Experimental Performance Analysis of Hardware-Based Link Quality Estimation Modelling Applied to Smart Grid Communications
Abstract
:1. Introduction
2. Related Works
2.1. Link Quality Estimation for WSNs
2.2. Wi-SUN (IEEE 802.15.4g) PHY Layer
3. LQE Modeling Methodology and Results
3.1. Experimental Setup
3.2. LQE Modeling for AMI Last-Mile Wi-SUN
3.2.1. SNR-Based Model
3.2.2. Mapping Model
3.2.3. RSSI- and PRR-Based Logistic Regression Model
3.3. Experimental Results
4. Discussion and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lloret, J.; Tomas, J.; Canovas, A.; Parra, L. An Integrated IoT Architecture for Smart Metering. IEEE Commun. Mag. 2016, 54, 50–57. [Google Scholar] [CrossRef]
- Saleem, Y.; Crespi, N.; Rehmani, M.H.; Copeland, R. Internet of Things-Aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions. IEEE Access 2019, 7, 62962–63003. [Google Scholar] [CrossRef]
- Boucetta, C.; Nour, B.; Moungla, H.; Lahlou, L. An IoT Scheduling and Interference Mitigation Scheme in TSCH Using Latin Rectangles. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Imran, R.; Odeh, M.; Zorba, N.; Verikoukis, C. Quality of Experience for Spatial Cognitive Systems within Multiple Antenna Scenarios. IEEE Trans. Wirel. Commun. 2013, 12, 4153–4161. [Google Scholar] [CrossRef]
- Baccour, N.; Koubâa, A.; Mottola, L.; Zúñiga, M.A.; Youssef, H.; Boano, C.A.; Alves, M. Radio link quality estimation in wireless sensor networks: A survey. ACM Trans. Sen. Netw. 2012, 8, 1–33. [Google Scholar] [CrossRef]
- Mochizuki, K.; Obata, K.; Mizutani, K.; Harada, H. Development and field experiment of wide area Wi-SUN system based on IEEE 802.15.4g. In Proceedings of the 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), Reston, VA, USA, 12–14 December 2016; pp. 76–81. [Google Scholar] [CrossRef]
- Chang, K.-H.; Mason, B. The IEEE 802.15.4g standard for smart metering utility networks. In Proceedings of the 2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm), Tainan, Taiwan, 5–8 November 2012; pp. 476–480. [Google Scholar] [CrossRef]
- Mochinski, M.A.; Vieira, M.L.d.S.C.; Biczkowski, M.; Chueiri, I.J.; Jamhour, E.; Zambenedetti, V.C.; Pellenz, M.E.; Enembreck, F. Towards an Efficient Method for Large-Scale Wi-SUN-Enabled AMI Network Planning. Sensors 2022, 22, 9105. [Google Scholar] [CrossRef] [PubMed]
- Harada, H.; Mizutani, K.; Fujiwara, J.; Mochizuki, K.; Obata, K.; Okumura, R. IEEE 802.15.4g Based Wi-SUN Communication Systems. IEICE Trans. Commun. 2017, E100-B, 1032–1043. [Google Scholar] [CrossRef]
- Savitha, M.M.; Basarkod, D.P.I. A Comprehensive Survey on RPL: Evolution and Challenges. In Proceedings of the Second International Conference on Emerging Trends in Science & Technologies for Engineering Systems (ICETSE-2019), Chickballapur, India, 17–18 May 2019. [Google Scholar] [CrossRef]
- Ancillotti, E.; Vallati, C.; Bruno, R.; Mingozzi, E. A reinforcement learning-based link quality estimation strategy for RPL and its impact on topology management. Comput. Commun. 2017, 112, 1–13. [Google Scholar] [CrossRef]
- Seyfollahi, A.; Ghaffari, A. A Review of Intrusion Detection Systems in RPL Routing Protocol Based on Machine Learning for Internet of Things Applications. Wirel. Commun. Mob. Comput. 2021, 2021, 8414503. [Google Scholar] [CrossRef]
- Ministry of Energy of the Kingdom of Thailand. Thailand Smart Grid Development Master Plan 2015 to 2036. Available online: https://www.eppo.go.th/images/Power/pdf/smart_gridplan.pdf (accessed on 3 May 2023).
- Boano, C.A.; Zúñiga, M.A.; Voigt, T.; Willig, A.; Römer, K. The Triangle Metric: Fast Link Quality Estimation for Mobile Wireless Sensor Networks. In Proceedings of the 2010 19th International Conference on Computer Communications and Networks, Zurich, Switzerland, 2–5 August 2010; pp. 1–7. [Google Scholar] [CrossRef]
- Boucetta, C.; Nour, B.; Cusin, A.; Moungla, H. QoS in IoT Networks based on Link Quality Prediction. In Proceedings of the ICC 2021—IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Liu, W.; Xia, Y.; Zheng, D.; Xie, J.; Luo, R.; Hu, S. Environmental Impacts on Hardware-Based Link Quality Estimators in Wireless Sensor Networks. Sensors 2020, 20, 5327. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Yuan, X.; Wang, J.; Li, Q.; Chen, L.; Mu, D. End-to-End Data Delivery Reliability Model for Estimating and Optimizing the Link Quality of Industrial WSNs. IEEE Trans. Autom. Sci. Eng. 2018, 15, 1127–1137. [Google Scholar] [CrossRef]
- Sun, W.; Wei, L.; Wang, J.; Mu, D.; Li, Q.; Yuan, X. A Link Quality Estimation model of Wireless Sensor Networks for Smart Distribution Grid. IFAC-PapersOnLine 2015, 48, 432–437. [Google Scholar] [CrossRef]
- Sun, W.; Lu, W.; Li, Q.; Chen, L.; Mu, D.; Yuan, X. WNN-LQE: Wavelet-Neural-Network-Based Link Quality Estimation for Smart Grid WSNs. IEEE Access 2017, 5, 12788–12797. [Google Scholar] [CrossRef]
- Chang, X.; Huang, J.; Liu, S.; Xing, G.; Zhang, H.; Wang, J.; Huang, L.; Zhuang, Y. Accuracy-Aware Interference Modeling and Measurement in Wireless Sensor Networks. IEEE Trans. Mob. Comput. 2016, 15, 278–291. [Google Scholar] [CrossRef]
- Muñoz, J.; Chang, T.; Vilajosana, X.; Watteyne, T. Evaluation of IEEE802.15.4g for Environmental Observations. Sensors 2018, 18, 3468. [Google Scholar] [CrossRef] [PubMed]
- Jayasri, T.; Hemalatha, M. Link Quality Estimation for Adaptive Data Streaming in WSN. Wirel. Pers. Commun. 2017, 94, 1543–1562. [Google Scholar] [CrossRef]
- Tangsunantham, N.; Pirak, C. Experimental Performance Analysis of Wi-SUN Channel Modelling Applied to Smart Grid Applications. Energies 2022, 15, 2417. [Google Scholar] [CrossRef]
- Sum, C.S.; Zhou, M.T.; Kojima, F.; Harada, H. Experimental Performance Evaluation of Multihop IEEE 802.15.4/4g/4e Smart Utility Networks in Outdoor Environment. Wirel. Commun. Mob. Comput. 2017, 2017, 7137406. [Google Scholar] [CrossRef]
- NBTC. Technical Standards of Telecommunication Equipment NTC TS 1033–2560 Radio Communication Radio Frequency Identification: The Frequency Range Is 920–925 MHz. Available online: https://infocenter.nbtc.go.th/storage/files/_contentSource_20171127_034358_1511772238958.PDF (accessed on 3 May 2023).
- Benjapolakul, W. Radio Frequency Utilization for the Development of Smart Grids in Thailand. Available online: https://so04.tci-thaijo.org/index.php/NBTC_Journal/article/view/139500/115537 (accessed on 3 May 2023).
- Fiscal Policy Research Institute Foundation. The Final Report of Spectrum Demand Study Project for Thailand. Available online: https://www.nbtc.go.th/getattachment/Information/%E0%B8%9C%E0%B8%A5%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B8%A8%E0%B8%B6%E0%B8%81%E0%B8%A9%E0%B8%B2%E0%B8%A7%E0%B8%B4%E0%B8%88%E0%B8%B1%E0%B8%A2/39288/%E0%B8%A3%E0%B8%B2%E0%B8%A2%E0%B8%87%E0%B8%B2%E0%B8%99%E0%B9%82%E0%B8%84%E0%B8%A3%E0%B8%87%E0%B8%81%E0%B8%B2%E0%B8%A3-Spectrum-Outlook.pdf.aspx?lang=th-TH (accessed on 3 May 2023).
- Hoeher, P.A. FSK-Based Simultaneous Wireless Information and Power Transfer in Inductively Coupled Resonant Circuits Exploiting Frequency Splitting. IEEE Access 2019, 7, 40183–40194. [Google Scholar] [CrossRef]
- Adly, I.; Ragai, H.F.; Elhennawy, A.E.; Shehata, K.A. Adaptive packet sizing for OTAP of PSoC based interface board in WSN. In Proceedings of the 2010 International Conference on Microelectronics, Cairo, Egypt, 19–22 December 2010; pp. 148–151. [Google Scholar] [CrossRef]
- Goldsmith, A. Wireless Communications; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Yin, X.; Cheng, X. Propagation Channel Characterization, Parameter Estimation, and Modeling for Wireless Communications; Wiley: Singapore, 2016. [Google Scholar]
Regulatory Domain | Frequency Band (MHz) | Data Rates (kbps) |
---|---|---|
China | 470–510, 779–787 | 50, 100, 200 |
Europe | 863–870 | 50, 100, 200 |
U.S. | 902–928 | 50, 150, 200 |
Korea | 917–923.5 | 50, 150, 200 |
Japan | 920–928, 950–958 | 50, 100, 200, 400 |
Worldwide | 2400–2483.5 | 50, 150, 200 |
Frequency (MHz) | Data Rate (kbps) | Channel Spacing (kHz) | Alias | Transmit Power (dBm) |
---|---|---|---|---|
433.92 | 50 | 200 | 2FSK-433-50 | 10 |
100 | 400 | 2FSK-433-100 | 10 | |
200 | 400 | 2FSK-433-200 | 10 | |
443 | 50 | 200 | 2FSK-443-50 | 10 |
100 | 400 | 2FSK-443-100 | 10 | |
200 | 400 | 2FSK-443-200 | 10 | |
448 | 50 | 200 | 2FSK-448-50 | 10 |
100 | 400 | 2FSK-448-100 | 10 | |
200 | 400 | 2FSK-448-200 | 10 | |
923 | 50 | 200 | 2FSK-923-50 | 20 |
100 | 400 | 2FSK-923-100 | 20 | |
150 | 400 | 2FSK-923-150 | 20 | |
200 | 400 | 2FSK-923-200 | 20 | |
2440 | 50 | 200 | 2FSK-2440-50 | 5 |
150 | 400 | 2FSK-2440-150 | 5 | |
200 | 400 | 2FSK-2440-200 | 5 |
Specification | Value | Unit |
---|---|---|
WSN standard | IEEE 802.15.4g-2012 (Wi-SUN) | - |
Modulation, frequency, data rate, and transmit power | All aliases in Table 2 | - |
Antenna gain | 2 | dBi |
DCU simulation installation height (Tx) | 4 | m |
SM simulation installation height (Rx) | 2 | m |
Payload size | 255 | bytes |
Tx packet interval | 500 | ms |
Frequency (MHz) | Noise Floor (dBm) |
---|---|
433.92 | −122 |
443 | −113 |
448 | −119 |
923 | −114 |
2440 | −120 |
- | P1 | P2 | P3 | P4 | P5 | P6 | P7 |
---|---|---|---|---|---|---|---|
Distance from transmitter to receiver (m) | 10 | 20 | 40 | 60 | 80 | 85 | 105 |
Alias | ||
---|---|---|
2FSK-433-50 | −0.21 | −13.12 |
2FSK-433-100 | −0.22 | −13.29 |
2FSK-433-200 | −0.23 | −15.67 |
2FSK-443-50 | −0.51 | −36.39 |
2FSK-443-100 | −0.43 | −30.73 |
2FSK-443-200 | −0.38 | −28.29 |
2FSK-448-50 | −0.26 | −16.84 |
2FSK-448-100 | −0.25 | −16.45 |
2FSK-448-200 | −0.302 | −20.68 |
2FSK-923-50 | −0.214 | −12.107 |
2FSK-923-100 | −0.218 | −10.59 |
2FSK-923-150 | −0.221 | −10.58 |
2FSK-923-200 | −0.217 | −10.25 |
2FSK-2440-50 | −0.217 | −14.562 |
2FSK-2440-150 | −0.208 | −12.61 |
2FSK-2440-200 | −0.2107 | −12.69 |
Alias | ||
---|---|---|
2FSK-433-50 | 1.086 | 106 |
2FSK-433-100 | 1.135 | 103 |
2FSK-433-200 | 0.9509 | 100 |
2FSK-443-50 | 0.4518 | 95 |
2FSK-443-100 | 0.503 | 93 |
2FSK-443-200 | 0.451 | 89 |
2FSK-448-50 | 0.6831 | 106 |
2FSK-448-100 | 1.228 | 103 |
2FSK-448-200 | 0.9697 | 100 |
2FSK-923-50 | 0.3528 | 105 |
2FSK-923-100 | 0.3939 | 103 |
2FSK-923-150 | 0.691 | 98 |
2FSK-923-200 | 0.7784 | 97 |
2FSK-2440-50 | 0.07904 | 55 |
2FSK-2440-150 | 0.08335 | 72 |
2FSK-2440-200 | 0.08346 | 79 |
Number | Alias | RSSI- and PRR-Based Model | SNR-Based Model | Mapping Model | ||
---|---|---|---|---|---|---|
RMSE | RMSE | RMSE Difference (%) 1 | RMSE | RMSE Difference (%) 2 | ||
1 | 0.1467 | 0.1467 | 0.3512 | 139% | 0.3754 | 156% |
2 | 0.1464 | 0.1464 | 0.4271 | 192% | 0.4408 | 201% |
3 | 0.1825 | 0.1825 | 0.4287 | 135% | 0.4329 | 137% |
4 | 0.2407 | 0.2407 | 0.4374 | 82% | 0.4548 | 89% |
5 | 0.2915 | 0.2915 | 0.6580 | 126% | 0.6582 | 126% |
6 | 0.2285 | 0.2285 | 0.4755 | 108% | 0.4907 | 115% |
7 | 0.1614 | 0.1614 | 0.2427 | 50% | 0.2765 | 71% |
8 | 0.1377 | 0.1377 | 0.3390 | 146% | 0.3507 | 155% |
9 | 0.1725 | 0.1725 | 0.3718 | 116% | 0.3894 | 126% |
10 | 0.1379 | 0.1379 | 0.1524 | 10% | 0.1700 | 23% |
11 | 0.1378 | 0.1378 | 0.1798 | 30% | 0.1869 | 36% |
12 | 0.1479 | 0.1479 | 0.1610 | 9% | 0.2382 | 61% |
13 | 0.1496 | 0.1496 | 0.1673 | 12% | 0.2359 | 58% |
14 | 0.2114 | 0.2114 | 0.9534 | 351% | 0.9590 | 354% |
15 | 0.3765 | 0.3765 | 0.8549 | 127% | 0.8578 | 128% |
16 | 0.4255 | 0.4255 | 0.7660 | 80% | 0.7858 | 85% |
Total average 3 | 0.2059 | 0.4353 | 111% | 0.4564 | 122% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tangsunantham, N.; Pirak, C. Experimental Performance Analysis of Hardware-Based Link Quality Estimation Modelling Applied to Smart Grid Communications. Energies 2023, 16, 4326. https://doi.org/10.3390/en16114326
Tangsunantham N, Pirak C. Experimental Performance Analysis of Hardware-Based Link Quality Estimation Modelling Applied to Smart Grid Communications. Energies. 2023; 16(11):4326. https://doi.org/10.3390/en16114326
Chicago/Turabian StyleTangsunantham, Natthanan, and Chaiyod Pirak. 2023. "Experimental Performance Analysis of Hardware-Based Link Quality Estimation Modelling Applied to Smart Grid Communications" Energies 16, no. 11: 4326. https://doi.org/10.3390/en16114326
APA StyleTangsunantham, N., & Pirak, C. (2023). Experimental Performance Analysis of Hardware-Based Link Quality Estimation Modelling Applied to Smart Grid Communications. Energies, 16(11), 4326. https://doi.org/10.3390/en16114326