2009, 52, 2243–2254. [Google Scholar] [CrossRef]
- Roger, M.; Coelho, P.J.; da Silva, C.B. The influence of the non-resolved scales of thermal radiation in large eddy simulation of turbulent flows: A fundamental study. Int. J. Heat Mass Transf. 2010, 53, 2897–2907. [Google Scholar] [CrossRef]
- Gupta, A.; Haworth, D.C.; Modest, M.F. Turbulence–radiation interactions in large-eddy simulations of luminous and nonluminous nonpremixed flames. Proc. Combust. Inst. 2013, 34, 1281–1288. [Google Scholar] [CrossRef]
- Gupta, A. Large-Eddy Simulation of Turbulent Flames with Radiation Heat Transfer. Ph.D. Thesis, The Pennsylvania State University, University Park, PA, USA, 2011. [Google Scholar]
- Coelho, P.J. Approximate solutions of the filtered radiative transfer equation in large eddy simulations of turbulent reactive flows. Combust. Flame 2009, 156, 1099–1110. [Google Scholar] [CrossRef]
- Consalvi, J.L.; Nmira, F.; Kong, W. On the modeling of the filtered radiative transfer equation in large eddy simulations of lab-scale sooting turbulent diffusion flames. J. Quant. Spectrosc. Radiat. Transf. 2018, 221, 51–60. [Google Scholar] [CrossRef]
- Roger, M.; Coelho, P.J.; da Silva, C.B. Relevance of the subgrid-scales for large eddy simulations of turbulence–radiation interactions in a turbulent plane jet. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 1250–1256. [Google Scholar] [CrossRef]
- Miranda, F.C.; Coelho, P.J.; di Mare, F.; Janicka, J. Study of turbulence-radiation interactions in large-eddy simulation of scaled Sandia flame D. J. Quant. Spectrosc. Radiat. Transf. 2019, 228, 47–56. [Google Scholar] [CrossRef]
- Fraga, G.C.; Miranda, F.C.; França, F.H.R.; Janicka, J.; Coelho, P.J. Assessment of a model for emission subgrid-scale turbulence-radiation interaction applied to a scaled Sandia flame DD. J. Quant. Spectrosc. Radiat. Transf. 2020, 248, 106986. [Google Scholar] [CrossRef]
- Poitou, D.; Amaya, J.; El Hafi, M.; Cuénot, B. Analysis of the interaction between turbulent combustion and thermal radiation using unsteady coupled LES/DOM simulations. Combust. Flame 2012, 159, 1605–1618. [Google Scholar] [CrossRef]
- Deshmukh, K.V.; Haworth, D.C.; Modest, M.F. Direct Numerical Simulation of Turbulence–Radiation Interactions in a Statistically Homogeneous Nonpremixed Combustion System. Proc. Combust. Inst. 2007, 31, 1641–1648. [Google Scholar] [CrossRef]
- Kang, S.H. Direct numerical simulation of the turbulent premixed flame propagation with radiation effects. Int. J. Heat Mass Transf. 2016, 102, 323–330. [Google Scholar] [CrossRef]
- Rejeb, S.B.; Echekki, T. Thermal radiation modeling using the LES-ODT framework for turbulent combustion flows. Int. J. Heat Mass Transf. 2017, 104, 1300–1316. [Google Scholar] [CrossRef]
- Silvestri, S.; Roekaerts, D.J.E.M.; Pecnik, R. Assessing turbulence-radiation interactions in turbulent flows of non-gray media. J. Quant. Spectrosc. Radiat. Transf. 2019, 233, 134–148. [Google Scholar] [CrossRef]
- Gordon, I.E.; Rothman, L.S.; Hargreaves, R.J.; Hashemi, R.; Karlovets, E.V.; Skinner, F.M.; Conway, E.K.; Hill, C.; Kochanov, R.V.; Tan, Y.; et al. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2022, 277, 107949. [Google Scholar] [CrossRef]
- Rothman, L.S.; Gordon, I.E.; Barber, R.J.; Dothe, H.; Gamache, R.R.; Goldman, A.; Perevalov, V.I.; Tashkun, S.A.; Tennyson, J. HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 2139–2150. [Google Scholar] [CrossRef]
- Tashkun, S.A.; Perevalov, V.I.; Teffo, J.L.; Bykov, A.D.; Lavrentieva, N.N. CDSD-1000, the high-temperature carbon dioxide spectroscopic databank. J. Quant. Spectrosc. Radiat. Transf. 2003, 82, 165–196. [Google Scholar] [CrossRef]
- Tashkun, S.A.; Perevalov, V.I. CDSD-4000: High-resolution, high-temperature carbon dioxide spectroscopic databank. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 1403–1410. [Google Scholar] [CrossRef]
- Fraga, G.C.; Bordbar, H.; Hostikka, S.; França, F.H.R. Benchmark Solutions of Three-Dimensional Radiative Transfer in Nongray Media Using Line-by-Line Integration. ASME J. Heat Transf. 2020, 142, 034510. [Google Scholar] [CrossRef]
- Coelho, F.R.; Ziemniczak, A.; Roy, S.P.; França, F.H.R. A new line-by-line methodology based on the spectral contributions of the bands. Int. J. Heat Mass Transf. 2021, 164, 120423. [Google Scholar] [CrossRef]
- Bond, T.C.; Bergstrom, R.W. Light Absorption by Carbonaceous Particles: An Investigative Review Light Absorption by Carbonaceous Particles: An Investigative Review. Aerosol Sci. Technol. 2007, 40, 27–67. [Google Scholar] [CrossRef]
- Thomson, M.J. Modeling soot formation in flames and reactors: Recent progress and current challenges. Proc. Combust. Inst. 2022; in press. [Google Scholar] [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- D’Alessio, A.; D’Anna, A.; Gambi, G.; Minutolo, P. The spectroscopic characterisation of UV absorbing nanoparticles in fuel rich soot forming flames. J. Aerosol Sci. 1998, 29, 397–409. [Google Scholar] [CrossRef]
- Michelsen, H.A. Probing soot formation, chemical and physical evolution, and oxidation: A review of in situ diagnostic techniques and needs. Proc. Combust. Inst. 2017, 36, 717–735. [Google Scholar] [CrossRef]
- Kelesidis, G.A.; Pratsinis, S.E. Soot light absorption and refractive index during agglomeration and surface growth. Proc. Combust. Inst. 2019, 37, 1177–1184. [Google Scholar] [CrossRef]
- Michelsen, H.A.; Colket, M.B.; Bengtsson, P.E.; D’Anna, A.; Desgroux, P.; Haynes, B.S.; Miller, J.H.; Nathan, G.J.; Pitsch, H.; Wang, H. A review of terminology used to describe soot formation and evolution under combustion and pyrolytic conditions. ACS Nano 2020, 14, 12470–12490. [Google Scholar] [CrossRef]
- Stull, V.R.; Plass, G.N. Emissivity of Dispersed Carbon Particles. J. Opt. Soc. Am. 1960, 50, 121. [Google Scholar] [CrossRef]
- Millikan, R.C. Optical Properties of Soot. J. Opt. Soc. Am. 1961, 51, 698–699. [Google Scholar] [CrossRef]
- Dalzell, W.H.; Sarofim, A.F. Optical constants of soot and their application to heat-flux calculations. ASME J. Heat Transf. 1969, 91, 100–104. [Google Scholar] [CrossRef]
- Lee, S.; Tien, C. Optical constants of soot in hydrocarbon flames. Symp. (Int.) Combust. 1981, 18, 1159–1166. [Google Scholar] [CrossRef]
- Charalampopoulos, T.; Chang, H. Effects of soot agglomeration on radiative transfer. J. Quant. Spectrosc. Radiat. Transf. 1991, 46, 125–134. [Google Scholar] [CrossRef]
- Minutolo, P.; Commodo, M.; DÁnna, A. Optical properties of incipient soot. Proc. Combust. Inst. 2022; in press. [Google Scholar] [CrossRef]
- Liu, F.; Yon, J.; Fuentes, A.; Lobo, P.; Smallwood, G.J.; Corbin, J.C. Review of recent literature on the light absorption properties of black carbon: Refractive index, mass absorption cross section, and absorption function. Aerosol Sci. Technol. 2020, 54, 33–51. [Google Scholar] [CrossRef]
- Kelesidis, G.A.; Crepaldi, P.; Allemann, M.; Duric, A.; Pratsinis, S.E. The mobility diameter of soot determines its angular light scattering distribution. Combust. Flame 2022, 112476. [Google Scholar] [CrossRef]
- Hostikka, S.; McGrattan, K. Numerical modeling of radiative heat transfer in water sprays. Fire Saf. J. 2006, 41, 76–86. [Google Scholar] [CrossRef]
- Boulet, P.; Collin, A.; Parent, G. Heat transfer through a water spray curtain under the effect of a strong radiative source. Fire Saf. J. 2006, 41, 15–30. [Google Scholar] [CrossRef]
- Collin, A.; Boulet, P.; Lacroix, D.; Jeandel, G. On radiative transfer in water spray curtains using the discrete ordinates method. J. Quant. Spectrosc. Radiat. Transf. 2005, 92, 85–110. [Google Scholar] [CrossRef]
- Boulet, P.; Collin, A.; Consalvi, J.L. On the finite volume method and the discrete ordinates method regarding radiative heat transfer in acute forward anisotropic scattering media. J. Quant. Spectrosc. Radiat. Transf. 2007, 104, 460–473. [Google Scholar] [CrossRef]
- Wu, B.; Zhao, X. Radiation characteristics of water droplets in a fire-inspired environment: A Monte Carlo ray tracing study. J. Quant. Spectrosc. Radiat. Transf. 2018, 212, 97–111. [Google Scholar] [CrossRef]
- Oluwole, O.O.; Gupta, A.; Wu, B.; Zhao, X.; Meredith, K.V.; Wang, Y. Nongray models for radiative absorption and anisotropic scattering by water droplets in fire CFD simulations. Fire Saf. J. 2021, 120, 103034. [Google Scholar] [CrossRef]
- Anderson, M.R. Determination of Infrared Optical Constants for Single Component Hydrocarbon Fuels. Master’s Thesis, University of Missouri-Rolla, Rolla, MO, USA, 2000. [Google Scholar]
- Tuntomo, A. Transport Phenomena in a Small Particle with Internal Radiant Absorption. Ph.D. Thesis, University of California at Berkeley, Berkeley, CA, 1990. [Google Scholar]
- Tuntomo, A.; Tien, C.L.; Park, S.H. Optical constants of liquid hydrocarbon fuels. Combust. Sci. Technol. 1992, 84, 133–140. [Google Scholar] [CrossRef]
- Wang, C.C.; Tan, J.Y.; Jing, C.Y.; Liu, L.H. Temperature-dependent optical constants of liquid isopropanol, n-butanol, and n-decane. Appl. Opt. 2018, 57, 3003. [Google Scholar] [CrossRef] [PubMed]
- Dombrovsky, L.A.; Sazhin, S.S.; Mikhalovsky, S.V.; Wood, R.; Heikal, M.R. Spectral Properties of Diesel Fuel Droplets. Fuel 2003, 82, 15–22. [Google Scholar] [CrossRef]
- Dombrovsky, L.A. Thermal Radiation From Nonisothermal Spherical Particles Of A Semitransparent Material. Int. J. Heat Mass Transf. 2000, 43, 1661–1672. [Google Scholar] [CrossRef]
- Dombrovsky, L.A.; Baillis, D. Thermal Radiation in Disperse Systems: An Engineering Approach; Begell House: New York, NY, USA, 2010. [Google Scholar]
- Dombrovsky, L.A. Spectral Model of Absorption and Scattering of Thermal Radiation by Diesel Fuel Droplets. High Temp. 2002, 40, 242–248. [Google Scholar] [CrossRef]
- Penner, S.S. Quantitative Molecular Spectroscopy and Gas Emissivities; Addison Wesley: Reading, MA, USA, 1960. [Google Scholar]
- Paul, C.; Haworth, D.C.; Modest, M.F. A simplified CFD model for spectral radiative heat transfer in high-pressure hydrocarbon-air combustion systems. Proc. Combust. Inst. 2019, 37, 4617–4624. [Google Scholar] [CrossRef]
- Sikic, I.; Dembele, S.; Wen, J. Non-grey radiative heat transfer modelling in LES-CFD simulated methanol pool fires. J. Quant. Spectrosc. Radiat. Transf. 2019, 234, 78–89. [Google Scholar] [CrossRef]
- Edwards, D.K. Molecular Gas Band Radiation. In Advances in Heat Transfer; Academic Press: New York, NY, USA, 1976; Volume 12, pp. 115–193. [Google Scholar]
- Grosshandler, W.L. RADCAL: A Narrow-Band Model for Radiation Calculations in a Combustion Environment; Technical Report NIST Technical Note 1402; National Institute of Standards and Technology: Gaithersburg, MD, USA, 1993. [Google Scholar]
- Soufiani, A.; Taine, J. High temperature gas radiative property parameters of statistical narrow-band model for H2O, CO2 and CO, and correlated-k model for H2O and CO2. Int. J. Heat Mass Transf. 1997, 40, 987–991. [Google Scholar] [CrossRef]
- Rivière, P.; Soufiani, A. Updated band model parameters for H2O, CO2, CH4 and CO radiation at high temperature. Int. J. Heat Mass Transf. 2012, 55, 3349–3358. [Google Scholar] [CrossRef]
- Fisher, A.; Rani, S. A narrow band model based on the absorption coefficient and its application to the calculation of radiative transfer in one-dimensional enclosures. J. Quant. Spectrosc. Radiat. Transf. 2022, 277, 107989. [Google Scholar] [CrossRef]
- Modest, M.F. The Weighted-Sum-of-Gray-Gases Model for Arbitrary Solution Methods in Radiative Transfer. ASME J. Heat Transf. 1991, 113, 650–656. [Google Scholar] [CrossRef]
- Kangwanpongpan, T.; França, F.H.R.; da Silva, R.C.; Schneider, P.S.; Krautz, H.J. New correlations for the weighted-sum-of-gray-gases model in oxy-fuel conditions based on HITEMP 2010 database. Int. J. Heat Mass Transf. 2012, 55, 7419–7433. [Google Scholar] [CrossRef]
- Dorigon, L.J.; Duciak, G.; Brittes, R.; Cassol, F.; Galarça, M.; França, F.H.R. WSGG correlations based on HITEMP2010 for computation of thermal radiation in non-isothermal, non-homogeneous H2O/CO2 mixtures. Int. J. Heat Mass Transf. 2013, 64, 863–873. [Google Scholar] [CrossRef]
- Wang, B.; Xuan, Y. An improved WSGG model for exhaust gases of aero engines within broader ranges of temperature and pressure variations. Int. J. Heat Mass Transf. 2019, 136, 1299–1310. [Google Scholar] [CrossRef]
- Bordbar, H.; Coelho, F.R.; Fraga, G.C.; França, F.H.R.; Hostikka, S. Pressure-dependent weighted-sum-of-gray-gases models for heterogeneous CO2-H2O mixtures at sub- and super-atmospheric pressure. Int. J. Heat Mass Transf. 2021, 173, 121207. [Google Scholar] [CrossRef]
- Bordbar, M.H.; Wecel, G.; Hyppänen, T. A line by line based weighted sum of gray gases model for inhomogeneous CO2–H2O mixture in oxy-fired combustion. Combust. Flame 2014, 161, 2435–2445. [Google Scholar] [CrossRef]
- He, Z.; Dong, C.; Liang, D.; Mao, J. A weighted-sum-of-gray soot-fractal-aggregates model for nongray heat radiation in the high temperature gas-soot mixture. J. Quant. Spectrosc. Radiat. Transf. 2021, 260, 107431. [Google Scholar] [CrossRef]
- Guo, J.; Shen, L.; He, X.; Liu, Z.; Im, H.G. Assessment of weighted-sum-of-gray-gases models for gas-soot mixture in jet diffusion flames. Int. J. Heat Mass Transf. 2021, 181, 121907. [Google Scholar] [CrossRef]
- da Fonseca, R.J.C.; Fraga, G.C.; Coelho, F.R.; França, F.H.R. A wide-band based weighted-sum-of-gray-gases model for participating media: Application to H2O–CO2 mixtures with or without soot. Int. J. Heat Mass Transf. 2023, 204, 123839. [Google Scholar] [CrossRef]
- Cassol, F.; Brittes, R.; França, F.H.R.; Ezekoye, O.A. Application of the weighted-sum-of-gray-gases model for media composed of arbitrary concentrations of H2O, CO2 and soot. Int. J. Heat Mass Transf. 2014, 79, 796–806. [Google Scholar] [CrossRef]
- Selhorst, A.H.B.; Fraga, G.C.; Coelho, F.R.; Bordbar, H.; França, F.H.R. A Compact WSGG Formulation to Account for Inhomogeneity of H2O–CO2 Mixtures in Combustion Systems. ASME J. Heat Transf. 2022, 144, 071301. [Google Scholar] [CrossRef]
- Young, X.; He, Z.; Dong, S.; Tan, H. Evaluation of the non-gray weighted sum of gray gases models for radiative heat transfer in realistic non-isothermal and non-homogeneous flames using decoupled and coupled calculations. Int. J. Heat Mass Transf. 2019, 134, 226–236. [Google Scholar] [CrossRef]
- Chen, Q.; Yuen, A.C.Y.; Chen, T.B.Y.; Cao, R.F.; Liu, H.; Yeoh, G.H. A Large-Eddy Simulation study on the effect of fuel configuration and pan distance towards chemical species for under-ventilated compartment fire scenario. Int. J. Heat Mass Transf. 2022, 184, 122306. [Google Scholar] [CrossRef]
- Denison, M.K.; Webb, B.W. A Spectral Line Based Weighted-Sum-of-Gray-gases Model for Arbitrary RTE Solvers. ASME J. Heat Transf. 1993, 115, 1004–1012. [Google Scholar] [CrossRef]
- Denison, M.K.; Webb, B.W. The Spectral-Line-Based Weighted-Sum-of-Gray-Gases Model in Nonisothermal Nonhomogeneous Media. ASME J. Heat Transf. 1995, 117, 359–365. [Google Scholar] [CrossRef]
- Denison, M.K.; Webb, B.W. The Spectral-Line Weighted-Sum-of-Gray-Gases Model for H2O/CO2 Mixtures. ASME J. Heat Transf. 1995, 117, 788–792. [Google Scholar] [CrossRef]
- Solovjov, V.P.; Webb, B.W. SLW Modeling of Radiative Transfer in Multicomponent Gas Mixtures. J. Quant. Spectrosc. Radiat. Transf. 2000, 65, 655–672. [Google Scholar] [CrossRef]
- Solovjov, V.P.; Webb, B.W. An Efficient Method of Modeling Radiative Transfer in Multicomponent Gas Mixtures With Soot. ASME J. Heat Transf. 2001, 123, 450–457. [Google Scholar] [CrossRef]
- Solovjov, V.P.; André, F.; Lemonnier, D.; Webb, B.W. The rank correlated SLW model of gas radiation in non-uniform media. J. Quant. Spectrosc. Radiat. Transf. 2017, 197, 26–44. [Google Scholar] [CrossRef]
- Ozen, G.; Ates, G.; Selçuk, N.; Kulah, G. Assessment of SLW-1 model in the presence of gray and non-gray particles. Int. J. Therm. Sci. 2019, 136, 420–432. [Google Scholar] [CrossRef]
- Yasar, M.; Ozen, G.; Selçuk, N.; Kulah, G. Performance of banded SLW-1 in presence of non-gray walls and particles in fluidized bed combustors. J. Quant. Spectrosc. Radiat. Transf. 2020, 257, 107370. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, J.; Yu, Y.; Ye, B.; Gao, C. Efficient SLW models for water vapor and carbon dioxide based on neural network method. J. Quant. Spectrosc. Radiat. Transf. 2019, 236, 106600. [Google Scholar] [CrossRef]
- Galtier, M.; Woelffel, W.; André, F.; Solovjov, V.P.; Webb, B.W.; Roy, S. Assessment of narrow-band and full spectrum gas radiation methods in a real industrial glass furnace configuration. Appl. Therm. Eng. 2022, 216, 119020. [Google Scholar] [CrossRef]
- Lacis, A.A.; Oinas, V. A Description of the Correlated-K Distrib. Method Model. Nongray Gaseous Absorption, Therm. Emiss. Mult. Scatt. Vertically Inhomogeneous Atmos. J. Geophys. Res. 1991, 96, 9027–9063. [Google Scholar] [CrossRef]
- Modest, M.F.; Zhang, H. The Full-Spectrum Correlated-K Distrib. Therm. Radiat. Mol. Gas- Mixtures. ASME J. Heat Transf. 2002, 124, 30–38. [Google Scholar] [CrossRef]
- Mazumder, S.; Modest, M.F. Application of the Full Spectrum Correlated-K Distrib. Approach Model. Non-Gray Radiat. Combust. Gases. Combust. Flame 2002, 129, 416–438. [Google Scholar] [CrossRef]
- Pal, G.; Modest, M.F. A narrow-band based multi-scale multi-group full-spectrum K- Distrib. Method Radiat. Transf. Nonhomogeneous Gas- Mixture. ASME J. Heat Transf. 2010, 132, 023307. [Google Scholar] [CrossRef]
- Pal, G.; Modest, M.F. K-Distrib. Methods Radiat. Calc. High Press. Combust. AIAA J. Thermophys. Heat Transf. 2013, 27, 584–587. [Google Scholar] [CrossRef]
- Clements, A.G.; Porter, R.; Pranzitelli, A.; Pourkashanian, M. Evaluation of FSK models for radiative heat transfer under oxyfuel conditions. J. Quant. Spectrosc. Radiat. Transf. 2015, 151, 67–75. [Google Scholar] [CrossRef]
- Cai, J.; Modest, M.F. Improved full-spectrum k-distribution implementation for inhomogeneous media using a narrow-band database. J. Quant. Spectrosc. Radiat. Transf. 2013, 141, 65–72. [Google Scholar] [CrossRef]
- Liu, G.; Liu, Y.; Liu, F.; Consalvi, J.L. A grouping strategy for the multi-group full-spectrum K-distribution method in gas mixtures. J. Quant. Spectrosc. Radiat. Transf. 2019, 236, 106575. [Google Scholar] [CrossRef]
- Alinejad, F.; Bordbar, H.; Hostikka, S. Development of full spectrum correlated k-model for spectral radiation penetration within liquid fuels. Int. J. Heat Mass Transf. 2020, 158, 119990. [Google Scholar] [CrossRef]
- Liu, G.; Liu, Y.; Liu, F.; Consalvi, J.L.; Xu, J. A nongray-wall emissivity model for the full-spectrum correlated k-distribution method based on uniform media assumption. Int. J. Heat Mass Transf. 2021, 179, 121660. [Google Scholar] [CrossRef]
- Liu, G.; Liu, Y.; Zhu, J.; Consalvi, J.L.; Liu, F. An Improved nongray-wall emissivity-absorptivity model for the Full-Spectrum Correlated K-distribution method. Int. J. Heat Mass Transf. 2022, 188, 122604. [Google Scholar] [CrossRef]
- Zhang, H.; Modest, M.F. Multi-Group Full-Spectrum k-Distribution Database ForWater Vapor Mixtures in Radiative Transfer Calculations. Int. J. Heat Mass Transf. 2003, 46, 3593–3603. [Google Scholar] [CrossRef]
- Wang, C.; He, B.; Modest, M.F. Full-spectrum correlated-k-distribution look-up table for radiative transfer in nonhomogeneous participating media with gas-particle mixtures. Int. J. Heat Mass Transf. 2019, 137, 1053–1063. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, J.; Liu, G.; Liu, F.; Consalvi, J.L. Assessment of various Full-Spectrum Correlated K-distribution methods in radiative heat transfer in oxy-fuel sooting flames. Int. J. Therm. Sci. 2023, 184, 107919. [Google Scholar] [CrossRef]
- Wang, C.; Modest, M.F.; Ren, T.; Cai, J.; He, B. Comparison and refinement of the various full-spectrum k-distribution and spectral line weighted-sum-of-gray-gases models for nonhomogeneous media. J. Quant. Spectrosc. Radiat. Transf. 2021, 271, 107695. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, C.; Ren, T.; Zhao, C. A machine learning based full-spectrum correlated k-distribution model for nonhomogeneous gas-soot mixtures. J. Quant. Spectrosc. Radiat. Transf. 2021, 268, 107628. [Google Scholar] [CrossRef]
- Smyth, K.C.; Shaddix, C.R. The elusive history of m = 1.57 − 0.56i for the refractive index of soot. Combust. Flame 1996, 107, 314–320. [Google Scholar] [CrossRef]
- Colsalvi, J.L.; Andre, F.; Coelho, F.R.; França, F.H.R.; Nmira, F.; Galtier, M.; Solovjov, V.; Webb, B.W. Assessment of engineering gas radiative property models in high pressure turbulent jet diffusion flames. J. Quant. Spectrosc. Radiat. Transf. 2020, 253, 107169. [Google Scholar] [CrossRef]
- Chu, H.; Gu, M.; Consalvi, J.L.; Liu, F.; Zhou, H. Effects of total pressure on non-grey gas radiation transfer in oxy-fuel combustion using the LBL, SNB, SNBCK, WSGG, and FSCK methods. J. Quant. Spectrosc. Radiat. Transf. 2016, 172, 24–35. [Google Scholar] [CrossRef]
- Chu, H.; Consalvi, J.L.; Gu, M.; Liu, F. Calculations of radiative heat transfer in an axisymmetric jet diffusion flame at elevated pressures using different gas radiation models. J. Quant. Spectrosc. Radiat. Transf. 2017, 197, 12–25. [Google Scholar] [CrossRef]
- André, F. The ℓ-distribution method for modeling non-gray absorption in uniform and non-uniform gaseous media. J. Quant. Spectrosc. Radiat. Transf. 2016, 179, 19–32. [Google Scholar] [CrossRef]
- Andre, F.; Coelho, F.R.; Consalvi, J.L.; Franca, F.H.R.; Galtier, M.; Nmira, F.; Solovjov, V.P.; Webb, B.W. Accuracy of Engineering Methods for Radiative Transfer in CO2-H2O Mixtures at High Temperature. In Proceedings of the 9th International Symposium on Radiative Transfer, RAD-19, Athens, Greece, 3–7 June 2019; Begellhouse: Danbury, CT, USA, 2019; pp. 407–414. [Google Scholar]
- Modest, M.F.; Yang, J. Elliptic PDE formulation and boundary conditions of the spherical harmonics method of arbitrary order for general three-dimensional geometries. J. Quant. Spectrosc. Radiat. Transf. 2008, 109, 1641–1666. [Google Scholar] [CrossRef]
- Cai, J.; Lei, S.; Dasgupta, A.; Modest, M.F.; Haworth, D.C. Radiative heat transfer in high-pressure laminar hydrogen–air diffusion flames. Combust. Theory Model. 2014, 18, 607–626. [Google Scholar] [CrossRef]
- Garten, B.; Hunger, F.; Messig, D.; Stelzner, B.; Trimis, D.; Hasse, C. Detailed radiation modeling of a partial-oxidation flame. Int. J. Therm. Sci. 2015, 87, 68–84. [Google Scholar] [CrossRef]
- Pal, G.; Gupta, A.; Modest, M.F.; Haworth, D.C. Comparison of accuracy and computational expense of radiation models in simulation of nonpremixed turbulent jet flames. Combust. Flame 2015, 162, 2487–2495. [Google Scholar] [CrossRef]
- Wang, L.; Haworth, D.C.; Turns, S.R.; Modest, M.F. Interactions among soot, thermal radiation, and NOx emissions in oxygen-enriched turbulent nonpremixed flames: A CFD modeling study. Combust. Flame 2005, 141, 170–179. [Google Scholar] [CrossRef]
- Wang, L.; Endrud, N.E.; Turns, S.R.; D’Agostini, M.D.; Slavejkov, A.G. A Study of the Influence of Oxygen Index on Soot, Radiation, and Emissions Characteristics of Turbulent Jet Flames. Combust. Sci. Technol. 2002, 174, 45–72. [Google Scholar] [CrossRef]
- Ge, W.; David, C.; Modest, M.F.; Sankaran, R.; Roy, S.P. Comparison of Spherical Harmonics Method and Discrete Ordinates Method for Radiative Transfer in a Turbulent Jet Flame. J. Quant. Spectrosc. Radiat. Transf. 2023, 296, 108459. [Google Scholar] [CrossRef]
- Chui, E.H.; Raithby, G.D.; Hughes, P.M.J. Prediction of Radiative Transfer in Cylindrical Enclosures with the Finite Volume Method. AIAA J. Thermophys. Heat Transf. 1992, 6, 605–611. [Google Scholar] [CrossRef]
- Chui, E.H.; Raithby, G.D. Computation of Radiant Heat Transfer on a Nonorthogonal Mesh Using the Finite-Volume Method. Numer. Heat Transf. Part B 1993, 23, 269–288. [Google Scholar] [CrossRef]
- Chai, J.C.; Lee, H.S.; Patankar, S.V. Finite Volume Method for Radiation Heat Transfer. AIAA J. Thermophys. Heat Transf. 1994, 8, 419–425. [Google Scholar] [CrossRef]
- Chai, J.C.; Parthasarathy, G.; Lee, H.S.; Patankar, S.V. Finite Volume Method Radiative Heat Transfer Procedure for Irregular Geometries. AIAA J. Thermophys. Heat Transf. 1995, 9, 410–415. [Google Scholar] [CrossRef]
- Coelho, P.J. Discrete ordinates and finite volume methods. Thermopedia 2011. [Google Scholar] [CrossRef]
- Mathur, S.R.; Murthy, J.Y. Coupled Ordinates Method for Multigrid Acceleration of Radiation Calculations. AIAA J. Thermophys. Heat Transf. 1999, 13, 467–473. [Google Scholar] [CrossRef]
- Mathur, S.R.; Murthy, J.Y. Acceleration of Anisotropic Scattering Computations Using Coupled Ordinates Method (COMET). ASME J. Heat Transf. 1999, 123, 607–612. [Google Scholar] [CrossRef]
- Fuentes, A.; Henriquez, R.; Nmira, F.; Liu, F.; Consalvi, J.L. Experimental and numerical study of the effects of the oxygen index on the radiation characteristics of laminar coflow diffusion flames. Combust. Flame 2013, 160, 786–795. [Google Scholar] [CrossRef]
- Liu, F.; Consalvi, J.L.; Fuentes, A. Effects of water vapor addition to the air stream on soot formation and flame properties in a laminar coflow ethylene/air diffusion flame. Combust. Flame 2014, 161, 1724–1734. [Google Scholar] [CrossRef]
- Demarco, R.; Nmira, F.; Consalvi, J.L. Influence of thermal radiation on soot production in laminar axisymmetric diffusion flames. J. Quant. Spectrosc. Radiat. Transf. 2013, 120, 52–69. [Google Scholar] [CrossRef]
- Asllanaj, F.; Contassot-Vivier, S.; Botella, O.; França, F.H.R. Numerical solutions of radiative heat transfer in combustion systems using a parallel modified discrete ordinates method and several recent formulations of WSGG model. J. Quant. Spectrosc. Radiat. Transf. 2021, 274, 107863. [Google Scholar] [CrossRef]
- Mazumder, S. Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Yasar, M.S.; Selçuk, N.; Kulah, G. Performance and validation of a radiation model coupled with a transient bubbling fluidized bed combustion model. Int. J. Therm. Sci. 2022, 176, 107496. [Google Scholar] [CrossRef]
- Modest, M.F. The Monte Carlo Method Applied to Gases with Spectral Line Structure. Numer. Heat Transf. Part B 1992, 22, 273–284. [Google Scholar] [CrossRef]
- Farmer, J.T.; Howell, J.R. Monte Carlo Prediction of Radiative Heat Transfer in Inhomogeneous, Anisotropic, Nongray Media. AIAA J. Thermophys. Heat Transf. 1994, 8, 133–139. [Google Scholar] [CrossRef]
- Wang, L.; Yang, J.; Modest, M.F.; Haworth, D.C. Application of the Full-Spectrum k-Distribution Method to Photon Monte Carlo Solvers. J. Quant. Spectrosc. Radiat. Transf. 2007, 104, 297–304. [Google Scholar] [CrossRef]
- Wang, A.; Modest, M.F. Spectral Monte Carlo Models for Nongray Radiation Analyses in Inhomogeneous Participating Media. Int. J. Heat Mass Transf. 2007, 50, 3877–3889. [Google Scholar] [CrossRef]
- Ren, T.; Modest, M.F. Hybrid wavenumber selection scheme for line-by-line photon Monte Carlo simulations in high-temperature gases. ASME J. Heat Transf. 2013, 135, 084501. [Google Scholar] [CrossRef]
- Marquez, R.; Modest, M.F.; Cai, J. Spectral Photon Monte Carlo with Energy Splitting Across Phases for Gas-Particle Mixtures. ASME J. Heat Transf. 2015, 137, 121012. [Google Scholar] [CrossRef]
- Roy, S.P.; Cai, J.; Modest, M.F. Development of a multiphase photon Monte Carlo method for spray combustion and its application in high-pressure conditions. Int. J. Heat Mass Transf. 2017, 115 Pt A, 453–466. [Google Scholar] [CrossRef]
- Ren, T.; Modest, M.F.; Roy, S. Monte Carlo simulation for radiative transfer in a high-pressure industrial gas turbine combustion chamber. J. Eng. Gas Turbines Power 2018, 140, 051503. [Google Scholar] [CrossRef]
- Rodrigues, P.; Gicquel, O.; Franzelli, B.; Darabiha, N.; Vicquelin, R. Analysis of radiative transfer in a turbulent sooting jet flame using a Monte Carlo method coupled to large eddy simulation. J. Quant. Spectrosc. Radiat. Transf. 2019, 235, 187–203. [Google Scholar] [CrossRef]
- Farmer, J.; Roy, S.P. A quasi-Monte Carlo solver for thermal radiation in participating media. J. Quant. Spectrosc. Radiat. Transf. 2020, 242, 106753. [Google Scholar] [CrossRef]
- Wu, B.; Zhao, X. Effects of radiation models on steady and flickering laminar non-premixed flames. J. Quant. Spectrosc. Radiat. Transf. 2020, 253, 107103. [Google Scholar] [CrossRef]
- Torres-Monclard, K.; Gicquel, O.; Vicquelin, R. A Quasi-Monte Carlo method to compute scattering effects in radiative heat transfer: Application to a sooted jet flame. Int. J. Heat Mass Transf. 2021, 168, 120915. [Google Scholar] [CrossRef]
- Ren, T.; Modest, M.F. Line-by-line random-number database for photon Monte Carlo simulations of radiation in participating media. ASME J. Heat Transf. 2019, 141, 0227019. [Google Scholar] [CrossRef]
- Wang, C.; Modest, M.F.; He, B. Full-spectrum correlated-k-distribution look-up table for use with radiative Monte Carlo solvers. Int. J. Heat Mass Transf. 2019, 131, 167–175. [Google Scholar] [CrossRef]
- Wu, B.; Roy, S.P.; Zhao, X.; Modest, M.F. Effect of multiphase radiation on coal combustion in a pulverized coal jet flame. J. Quant. Spectrosc. Radiat. Transf. 2017, 197, 154–165. [Google Scholar] [CrossRef]
- Kersch, A.; Morokoff, W.; Schuster, A. Radiative heat transfer with quasi-Monte Carlo methods. Transp. Theory Stat. Phys. 1994, 23, 1001–1021. [Google Scholar] [CrossRef]
- Mazumder, S.; Kersch, A. A Fast Monte Carlo Scheme for Thermal Radiation in Semiconductor Processing Applications. Numer. Heat Transf. Part B 2000, 37, 185–199. [Google Scholar]
- Marston, A.J.; Daun, K.J.; Collins, M.R. Geometric Optimization of Radiant Enclosures Containing Specularly-Reflecting Surfaces through Quasi-Monte Carlo Simulation. Numer. Heat Transf. Part A 2011, 59, 81–97. [Google Scholar] [CrossRef]
- Palluotto, L.; Dumont, N.; Rodrigues, P.; Gicquel, O.; Vicquelin, R. Assessment of randomized Quasi-Monte Carlo method efficiency in radiative heat transfer simulations. J. Quant. Spectrosc. Radiat. Transf. 2019, 236, 106570. [Google Scholar] [CrossRef]
- Modest, M.F. The Modified Differential Approximation for Radiative Transfer in General Three-Dimensional Media. AIAA J. Thermophys. Heat Transf. 1989, 3, 283–288. [Google Scholar] [CrossRef]
- Ravishankar, M.; Mazumder, S.; Sankar, M. Application of the modified differential approximation for radiative transfer to arbitrary geometry. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 2052–2069. [Google Scholar] [CrossRef]
- Sankar, M.; Mazumder, S. Solution of the Radiative Transfer Equation in Three-Dimensional Participating Media Using a Hybrid Discrete Ordinates-Spherical Harmonics Method. ASME J. Heat Transf. 2012, 134, 112702. [Google Scholar] [CrossRef]
- Yadav, R.; Kushari, A.; Verma, A.K.; Eswaran, V. Weighted Sum of Gray Gas Modeling for Nongray Radiation in Combusting Environment Using the Hybrid Solution Methodology. Numer. Heat Transf. Part B 2013, 64, 174–197. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X. Contributions of gray gases in SLW for non-gray radiation heat transfer and corresponding accuracies of FVM and P1 method. Int. J. Heat Mass Transf. 2018, 121, 819–831. [Google Scholar] [CrossRef]
- Sun, Y.; Shen, H.; Zheng, S.; Jiang, L. A hybrid non-gray gas radiation heat transfer solver based on OpenFOAM. J. Quant. Spectrosc. Radiat. Transf. 2022, 281, 108105. [Google Scholar] [CrossRef]
- Jajal, N.; Mazumder, S. Hybrid Solver for the Radiative Transport Equation in Nongray Combustion Gases. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Columbus, OH, USA, 30 October–3 November 2022; Paper no. IMECE2022–94556. ASME: Columbus, OH, USA, 2022; Volume 86700, p. V008T11A022. [Google Scholar]
- Jajal, N.; Mazumder, S. A Hybrid Solver for the Radiative Transfer Equation in Nongray Combustion Gases. Comput. Therm. Sci. 2023; in press. [Google Scholar] [CrossRef]
- Sun, H.F.; Sun, F.X.; Xia, X.L. A line-by-line hybrid unstructured finite volume/Monte Carlo method for radiation transfer in 3D non-gray medium. J. Quant. Spectrosc. Radiat. Transf. 2018, 205, 135–146. [Google Scholar] [CrossRef]
- Dobbins, R.R.; Hall, R.J.; Cao, S.; Bennett, B.A.V.; Colket, M.B.; Smooke, M.D. Radiative Emission and Reabsorption in Laminar, Ethylene-Fueled Diffusion Flames Using the Discrete Ordinates Method. Combust. Sci. Technol. 2015, 187, 230–248. [Google Scholar] [CrossRef]
- Orbegoso, E.M.; Figueira da Silva, L.F.; Serfaty, R. Comparative study of thermal radiation properties models in turbulent non-premixed sooting combustion. Numer. Heat Transf. Part A 2016, 69, 166–179. [Google Scholar] [CrossRef]
- Mengüç, M.P.; Viskanta, R.; Ferguson, C. Multidimensional modeling of radiative heat transfer in Diesel engines. SAE Trans. 1985, 94, 728–745. [Google Scholar]
- Kez, V.; Liu, F.; Consalvi, J.L.; Ströhle, J.; Epple, B. A comprehensive evaluation of different radiation models in a gas turbine combustor under conditions of oxy-fuel combustion with dry recycle. J. Quant. Spectrosc. Radiat. Transf. 2016, 172, 121–133. [Google Scholar] [CrossRef]
- Kez, V.; Consalvi, J.L.; Liu, F.; Ströhle, J.; Epple, B. Assessment of several gas radiation models for radiative heat transfer calculations in a three-dimensional oxy-fuel furnace under coal-fired conditions. Int. J. Therm. Sci. 2017, 120, 289–302. [Google Scholar] [CrossRef]
- Paul, C.; Fernandez, S.F.; Haworth, D.C.; Roy, S.; Modest, M.F. A Detailed Modeling Study of Radiative Heat Transfer in a Heavy-Duty Diesel Engine. Combust. Flame 2019, 200, 325–341. [Google Scholar] [CrossRef]
- Porter, R.; Liu, F.; Pourkashanian, M.; Williams, A.; Smith, D. Evaluation of solution methods for radiative heat transfer in gaseous oxy-fuel combustion environments. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 2084–2094. [Google Scholar] [CrossRef]
- Tong, T.W.; Skocypec, R.D. Summary on Comparison of Radiative Heat Transfer Solutions for a Specified Problem. In Proceedings of the Developments in Radiative Heat Transfer, San Diego, CA, USA, 9–12 August 1992; ASME HTD: New York, NY, USA, 1992; Volume 203. [Google Scholar]
- Iavarone, S.; Pascazio, L.; Sirignano, M.; De Candia, A.; Fierro, A.; de Arcangelis, L.; D’Anna, A. Molecular dynamics simulations of incipient carbonaceous nanoparticle formation at flame conditions. Combust. Theory Model. 2017, 21, 49–61. [Google Scholar] [CrossRef]
- Hou, D.; Pascazio, L.; Martin, J.; Zhou, Y.; Kraft, M.; You, X. On the reactive coagulation of incipient soot nanoparticles. J. Aerosol Sci. 2022, 159, 105866. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, M.; Wu, J.; Cao, L.; Lin, Y.; Huang, X. Formation of soot particles in methane and ethylene combustion: A reactive molecular dynamics study. Int. J. Hydrogen Energy 2021, 46, 36557–36568. [Google Scholar] [CrossRef]
- Sharma, A.; Mukut, K.M.; Roy, S.P.; Goudeli, E. The coalescence of incipient soot clusters. Carbon 2021, 180, 215–225. [Google Scholar] [CrossRef]
- Hu, H.; Li, Y.; Wei, Z.; Wang, Q. Parameter optimization for MSMGWB model used to calculate infrared remote sensing signals emitted by hot combustion gases of hydrocarbon fuel. J. Quant. Spectrosc. Radiat. Transf. 2020, 249, 107003. [Google Scholar] [CrossRef]
- Alinejad, F.; Bordbar, H.; Hostikka, S. Improving the modeling of spectral radiation penetration into the condensed materials with the separated full spectrum correlated-k method. Int. J. Heat Mass Transf. 2023, 176, 121448. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, C.; Ren, T.; Zhao, C. A machine learning based efficient and compact full-spectrum correlated k-distribution model. J. Quant. Spectrosc. Radiat. Transf. 2020, 254, 107199. [Google Scholar] [CrossRef]
- Murthy, J.Y.; Mathur, S.R. Finite Volume Method for Radiative Heat Transfer Using Unstructured Meshes. AIAA J. Thermophys. Heat Transf. 1998, 12, 313–321. [Google Scholar] [CrossRef]
- Murthy, J.Y.; Mathur, S.R. Radiative heat transfer in axisymmetric geometries using an unstructured finite-volume method. Numer. Heat Transf. Part B 1998, 33, 397–416. [Google Scholar] [CrossRef]
- Liu, J.; Shang, H.M.; Chen, Y.S. Parallel simulation of radiative heat transfer using an unstructured finite-volume method. Numer. Heat Transf. Part B 1999, 36, 115–137. [Google Scholar]
- Coelho, P.J. Application of high resolution NVD and TVD differencing schemes to the discrete ordinates method using unstructured grids. J. Quant. Spectrosc. Radiat. Transf. 2014, 143, 3–15. [Google Scholar] [CrossRef]
- Ravishankar, M.; Mazumder, S.; Kumar, A. Finite-Volume Formulation and Solution of the P3 Equations of Radiative Transfer on Unstructured Meshes. ASME J. Heat Transf. 2010, 132, 023402. [Google Scholar] [CrossRef]
- Howell, J.R.; Daun, K.J. The Past and Future of the Monte Carlo Method in Thermal Radiation Transfer. ASME J. Heat Transf. 2021, 143, 100801. [Google Scholar] [CrossRef]
- Ali, S.A.; Kollu, G.; Mazumder, S.; Sadayappan, P.; Mittal, A. Large-Scale Parallel Computation of the Phonon Boltzmann Transport Equation. Int. J. Therm. Sci. 2014, 86, 341–351. [Google Scholar] [CrossRef]
- Fang, Q.; Yan, S. Graphics Processing Unit-Accelerated Mesh-Based Monte Carlo Photon Transport Simulations. J. Biomed. Opt. 2019, 24, 115002. [Google Scholar] [CrossRef] [PubMed]
- Fernando, M.; Neilsen, D.; Lim, H.; Hirschmann, E.; Sundar, H. Massively Parallel Simulations of Binary Black Hole Intermediate-Mass-Ratio Inspirals. SIAM J. Sci. Comput. 2019, 41, C97–C138. [Google Scholar] [CrossRef]
- Heisler, E.; Deshmukh, A.; Mazumder, S.; Sadayappan, P.; Sundar, H. Multi-discretization domain specific language and code generation for differential equations. J. Comput. Sci. 2023, 68, 101981. [Google Scholar] [CrossRef]
Topic | References | RTE Solver Studied |
---|---|---|
Laminar flame | [158,159,171,172,173,187,205] | PMC, DOM, FAM, P, MDA, SP, SP |
Laboratory-scale turbulent flame | [3,160,163,206] | PMC, DOM, FAM, P–P |
Turbulent combustors, furnaces, and engines | [105,137,174,207,208,209,210,211] | PMC, P, DOM, FAM |
Other combustion applications | [106,137,199,200,203,212] | PMC, DOM, FAM, P, hybrid |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazumder, S.; Roy, S.P. Modeling Thermal Radiation in Combustion Environments: Progress and Challenges. Energies 2023, 16, 4250. https://doi.org/10.3390/en16104250
Mazumder S, Roy SP. Modeling Thermal Radiation in Combustion Environments: Progress and Challenges. Energies. 2023; 16(10):4250. https://doi.org/10.3390/en16104250
Chicago/Turabian StyleMazumder, Sandip, and Somesh P. Roy. 2023. "Modeling Thermal Radiation in Combustion Environments: Progress and Challenges" Energies 16, no. 10: 4250. https://doi.org/10.3390/en16104250
APA StyleMazumder, S., & Roy, S. P. (2023). Modeling Thermal Radiation in Combustion Environments: Progress and Challenges. Energies, 16(10), 4250. https://doi.org/10.3390/en16104250