Numerical Simulation on Transient Pressure Pulsations and Complex Flow Structures of a Ultra-High-Speed Centrifugal Pump at Stalled Condition
Abstract
:1. Introduction
2. Numerical Setup
2.1. The Ultra-High-Speed Centrifugal Pump for Investigation
2.2. Numerical Scheme
3. Results and Discussions
3.1. Global Performance of the Ultra-High-Speed Centrifugal Pump
3.2. Unsteady Pressure Pulsations at Various Flow Rates
3.3. Complex Flow Structures within the Impeller
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Qd | Flow capacity, m3/h |
Hd | Pump head, m |
Pd | Rated shaft power, W |
nd | Shaft speed, r/min |
ns | Pump-specific speed |
ΦN | Flow capacity coefficient |
ΨN | Head coefficient |
λN | Power coefficient |
Zr | Total blade number of the impeller |
η | Efficiency |
D1 | Suction diameter, mm |
D2 | Impeller outlet diameter, mm |
D4 | Volute outlet diameter, mm |
ϕ | Wrap angle, ° |
u2 | Tangential speed at the impeller outlet, m/s |
β2 | Blade outlet angle, ° |
ρ | Water density, m3/h |
fn | Shaft rotating frequency, Hz |
fBPF | Blade passing frequency, Hz |
RSI | Rotor-stator interaction |
t | Time, s |
Δt | Time step, s |
A | Pressure pulsation amplitude, Pa |
y+ | Value of y plus |
cp | Pressure coefficient |
RMS | Root mean square |
References
- Weijun, W.; Tailong, L.I. Optimum design of centrifugal aviation fuel pump based on splitter blades technology. Eng. J. Wuhan Univ. 2021, 54, 557–562. [Google Scholar]
- Li, D.; Ren, Z.; Li, Y.; Miao, B.; Gong, R.; Wang, H. Thermodynamic Effects on Pressure Fluctuations of a Liquid Oxygen Turbopump. J. Fluids Eng. Trans. ASME 2021, 143, 111401. [Google Scholar] [CrossRef]
- Posa, A.; Lippolis, A. A LES investigation of off-design performance of a centrifugal pump with variable-geometry diffuser. Int. J. Heat Fluid Flow 2018, 70, 299–314. [Google Scholar] [CrossRef]
- Posa, A. LES investigation on the dependence of the flow through a centrifugal pump on the diffuser geometry. Int. J. Heat Fluid Flow 2021, 87, 108750. [Google Scholar] [CrossRef]
- Yuan, Y.; Yuan, S. Analyzing the effects of splitter blade on the performance characteristics for a high-speed centrifugal pump. Adv. Mech. Eng. 2017, 9, 1–11. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, H.; Liu, H.; Xu, L.; Lv, Y. Pressure Fluctuation Characteristics of High-Speed Centrifugal. Processes 2021, 9, 2261. [Google Scholar] [CrossRef]
- Guo, X.; Jiang, C.; Qian, H.; Zhu, Z. The Influence of Tip Clearance on the Performance of a High-Speed Inducer Centrifugal Pump under Different Flow Rates Conditions. Processes 2023, 11, 239. [Google Scholar] [CrossRef]
- Chao, W.X.; Shi, B.L.; Ruan, H.; Dong, W. The Cavitation Characteristics of High Speed Centrifugal Pumps with Different Impeller Types. Front. Energy Res. 2022, 10, 811690. [Google Scholar] [CrossRef]
- Zhang, N.; Li, D.; Jiang, J.; Gao, B.; Ni, D.; Alubokin, A.A. Experimental Investigation on Velocity Fluctuation in a Vaned Diffuser Centrifugal Pump Measured by Laser Doppler Anemometry. Phys. Fluids 2023, 32, 125108. [Google Scholar] [CrossRef]
- Zhang, N.; Jiang, J.; Gao, B.; Liu, X. DDES analysis of unsteady flow evolution and pressure pulsation at off-design condition of a centrifugal pump. Renew. Energy 2020, 153, 193–204. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, X.; Gao, B.; Wang, X.; Xia, B. Effects of modifying the blade trailing edge profile on unsteady pressure pulsations and flow structures in a centrifugal pump. Int. J. Heat Fluid Flow 2019, 75, 227–238. [Google Scholar] [CrossRef]
- Ni, D.; Zhang, N.; Gao, B.; Li, Z.; Yang, M. Dynamic measurements on unsteady pressure pulsations and flow distributions in a nuclear reactor coolant pump. Energy 2020, 198, 117305. [Google Scholar] [CrossRef]
- Barrio, R.; Parrondo, J.; Blanco, E. Numerical analysis of the unsteady flow in the near-tongue region in a volute-type centrifugal pump for different operating points. Comput. Fluids 2010, 39, 859–870. [Google Scholar] [CrossRef]
- Keller, J.; Blanco, E.; Barrio, R.; Parrondo, J. PIV measurements of the unsteady flow structures in a volute centrifugal pump at a high flow rate. Exp. Fluids 2014, 55, 1820. [Google Scholar] [CrossRef]
- Feng, J.; Ge, Z.; Yang, H.; Zhu, G.; Li, C.; Luo, X. Rotating stall characteristics in the vaned diffuser of a centrifugal pump. Ocean Eng. 2021, 229, 108955. [Google Scholar] [CrossRef]
- Ullum, U.; Wright, J.; Dayi, O.; Ecder, A.; Soulaimani, A.; Piché, R.; Kamath, H. Prediction of rotating stall within an impeller of a centrifugal pump based on spectral analysis of pressure and velocity data. J. Phys. Conf. Ser. 2006, 52, 36–45. [Google Scholar] [CrossRef]
- Zhang, N.; Gao, B.; Ni, D.; Liu, X. Coherence analysis to detect unsteady rotating stall phenomenon based on pressure pulsation signals of a centrifugal pump. Mech. Syst. Signal Process. 2021, 148, 107161. [Google Scholar] [CrossRef]
- Zhao, X.; Xiao, Y.; Wang, Z.; Luo, Y.; Cao, L. Unsteady flow and pressure pulsation characteristics analysis of rotating stall in centrifugal pumps under off-design conditions. J. Fluids Eng. Trans. ASME 2018, 140, 021105. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, X.; Gao, B.; Xia, B. DDES analysis of the unsteady wake flow and its evolution of a centrifugal pump. Renew. Energy 2019, 141, 570–582. [Google Scholar] [CrossRef]
- Zore, K.; Sasanapuri, B.; Parkhi, G.; Varghese, A. Ansys mosaic poly-hexcore mesh for high-lift aircraft configuration. In Proceedings of the 21th Annual CFD Symposium, Bengaluru, India, 8–9 August 2019; pp. 1–11. [Google Scholar]
- Gao, B.; Zhang, N.; Li, Z.; Ni, D.; Yang, M.G. Influence of the Blade Trailing Edge Profile on the Performance and Unsteady Pressure Pulsations in a Low Specific Speed Centrifugal Pump. J. Fluids Eng. Trans. ASME 2016, 138, 051106. [Google Scholar] [CrossRef]
- Posa, A. LES study on the influence of the diffuser inlet angle of a centrifugal pump on pressure fluctuations. Int. J. Heat Fluid Flow 2021, 89, 108804. [Google Scholar] [CrossRef]
- Posa, A.; Lippolis, A. Effect of working conditions and diffuser setting angle on pressure fluctuations within a centrifugal pump. Int. J. Heat Fluid Flow 2019, 75, 44–60. [Google Scholar] [CrossRef]
- Zhang, N.; Li, D.; Gao, B.; Ni, D.; Li, Z. Unsteady Pressure Pulsations in Pumps—A Review. Energies 2023, 16, 150. [Google Scholar] [CrossRef]
- Li, D.L.; Zhang, N.; Jiang, J.X.; Gao, B.; Alubokin, A.A.; Zhou, W.J.; Shi, J.L. Numerical investigation on the unsteady vortical structure and pressure pulsations of a centrifugal pump with the vaned diffuser. Int. J. Heat Fluid Flow 2022, 98, 109050. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Flow rate Qd | 50 m3/h |
Head Hd | 1500 m |
Rotating speed nd | 28,000 r/min |
Specific speed | 50 |
Total blade number Zr | 20 |
Long-blade number Zr-long | 5 |
Middle-blade number Zr-mid | 5 |
Short-blade number Zr-short | 10 |
Suction diameter D1 | 30 mm |
Outlet diameter D2 | 116 mm |
Volute exit diameter D4 | 30 mm |
Blade outlet angle β2 | 25° |
Wrap angle ϕ | 130° |
Tangential speed at the impeller outlet u2 | 170 m/s |
Shaft frequency fn | 466 Hz |
Blade passing frequency fBPF | 9333 Hz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Li, H.; Chen, J.; Li, D.; Zhang, N. Numerical Simulation on Transient Pressure Pulsations and Complex Flow Structures of a Ultra-High-Speed Centrifugal Pump at Stalled Condition. Energies 2023, 16, 4476. https://doi.org/10.3390/en16114476
Zhou Z, Li H, Chen J, Li D, Zhang N. Numerical Simulation on Transient Pressure Pulsations and Complex Flow Structures of a Ultra-High-Speed Centrifugal Pump at Stalled Condition. Energies. 2023; 16(11):4476. https://doi.org/10.3390/en16114476
Chicago/Turabian StyleZhou, Zhenhua, Huacong Li, Jinbo Chen, Delin Li, and Ning Zhang. 2023. "Numerical Simulation on Transient Pressure Pulsations and Complex Flow Structures of a Ultra-High-Speed Centrifugal Pump at Stalled Condition" Energies 16, no. 11: 4476. https://doi.org/10.3390/en16114476
APA StyleZhou, Z., Li, H., Chen, J., Li, D., & Zhang, N. (2023). Numerical Simulation on Transient Pressure Pulsations and Complex Flow Structures of a Ultra-High-Speed Centrifugal Pump at Stalled Condition. Energies, 16(11), 4476. https://doi.org/10.3390/en16114476